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Abstract 

A two-locus genetic model, based on Dawkin's "sex war" game, with the fitness 
of the genotypes a t  each locus depending on the gene frequencies a t  the other,  is 
shown to  give r ise  to  a stable limit cycle.  The mathematical analysis involves 
averaging techniques and elliptic integrals. 
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1. Int~ oduction 

This note descr ibes  a simple two-locus genetic model t ha t  gives r i s e  t o  a 

s table  limit cycle. The origin of the  model i s  Dawkins' (1976) "sex w a r "  game, a 

simple evolutionary game describing t he  parental  investment conflict. In this game 

males have two possible s t ra tegies ,  fai thful  ( E l )  o r  phi landerer  iE2) ,  and females 

may play t he  s t ra teg ies  f a s t  (F1) o r  coy (F2). Assuming +15 as the  reward f o r  hav- 

ing a child ( to  both parents) .  -20 as the  total cos t  of raising the  offspring, and -3 

f o r  the  prolonged courtship coy females insist on. Dawkins obtained the  following 

pay-off matr ices  A f o r  males and B fo r  females: 

5 3 1 5  This bimatrix game has  a totally mlxed Nash equilibrium at (- -) and (- -) 
8 ' 8  6 ' 6  

(see Dawkins (1976). Maynard Smith (1982). Schus te r  and Sigmund (1981)). I t  is not 

an  evolutionarily s table  state (ESS), however, since the  second (stability) condi- 

tion is  not satisfied.  In f a c t ,  Selten (1980) has  shown in general  t ha t  in asymmetric 

conflicts, only pu re  s t ra teg ies  can  be evolutionarily stable.  Hence t he  s ta t ic ,  

game theore t ic  approach is  not very satisfactory f o r  this pa r t i cu la r  example, and 

i t  seems reasonable  t o  introduce some dynamics. 

I t  tu rns  out,  however, t ha t  the  s tandard continuous time game dynamics, as 

studied e.g. by Zeeman (1980), may b e  generalized in (at leas t )  two different ways 

t o  asymmetric conflicts: t he  one, see Schus te r  and Sigmund (1981), gives r i s e  t o  

conservative oscillations, t he  o the r ,  see Maynard Smith (1982), Appendix J, makes 



the equilibrium asymptotically stable. With discrete time, however, the stationary 

solution would always be unstable (Eshel and Akin, 1983). 

The f irst  type of dynamics is also relevant for the analysis o f  our new model in 

5 2: With z i  , y j  denoting the relative frequencies o f  the strategies Ei,Fj respec- 

tively and the basic assumption 

z i  - = growth rate o f  Ei = average payoff for  Ei 
zi 

-average payoff for males = (Ay) i  - g t A y  . 
Schuster and Sigmund (1981) derlve the equations 

f o r z  = z l  = 1-z2. Y = y 1  = ly2. They show that 

1s a constant of  motion, so that all solutions oscillate around the Nash equilibrium. 

which also represents the tlme-average o f  any orbit. (Note the  strong analogy t o  

the Lotka-Volterra predator-prey equations.) 

This model has one main drawback, however: I t  neglects the genetic struc- 

ture. The derivation ( 2 )  assumes implicitly that individuals reproduce asexually. 

There is thus a need for  a genetic model whlch takes into account the sexual in- 

teraction between males and females. One such diploid model was studied by Bomze 

e t  al. (1983), again using continuous time and leading t o  similar conservative oscil- 

lations. As this lacks structural stability too, a more natural model would be t o  

consider a diploid model with separated generations. 

We consider two loci, with two alleles at each locus. The A-locus, with alleles 

A and a, regulates male behavior: A +  strategy E l  (= faithful),  a +E2 (= phi- 

landerer), and is  not expressed Ln females. More precisely, we assume that homoz- 

ygotes AA and aa play the pure strategies E l  and E2 respectively, and that the 
1 heterozygote Aa plays the mixed strategy -(El + E2).  In a similar way the B-locus 
2 

determines female behavior: B +  F1 = fast ,  b +F2 = coy. Let pA,qA be the fre-  



quencies o f  allele A in adult males and females respectively, and pg,qg be  the  

corresponding frequencies o f  allele B .  

Assuming linkage equilibrium, the  frequencies o f  AA . Aa , aa in the next gen- 

eration are P A ~ A  s PA ( 1 - q ~ )  + qsubA (1-pA) = P A  + QA - 2pAqA, (1 *A )(I-qA) 

respectively. The marginal frequency o f  gene A ,  which also measures the  proba- 

bility o f  strategy El  among males in the new generation, is then given by 

1 1 
pAqA + -(pA +qA -2pAqA) = ?(pA +qA). Similar results hold for  the  B-locus. 

2 

In order t o  simplify the  mathematical analysis, we replace Dawkins' original 

pay-off matrix (1 )  by the  following more symmetric one (this does not change the 

situation qualitatively): 

1+L 1+K, 1-L I with 0 < K L  < 1. 
+K, 1-L 1-K. 1+L 

This gives the following fitness values for males, depending on the  frequency of  fe- 

males: 

with similar results for  females 

Hence writing prA,  etc.  for the  allelic frequencies in the adults of  the new 

generation, 

1 
QA  PA +qA -2pA ) 

qk = - - PA +qA 
1 2 , etc. 

The mean fitness o f  males at the A-locus, wA , is given by 

This leads finally to the equations 



1 
P'g = -(Pg+qB) 2 

Since O H , L  <I this is a well-defined transformation on the state space [0,114 

I 
Obviously pA = qA = pg = qg = y is a stationary solution of  ( 7 )  with two zero 

eigenvalues (corresponding t o  a very quick convergence t o  a sex ratio 1 : l )  and a 

pair o f  complex conjugate eigenvalues with real part +1 (due t o  the  cyclic struc- 

ture o f  Dawkins' game) which make this solution unstable. 

On the other hand, using the method of "average Ljapunov functions", 

developed by Hofbauer and Sigmund (1984) and Hutson and Moran (1982), one can 

analyze the local behavior near the boundary o f  the  state space. showing that this 

boundary is repelling, and system ( 7 )  exhibits "permanent coexistence'' (see Ap- 

pendix A). The attractors o f  ('7) thus have t o  lie in the interior of [0.114, and since 

the only stationary solutlon there is unstable, this attractor has t o  be a more com- 

plicated set. 

Numerical simulations show that this attractor is a 'limit cycle", i.e. a closed 

invariant attracting curve surrounding the stationary solution (see Fig. 1) .  In the 

next section we will give a mathematical proof o f  this observation for small values 

of L ,K (this is the biological most relevant case) and determine the  explicit equa- 

tion of this limit cycle in the limit K = L +O. This is done by averaging techniques, 

as, for  example, when treating Van der Pol's equation as a perturbation of the har- 

monic oscillator. 



PA 

FIGURE 1. The limit cycle.  

3. The Limit Cycle 

We begin with a l inear  change of var iables  which transforms t h e  stationary 

solution to the  origin: 

Then ( z , y , u  . v ) ~ [ - l . + l ] ~  . 
Furthermore w e  assume K = L to make t h e  analysis simpler and set c=K/4 .  

Then (7) i s  transformed into 

c 
NOW I ur 1, I V,  1s and so u and v will be  of o r d e r  0 (c) f o r  c+O, unlformly on 

1 + 4 c S  
t h e  whole state-space,  in all  subsequent generations.  (This corresponds t o  a rough 

equllibration of t he  sex-ratio.)  Thus t he  four-dimensional system (9) reduces  f o r  

small r t o  a two-dimensional one: 



z f  = z  + r f  ( z , y )  + r 2 ? ( z , y )  + 0(r3) 

y' = y  + e g ( z , y )  + r 2 f ( z . v )  + o(r3) 

with 

- 
f ( z . y )  = a / ( l  - 2 2 )  f  (2  . y )  = -4zy2 (1 - z2) 

f ( z , y )  = 4 z 2  y ( l  - y2) .  
(11) 

g(z .v )  = z ( 1  - y 2 )  

For  c  -r 0  w e  obtain,  as a f i rs t -order  approximation, t h e  differential  equation 

z = f ( z , y )  = a / ( l  - 2 2 )  

2 ai = g ( z , y )  = z ( l  - v  ). 
(12) 

These are - up t o  a translation of the  Nash solution t o  t h e  origin - just t h e  

Schuster-Sigmund equations (3)  f o r  Dawkins' game, see a l so  Maynard Smith 

(1982).Appendix J .  

These equations are integrable with 

as a constant  of motion. Therefore  w e  change t o  "canonical coordinates" (R,cp) 

such tha t  (12) a p p e a r s  in the  normal form 

with z = ~ e ~  P, o r  equivalently 

~ 2 0 ,  & = u ( R 2 )  

The canonical angle  var iable  cp and t h e  angle velocity o(R2) are evaluated in Ap- 

pendix B. They can  be  expressed only in terms of elliptic integrals,  

Now we shall  e x p r e s s  o u r  d i f ference equation (10) in terms of t h e  canonical 

var iables  I  = R~ and cp:  

Now t h e  l inear  terms in t vanish since (14) implies i = I,f +Iyg = 0  . For  t h e  r2 



-terms w e  obtain from ( 1 3 )  

I, = 2 z ( 1 y 2 ) ,  I,, = 2 ( 1 y 2 ) ,  IZY = - 4 Z y ; . .  

Therefore 

I' = I + E ~ F ( Z , ~ ) + O ( & ~ )  

wlth 

1  
F ( z  ,Y = 71,  +&?IY ++u~I,,, +Zf91xy +921yy )  

= 4 z y 2 ( 1 - z 2 ) 2 z ( l y 2 ) - 4 z 2 y  ( l - Y 2 ) 2 y  ( 1 2 2 )  

+ Y 2 ( 1 - z 2 ) 2 ( 1 q 2 ) + ~  ( 1 - z 2 ) ( 1 y 2 ) 4 z y  + ~ ~ ( l y ~ ) ~ ( l - z ~ )  

= (l-z2)(ly2)[-16z2y2+y2(1~2)+422y2+z2(1--y2)] 

= ( 1 - ~ ~ ) ( z ~ + y ~ - 1 4 z ~ y ~ )  

Similarly, using b = v , f  + v y g  = o ( I ) ,  w e  obtain 

fp' = p ( z ' , y ' )  = v ( z + & f + ,  . . . , y  + c g + .  . . ) 

= v(z  ,Y ) + t f  v ,  + ~ g  f p y  + 0 ( c 2 )  

= f p + ~ o ( R ~ ) + o ( e ~ ) .  

So w e  end up wlth 

I ,  = I + E ~ F ( I , v ) + o ( E ~ )  

The next step i s  to average out the pdependence in the c2-term of ( 1 8 )  by the An- 

satz P = I + & h  ( 1 , ~ ) .  Then 

N o w ,  following the usual averaging procedure, compare e . g .  Arnold (1983) ,  p. 147 



ff ,  we s epa ra t e  F into i ts  mean and i ts  oscillating pa r t ,  

with 

Inserting this  into (19) w e  may choose h in such a way t ha t  

2n 
1 Oh (Since h is a 2~ -periodic function in (p, the  mean of i t s  derivative,  -J -d 9. 

27T av 
equals ze ro .  Since this  will not in genera l  b e  t he  case  f o r  the  mean of F ( I , v )  we 

can  average  out  only t he  oscillating p a r t  F(I,rp). 

So  with o u r  new var iable  P Instead of I we have simplified (18) to 

The averaged function G ( P )  is  computed in Appendix B (in terms of ell iptic In- 

t egra l s  again), where w e  a lso  prove t he  existence of a number Po such t ha t  

G(0) = G(1) = G(Po) = 0 

G ( P ) > O  f o r  O < P  <Po 

G(P)  < O  f o r  Po < P  <1 

Thus the  g raph  of G i s  similar to tha t  shown in Fig. 2. 

If w e  neglect 0-terms in (22). then P =Po is obviously t he  equation of a n  in- 

var iant  globally a t t ract ing c i rc le .  That this c i rc le  also pers is ts  under  the  0- 

per turbat ions  f o r  small c > 0 ,  can  be shown e.g. by the  technique developed by 

Iooss (1979) f o r  proving t he  Hopf bifurcation theorem f o r  maps. 



FIGURE 2. The graph  of the  function G ( P ) .  

In par t i cu la r  i t  is  found tha t  for small E > 0  ( 1 0 )  has  an  a t t rac t ing  limit cycle 

of the  form 

So one par t i cu la r  periodic o rb i t  from the  Hamiltonian system ( 1 2 ) ,  i.e. the  

Schuster-Sigmund dynamics f o r  Dawkins' game, R~ = z2+y2-z2y2 = P O  , s e rve s  as 

the  limiting case E + O  f o r  t he  limit cycles  of o u r  more refined genetic model of t he  

'ba t t l e  of t he  sexes". The constant Po which determines t he  position of this cycle 

is  the  z e ro  of t he  function G ( P )  and i s  computed in Appendix B. 

W e  have descr ibed limit cycle behavior in a simple genetic model, with two al- 

leles at each of two loci, with sex-dependence and fi tnesses depending on t he  f re -  

quencies of t he  o t h e r  sex.  The model i s  based on Dawkins' (1976) 'battle of the  

sexes". For  small E ,  measuring t he  intensity of frequency dependent selection, w e  

have proved the  existence and stability of a limit cycle. The amplitude of this limit 

cycle i s  r a t h e r  insensitive to changes in t he  selection intensity, while the  "period" 

is  approximately inversely proportional t o  t he  selection intensity. This i s  in con- 

trast t o  limit cycle behavior constructed by s tandard Hopf bifurcation techniques 

where t h e  amplitude i s  small and t he  per iod i s  approximately constant.  



In the  limit e -. 0 ,  th is  limit cycle tends t o  one par t i cu la r  cycle  of the  simple 

Hamiltonian system identified by Schus te r  and Sigmund (1981) as t h e  f i r s t  dynamic 

model f o r  Dawkins' game. In pa r t i cu la r ,  at least for e -. 0 ,  t h e  time average  o v e r  

the  limlt cycle  r e p r e s e n t s  the  in te r io r  s ta t ionary solution predicted by game 

theory.  Thus th is  solution, though unstable both dynamically and evolutionarily, 

still  has  some biological relevance.  This shows once more tha t  despi te  the i r  sim- 

plicity such haploid models a l ready  c a r r y  the  basic ingredients. 

Numerical simulations show t h a t  this limit cycle  behavior is  r a t h e r  robust .  I t  

does not depend on the  assumption t h a t  f i tnesses a r e  additive, or t h a t  the  selection 

intensity i s  t h e  same in t h e  two s e x e s  (i.e. K = L ). Limit cycle  behavior  i s  st i l l  ob- 

se rved  if t h e r e  i s  some directional,  non-frequency-dependent selectlon. provided 

that  this directional selection i s  less intense than t h e  frequency-dependent selec- 

tio;i. Also, t h e  conclusion does not depend on t h e  assumption tha t  the  genes are 

sex-limited in t h e i r  ef fects .  A similar limit cycle a r i s e s  if t h e  f i tnesses  of the  

genotypes at the  A locus, in both sexes ,  depend additively on t h e  f requencies  of 

t h e  al leles at the  B locus, and vice-versa. 

All these  observat ions  could be  proved using t h e  same method of averaging.  

We have confined ourselves  to t h e  simplest possible case ,  however, in o r d e r  t o  

keep t h e  mathematical analysis t r ac tab le .  In more general  models dlfficulties 

could a r i s e  s ince  t h e  nice el l iptic integrals have t o  b e  replaced by more general  

in tegrals  where formulas l ike (B5-7) are probably not available. 

That limit cycle behavior is  possible in r a t h e r  simple genetic systems h a s  been 

shown in t h e  las t  f e w  years .  The pioneering work in this direction i s  due  to Akin 

(1979). Other  p a p e r s  dealing with this topic are Akin (1982, 1983). Hastings 

(1981), Hofbauer and Iooss (1984). Hofbauer (1984, 1985). Hunt (1982). Koth and 

Kemler (19851, Selgrade and Namkoong (1984). 



Appendix A: Behaviour Near the Boundary 

First  i t  is  easy t o  check tha t  one of , qi , pi , qi is z e r o  if and only if one 

of t h e  f o u r  al leles A ,  a ,  B, b i s  missing in both sexes.  In t h e  new var iables  

(8) : z = i 1 or y = i 1. Thus the  set 

which i s  a union of f o u r  squares ,  is  t h e  maximal Invariant  subset  of the  boundary of 

t h e  state space:  S ta r t ing  on the  boundary outside M ,  the  nex t  generation and all  

subsequent ones  will b e  in t h e  in te r io r  of [0,114. i.e. a l l  f o u r  al leles will b e  p resen t  

in both sexes .  Thus in o r d e r  t o  show t h a t  the  boundary is  a repelling s e t ,  i t  i s  suf- 

f icient  to prove t h a t  M i s  repelling. 

For  th is  w e  f i r s t  need t h e  behavior on M itself. Since z'Sz iff y W ,  i t  i s  

easy t o  see tha t  on t h e  p a r t  where y =-I, z converges  monotonically, increasing 

from -1 t o  1. Where z = I ,  y goes from -1 t o  1 ;  where y =1, z goes from 1 back to 

-1, and finally where z=-1, y d e c r e a s e s  from 1 to -1, and t h e  cycle  i s  closed. 

Thus the  o - limit set of M consists  only of t h e  four  fixed polnts where 

jz l = l y  = l ( a n d u = v = O ) .  

Now consider t h e  function 

P' 
Then P 2 0 holds, with P = O  on M.  Fur thermore -> d > 0 on the  whole state 

P 
s p a c e  and 

P ' a t  t h e  four  boundary fixed points in M .  Thus - > I on the  whole o-limlt set of M ,  
P 

and P i s  a n  "average Lyapunov function" f o r  M .  According to Hutson and Moran 

(1982), M i s  a r e p e l l e r .  



Appendix B: Elliptic Integrals in the Battle of the Sexes 

We start with t he  normal form (14) 

of t he  Schuster-Sigmund differential  equation (12) f o r  t he  bat t le  of t h e  sexes.  

Since, by (13), w e  have 

R2 = z 2 + y 2 ~ 2 y 2 ,  (82) 

t h e  s ta te  space  [ ( z ,y )  cIK2 : 1 z 1 < 11 f o r  (12) t ransforms into 

f (R,p)  E R X R /  2nZ:  0 S R < 11. In o r d e r  t o  determine t he  canonical angle p and 

the  angle velocity o(R2) w e  treat p as a function of z and R:v = p(z,R). Then 

it = rp,z + p R ~  implies 

Eliminating y from (B2). 

I t  is well-known tha t  th i s  leads t o  an  elliptic integral .  In par t i cu la r  w e  obtain 

Now reca l l  Legendre's formulas f o r  complete elliptic in tegrals  (see  e.g. Groebner  

and Hofrei ter  (1950), p.  39): 



where (a), = a(a-1)  . . . (a--n +l) .  These se r ies  converge f o r  kl < 1. (B4) and 

(B5) imply 

The next problem i s  t o  evaluate t he  averaged function (20): 

Since w e  do not have an explicit expression for rp, w e  have to transform t h e  in- 

tegral .  Using (82) and splitting t he  c i rc le  into 4 equal pa r t s  w e  obtain 

So  again w e  have to  calculate an elliptic integral .  From (16) w e  obtain 



So (B10) toge ther  with (BE) gives an  "explicit" formula f o r  G: 

G (R2) = (1  -R2)(14~'-26 + 26 %). 
K(R) 

(812) 

Inserting t he  se r ies  expansions (B5), (B6) into (B l l )  w e  obtain after some cal- 

culation: 

Obviously all  term (up t o  t h e  f i r s t  two) of t he  sum have a negative coefficient. 

Since,  fur thermore,  G (R2)(1-R2) "IR,l = -12 < 0 from (BIZ), t he  function G(P)  

ha s  a unique z e r o  Po in t he  interval ( 0 , l )  and is  t he r e fo r e  of t he  desi red form (23). 

The numerical value of Po can  be found approximateIy from a table  of elIiptic func- 

tions: Po 0.46. 
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