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Abstract

A two-locus genetic model, based on Dawkin's "sex war" game, with the fitness
of the genotlypes at each locus depending on the gene frequencies at the other, is
shown to give rise to a stable limit cycle. The mathematical analysis involves
averaging techniques and elliptic integrals,
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1. Intioduction

This note describes a simple two-locus genetic model that gives rise to a
stable limit cycle. The origin of the model is Dawkins' (1976) 'sex war’ game, a
simple evolutionary game describing the parental investment conflict. In this game
males have two possible strategies, faithful (£,) or philanderer (£,), and females
may play the strategies fast () or coy (§;). Assuming +15 as the reward for hav-
ing a child (to both parents), -20 as the total cost of raising the offspring, and -3
for the prolonged courtship coy females insist on, Dawkins obtained the following

pay-off matrices A for males and B for females:

55 2.2

A.B =15 5 0,0

: 1)

This bimatrix game has a totally mixed Nash equilibrium at (%.%) and (%.%)

(see Dawkins (1976), Maynard Smith (1982), Schuster and Sigmund (1981)). It is not
an evolutionarily stable state (ESS), however, since the second {stability) condi-
tion is not satisfied. In fact, Selten (1980) has shown in general that in asymmetric
conflicts, only pure strategles can be evolutionarily stable. Hence the static,
game theoretic approach is not very satisfactory for this particular example, and

it seems reasonable Lo introduce some dynamics.

It turns out, however, that the standard continucus time game dynamics, as
studied e.g. by Zeeman (1980}, may be generalized in (at least) two different ways
to asymmetric conflicts: the one, see Schuster and Sigmund (1981), gives rise to

conservative oscillations, the other, see Maynard Smith {1982), Appendix J, makes
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the equilibrium asymptotically stable. With discrete time, however, the stationary

solution would always be unstable (Eshel and Akin, 1983).

The first type of dynamics is also relevant for the analysis of our new model in
§ 2: With Zy.Yy denoting the relative frequencies of the siralegies E; le respec-

tively and the basic assumption

z
'.-.:_i = growth rate of £, = average payoff for £ 2)
1

—average payoff for males = (A_y)i —E‘Ag .

Schuster and Sigmund (1981) derlve the equations
z =z{(l-z)(2-12y) 3)
v =y (1-y)(-5+8z)
forz =z, =1—=,, ¥ =y, =1—¥,. They show that
V =231 ~x)3y2(1—y)1° (4)

1s a constant of motion, so that all solutions oscillate around the Nash equilibrium,
which also represents the time-average of any orbit. (Note the strong analogy to

the Lotka-Volterra predator-prey equations.)

This model has one main drawback, however: It neglects the genetic struc-
ture. The derivation (2) assumes implicitly that individuals reproduce asexually.
There is thus a need for a genetic model which takes into account the sexual in-
Lleraction between males and females. One such diploid model was studied by Bomze
et al. (1983), again using continuous time and leading to similar conservative oscil-
lations. As this lacks structural stability too, a more natural model would be to

consider a diploid model with separaied generations.

2. The Model

We consider two loci, with two alleies at each locus. The A-iocus, with alleles
A and a, regulates male behavior: A -+ strategy E, (= faithful), a =E, (= phi-
landerer), and is not expressed in females. More precisely, we assume that homoz-

ygotes 44 and aa play the pure strategies £, and E, respectively, and that the
heterozygote Aa plays the mixed strategy %(E1 + £'5). In a similar way the B-locus

determines female behavior: B+ F; = fast, ¥ »F; = coy. Let p, g, be the fre-
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quencies of allele 4 in adult males and females respectively, and Pp ¢g be the
corresponding frequencies of allele 7.

Assuming linkage equilibrium, the frequencies of 44, Ada, aa in the next gen-
eration are P q . Pa(1—gqy) + gsubA(l-py) =Dy + @4 —2p19,, (1-0s)(1—qy)
respectively. The marginal frequency of gene 4, which also measures the proba-

bility of strategy £, among males in the new generation, is then given by
DaQy + %(pA +Q4 =20 Qy) = %(pA +¢,). Similar results hold for the B-locus.
In order to simplify the mathematical analysis, we replace Dawkins’ original

pay-off matrix (1) by the following more symmetric one (this does not change the

situation qualitatively):

1-K, 1+L 1+&, 1-L
with 0 < X,.L <1. &)

+K, 1-L 1-K, 1+L

This gives the following fitness values for males, depending on the frequency of fe-

males:
Ppt+ip DPgp+ap
wy = A=K~ + L+K)(L - —E=2) = 14K (1-pp —p)
Ppt+g Dppte¢
wo, = (1+K)-—2—B + (1K) (1- iz—") = 1-K(1 ~pg —gg) (6)

1
wA(l = E(wAA mua) = 1:

with similar results for females.

Hence writing »’y, etc. for the allelic frequencies in the adults of the new

generation,

1
WP 94+ 5 Waa Py +2 2Py 9y)

Pyp= —
Wy

1
Dagy +E(PA +@,—Rpaqy) D1+,
Ta= 1 =Tz

, etc

The mean fitness of males at the A-locus, w,, is given by
wy =1+ K[ 249, 1-pp—ap)—(1-p,)(1—9)(1—pg—ap)]
=1-K(1~-p,—q,)(1~—pg—g9g)

This leads finally to the equations



1
= @4 +P)+K(L—Pp~ap)P, 2
1-K(1-p, —~q,)(1-pg —qpg)

’

Pir =

, 1
Q'y ='§'(PA+QA)

, 1 (7
Pp = E(PB +gp)

1
-2—(393 +qg)—L{(1—p4 94 )Ppep

9p

1+L(1-p, —g,)(1~pPK—0pg)

Since 0=X,I <1 this is a well-defined transformation on the state space [0,1]4.

Obviously p; = Q4 =Pp =qQg = % is a stationary solution of (7} with two zero

eigenvalues {(corresponding to a very quick convergence to a sex ratio 1:1) and a
pair of complex conjugate eigenvalues with real part +1 {(due to the cyclic struc-

ture of Dawkins' game) which make this solution unstable.

On the other hand, using the method of "average Ljapunov functions",
developed by Hofbauer and Sigmund (1984) and Hutson and Moran (1982), one can
analyze the local behavior near the boundary of the state space, showing that this
boundary is repelling, and system (7) exhibits "permanent coexistence" (see Ap-
pendix A). The attractors of (7) thus have to lie in the interior of [0,1]%, and since
the only stationary solutlon there is unstable, this attractor has to be a more com-

plicated set.

Numerical simulations show that this attractor is a '"limit cycle”, i.e. a closed
invariant attracting curve surrounding the stationary solution (see Fig. 1). In the
next section we will give a mathematical proof of this observation for small values
of L K (this is the biological most relevant case) and determine the explicit equa-
tion of this limit eyele in the limit X = L +0. This is done by averaging techniques,
as, for example, when treating Yan der Pol's equation as a perturbation of the har-

monic oscillator.
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FIGURE 1. The limit cycle.

3. The Limit Cycle

We begin with a linear change of variables which transforms the stationary
solution to the origin:
x=1-p; —94.%¥ =1—pp—gp.U =P, —Q4 .V =Pp g (8)

Then (z,v.u,v)e[—1,+1)%.
Furthermore we assume K = £ to make the analysis simpler and set ¢=K/4.

Then (7) is transformed into

1—z%—u? 1:&2—1:2
‘= — e e [ +
z ey 1—4exy 4 y T 1+4zxy
(9)
. 1—z%—u? , 1—'yz-v2
u' =sgy——————— v’ = —gx———.
1-4exy l+dexy
Now fa |, lv’ < T—_:?. and so » and v will be of order 0 (&) for £-0, uniformly on

the whole state-space, in all subsequent generations. (This corresponds toa rough
equilibration of the sex-ratic.) Thus the four-dimensional system (9) reduces for

small £ to a two-dimensional one:
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' =z +ef(zy)+ 2 fz,y) + 0@

) 2~ 3 (10)
¥y =y +eglxy) + gz, ) +0()
with
rzy)= vl -z% fz.y)=—4zy? 1 - 2%
~ (11)
gz.¥y) =21 —yo flz.y) = 4z°y(1 —y?).
For £ -+ 0 we obtain, as a first-order approximation, the differential equation
z=sr&.y)=—yQl -z%
12)

vy =gz, y)=z(1 -y9.

These are - up to a translation of the Nash solution to the origin - just the
Schuster-Sigmund equations (3) for Dawkins' game, see also Maynard Smith
{1982),Appendix J.

These equations are integrable with
I =R2=z2%2 +y2% —2%% (13)

as a constant of motion. Therefore we change to "canonical coordinates” (R,¢)

such that (12) appears in the normal form
z =izo(lz |® =i(a z +a,2 |2 |2 + a,z lz 14+ ..)
with z = Re!®, or equivalently
R =0, ¢=0wR?. (14)

The canonical angle variable ¢ and the angle velocity w(®?2) are evaluated in Ap-

pendix B. They can be expressed only In terms of elliptic integrals,

Now we shall express our difference equation (10) in terms of the canonical

variables I = £ and ¢

I'=siz'\y)=I(x+&f +£2f+....y +eg +52§'+ )
= I(x.y)+(£f+a:2f')1:+(sg +526)Iy+%[(€f +...)21=:
+2(ef 4+ Neg+ - )1:y+(£g+ . )zlyy]+0(£3).

Now the linear terms in &£ vanish since (14) implies I= L.r +Iyg =0 . For the &°



-terms we obtain from (13)
I, =2z(1—y?®), Iz =R(1—y?, I, =—dzy, -
Therefore
I' = [+e%F(z ,y)+0(&%) (15)
with
- S 2
= -4z —=z%2z (1 -y —4zly 1—y D2y (1 -2%)
+ (1= v +zy 1 =5 U yHazy +22 1 )% (1 -2
= 1=d)Q—ydH[ 1622y +y 21 =z ?)+ax Py L+ 21—y D))

= (1-RY(z%+y%—14z%y?)

1-R*®

5 [R%—14R%z*+13z1]. (16)

1-—=x

Similarly, using ¢ = w S +fpyg = w(/), we obtain

ez’ v )= lz+ef +,... . y+eg+ )

@

ez ¥)+Ef op +8g ¢, +0(7)

e+e(RE+0(). (17)
So we end up with
I = I+%F (I, @) +0(e%)

¢ = g+ew(l)+0(e%) (18)

The next step is Lo average out the ¢-dependence In the £%-term of (18) by the An-
satz P =I+eh{l,¢). Then

P =I+eh{I', @) = I+EF(I @) +ER (I +E5F+ - - - [@+e(I)+ -~ )+ -
= I+eh (1.¢>+82EF<I.¢>+3—’; (1)1 +0(eY), (19)

Now, following the usual averaging procedure, compare e.g. Arnold (1983), p. 147
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ff, we separate F into its mean and its oscillating part,
Fl,9) = GU)+F (I, ¢)

with

2w
o) = o= [FU.o)de. 20)
0

Inserting this into (19) we may choose A in such a way that

~ bh _
Filg)+g ool =0

or
8h _ _ Fd,
8¢ () (21)
1% o
(Since h is a Zm -periodic function in ¢, the mean of its derivative, EI -‘gd @,
Q

equals zero. Since this will not in general be the case for the mean of F{/,¢) we

can average out only the osclllating part Fu ).

So with our new variable P Instead of / we have simplified (18) to

P’ = P+E*G(P)Y+0(e%)

(€2)
¢ = ¢+£:.J(P)+O(£2).

The averaged function G({P) is computed in Appendix B (in terms of elliptic In-

tegrals again), where we also prove the existence of a number F, such that

GO =C¢QA)=CF,) =0

G(P)>0 for 0 <P <P,
(23)
G(P) <0 for Py<P <1

Thus the graph of ¢ is similar to that shown in Fig. 2.

If we neglect O-terms in (22), then P = P, is obviously the equation of an in-
variant globally attracting circle. That this circle also persists under the O-
perturbations for small £ > 0, can be shown e.g. by the technique developed by

Iooss (1979) for proving the Hopf bifurcation theorem for maps.



FIGURE 2. The graph of the function G (P).
In particuiar it is found that for small £ > 0 (10) has an attracting limit cycle

of the form

P =I+th(l,¢) = P, +0(ch). (24)

So one particular periodic orbit from the Hamiltonian system (12), i.e. the
Schust.er—Sigrﬁund dynamics for Dawkins' game, R¢= z2+y2—z2y2 =P, , serves as
the Iiniiting case £-+0 for the limit cycles of our more refined genetic model of the
"battle of the sexes”. The constant F, which determines the position of this cycle

is the zero of the function @ (P) and is computed in Appendix B.

4 Discussion

We have described limit cycle behavior in a simple genetic model, with two al-
leles at sach of two loci, with sex-dependence and fithesses depending on the fre-
quencies of the other sex. The model is based on Dawkins’ (1976) "battle of the
sexes”. For small £, measuring the intensity of frequency dependent selection, we
have proved the existence and stability of a limit cycle. The amplitude of this limit
cycle is rather insensitive to changes in the selection intensity, while the "period"”
is approximately inversely proportional to the selection intensity. This is in con-
trast to limit cycle behavior constructed by standard Hopf bifurcation technigues

where the amplitude is small and the period is approximately constant.
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In the limit £ - 0, this limit cycle tends to one particular cycle of the simple
Hamiltonian system identified by Schuster and Sigmund (1981) as the first dynamic
model for Dawkins' game. In particular, at least for ¢ -+ 0, the time average over
the limit cycle represents the interior stationary solution predicted by game
theory. Thus this solution, though unstabhle both dynamically and evolutionarily,
still has some biological relevance. This shows once more that despite their sim-

plicity such haploid models already carry the basic ingredients.

Numerical simulations show that this limit eycle behavior is rather robust. It
does not depend on the assumption that fitnesses are additive, or that the selection
intensity is the same in Lthe two sexes {(i.e. ¥ =L ). Limit cycle behavior is still ob-
served if there is some directional, non-frequency-dependent selection, provided
that this directional selection is less intense than the frequency-dependent selec-
tion. Also, the conclusion does not depend on the assumption that the genes are
sex-limited in their effects. A similar limit cycle arises if the fitnesses of the
genotypes at the A locus, in both sexes, depend additively on the frequencies of

the alleles at the B locus, and vice-versa.,

All these observations ¢could be proved using the same method of averaging.
We have confined ourselves to the simplest possible case, however, in aorder to
keep the mathematical analysis tractable. In more general models difficuities
could arise since the nice elliptic integrals have to be replaced by more general

integrals where formulas like (BE5-7) are probabiy not available.

That limit ¢ycle behavior is possible in rather simple genetic systems has been
shown in the last few years. The pioneering work in this direction is due to Akin
(1979). Other papers dealing with this topic are Akin (1982, 1883), Hastings
(1981), Hofbauver and looss (1984), Hofbauer (1984, 1985), Hunt (1982), Koth and
Kemler (1985), Selgrade and Namkoong (1984).
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Appendix A: Behaviour Near the Boundary

First it is easy to check that one of p; . g . Py . gp is zero if and only if one
of the four alleles 4, a, 5, b is missing in both sexes. In the new variables

8):z=+x1lory =+1. Thus the set
M=llz|=1 or |y} =1}

which is a union of four squares, is the maximal invariant subset of the boundary of
the state space: Starting on the boundary outside M, the next generation and all
subsequent ones will be in the interior of [0,1]%, i.e. all four alleles will be present
in both sexes. Thus in order to show that the boundary is a repeiling set, it is suf-

ficient Lo prove that M is repelling.

For this we first need the behavior on M itself. Since z'=sz iff y =0, 1t is
easy Lo see that on the part where ¥y =-1, £ converges monotonically, increasing
from —1 to 1. Where =1, ¥ goes from —1 to 1; where ¥ =1, x goes from 1 back to
-1, and finally where £=-1, ¥ decreases from 1 to —1, and the cycle is closed.
Thus the & - limit sel of M consists only of the four fixed points where

lz|=|v | =1 (and u =v =0).

Now consider the function
P=(1-z%)(1—y?).

Then P = 0 holds, with P=0 on M. Furthermore P;> §é >0 on the whole state

P
space and
2
P_|1-af
P 1-16¢%

at the four boundary fixed points in M. Thus P? > 1 on the whole w-limit set of ¥,

and F is an "average Lyapunov function" for M. According to Hutson and Moran

(1982), M is a repeller.
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Appendix B: Elliptic Integrals in the Battle of the Sexes

We start with the normal form (14)
R =0, ¢&=w(R? (B1)

of the Schuster-Sigmund differential equation (12) for the battle of the sexes.
Since, by (13), we have

R = g4y z2y2, (B2)

the stale space Kz.,y) €eR?: lz < | for (12) transforms into
{(R,¢) ER xR/ zng: 0 =R <1} In order to determine the canonical angle ¢ and
the angle velocity w(R?) we treat ¢ as a function of x and K:¢ = ¢(x.R). Then

¢ = qa:z'-i-ch}% implies
W(R?) = ~p, y(1-z?).

Eliminating ¢ from (B2),

%xﬂ = —w(RY(1—=?) HR2-22) % | (B3)

It is well-known that this leads to an elliptic integral. In particular we obtain
+R +|]? +R
- [ ¢ ax = —¢l =7= w(®? [ (1-z?) H(RrE-z2) Haz. (B4)
- -k

Now recall Legendre's formulas for complete elliptic integrals (see e.g. Groebner
and Hofreiter (1950), p. 39):

R 1 :
Sz WR2—z?) Mz = [(1-R%22%) ¥ (1 2% Yazx
0 0

2 (BS)
Ly
=K T - 2 Zn
KR =L | Tar | R
n=
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R 1
JSa-=3¥% (R22?) K azr=f(1-R2z2)¥(1 2) Haz
0

1 1
= (5 (3)
2 2'migm
=E(R) =§ Y nint R

R 1
Sz YRRtz = [(1-R%? /21 2% Haz
0 0

=(1-RHE(R)

where (a), = a{a—1) ‘' (a—n +1). These series converge for ’l<1.
{B3) imply
-1
2
i - | o
W(R?) = = RAT

=%
2K(R) =, !

The next problem is to evaluate the averaged function (20):

2m
CRY = o= [F(RE.p)a
0

(B6)

(B7)

{B4) and

(B8)

(B9)

Since we do not have an explicit expression for ¢, we have to transform the in-

tegral. Using (B2) and splitting the circle into 4 equal parts we obtain

2Ry F ﬂ}i’z,zz) .
n o ¥(1—=x*)

G(R%) =

So again we have to calculate an elliptic integral. From (16) we obtain
R
(1-rR*» ™ [F(R?z)(1 —=?) H(r?-2?) Faz =
0

R
= [(R2-14R?%2? + 132%)(1—=?) 3/ 2(R2-22) Fgz =
(¢

R R
13 (1= ?) ¥ R2—?) Fdz + (14R?-26) [ (129 K RZP-zDhaz +
0 0

R
+13(1-R?) [(1-2%) 3/ %(p2 22y Fgz =
0

= 13E(R) + (14R*—26)K(R) + 13E(R)=

R
= 2 0(R?) [F(R:2)(R?~2?) H#(1—z?) Hdz (B10)
0

{(B11)
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= 26E(R) + (1AR%-2B6)K(R)

So (B10) together with (B8) gives an "explicit” formula for G:

2y = (1 _p2 2_ E(R)
G(R°) = (1-R°)(LAR“—26 + 26 X(R) ). (B12)

Inserting the series expansions (B5), (BB) into (B11) we obtain after some cal-

culation:

RZ'n.

G(RY = w(RT(1-RY Y [14n-13(2n —3)2}((%—),1 —1)Zm =

n=1

(B13)

_]:QRG - QRG____]

= P2V (1 —R2V[ P2
w(R<)(1—R=)(R~ + 3 64

Obviously all term (up to the first two) of the sum have a negative coefficient.
Since, furthermore, G(R%)(1-K%) Y,_; = =12 < 0 from (B12), the function G(P)
has a unique zero F, in the interval (0,1) and is therefore of the desired form (23).
The numerical value of P, can be found approximately from a table of elliptic func-

tions: P, = 0.46.

0



-15-
REFERENCES

AKIN, E. 1979. '"The Geometry of Population Genetics”, Lecture Notes in

Biomathematics, Vol. 31, Springer, Berlin.
AKIN, E. 1982. Cycling in simple genetic systems, J. Math. Biol. 13, 305 - 324.

AKIN, E. 1983. Hopf bifurcation in the two locus genetic model, Memoirs Amer.
Math. Soe., No. 284, Providence, R.I.

ARNOLD, V.I. 1983. "Geometrical Methods in the Theory of Ordinary Differential
Equatlons”, Grundlehren math. Wissenschaften, Vol. 250, Springer.

BOMZE, 1., SCHUSTER, P. and SIGMUND, K. 1983. The role of Mendelian genetics in
strategic models on animal behavior. J. Theor. Biol. 101, 19 - 38.

DAWKINS, R. 1976. "The Selfish Gene', Oxford Unlv. Press, Oxford.

ESHEL, 1. and AKIN, E. 1983. Coevolutionary instability of mixed Nash solutions, J.
Math. Biol. 18, 123 - 133.

GROEBNER, W. and HOFREITER, N. 1950. "Integraltafel, 2. Teil: Bestimmte In-
tegrale"”, Springer.

HASTINGS, A. 1981. Stable cycling in discrete-time genetic models. Proc. Natl.
Acad. 3ci. USA 11, 7224 - 7225.

HOFBAUER, J. 1984. Gradients versus c¢ycling in genetic selection models. In:
Dynamics of Macrosystems. Proc. Laxenburg 1984. J.-P. Aubin, D. Saari, K.
Sigmund, ed. Lecture Notes in Economics and Mathematical Systems,
Springer, 257, p. B0-101.

HOFBAUER, J. 1985, The selection mutation equation. J. Math. Biol., 23, 41-53.
HOFBAUER, J. and I00SS, G. 1984. A Hopf bifurcation theorem for difference equa-
tions approximating a differential equation. Monatsh. Math. 98, 99 - 113.
HOFBAUER, J. and SIGMUND, K. 1984. "Evolutionstheorie und dynamische Systeme.

Mathematische Aspekte der Selektlon”, Paray, Hamburg-Berlin.

HUNT, F. 1982. Regulation of population cycles by ganetic feedback: Existence of
periodic solutions of a mathematical model. J. Math. Biol. 13, 271 - 2862.

HUTSCN, V. and MORAN, W. 1982. Persistence of species obeying difference equa-
tions. J. Math. Biol. 15, 203 - 213.

I00SS, G. 1979. "Bifurcations of Maps and Applications", North-Holland Math. Stu-
dies, Vol. 36.



-16 -

KOTH, M. and KEMLER, F. 1985. A one locus-two allele selection model admitting
stable limit cycles. J. Theor. Biol, to appear.

MAYNARD SMITH, J. 1982. "Evolution and the Theory of Games'. Cambridge Univ.
Press, Cambridge.

SCHUSTER, P. and SIGMUND, K. 1981. Coyness, philandering and stable strategies,
Animal Behavior 29, 186 - 192.

SELGRADE, J.F. and NAMKOONG, G. 1984. Dynamical behavior of differential equa-
tion models of frequency and density dependent populations, J. Math. Biol. 19,
133 - 146.

SELTEN, R. 1980. A nolte on evolutionarily stable strategies in asymmetrical an-
imal conflicts, J. Theor. Biol. 84, 93 - 101.

ZEEMAN, E.C. 1980. Population dynamics from game theory, in: "Global Theory of

Dynamical Systems", Lecture Notes in Mathematics, Vel. 819, Springer, Berlin.



