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One of the means of modelling a system with an uncertainty 

in the parameters or in the inputs is to consider a multistage 

inclusion or a differential inclusion. These types of models 

may serve to describe an uncertainty for which the only avail- 

able data is a set-membership description of the admissible 

constraints on the unknown parameters. 

A problem under discussion here deals with the specification 

of the "tube" of all solutions to a nonlinear multistage inclu- 

sion that arise from a given set and also satisfy an additional 

phase constraint. The description of this "solution tube" is 

important for solving problems of guaranteed estimation of the 

dynamics of uncertain systems as well as for the solution of 

other "viability" problems for systems described by equations 

involving multivalued maps. 



On the Solution Sets for 

Uncertain Systems with Phase Constraints 

A. B. K u r z h a n s k i i  

INTRODUCTION 

This pape r  deals with multistage inclusions tha t  descr ibe  a system with uncer- 

tainty in t he  model o r  in t he  inputs [1,2]. In particular this may be a difference 

scheme f o r  a differential  inclusion 131. The solution t o  these inclusions i s  a mul- 

tivalued function whose cross-section at a speclfic instant of time is t he  "admissi- 

ble domain" f o r  t he  inclusion. 

The problem considered h e r e  is t o  specify a subset of solutions t ha t  consists 

of those "trajectories" . ~ h i c h  satisfy an  additional phase constraint .  These solu- 

tions are said to be "viable" with respec t  t o  the  phase constraint  131. The Gross 

section of t he  set of all  vlable solutions is  the  attainablllty domain under  t he  state 

constraint .  The derivation of evolution equations f o r  t he  l a t t e r  domain i s  the  

objective of th ls  pape r .  

The problem posed h e r e  i s  purely deterministic. However, t he  techniques 

applied t o  i t s  solution Involve some stochastic schemes. These schemes follow a n  

analogy between some formulae of convex analysis [4,5] and those f o r  calculating 

conditlonal mean values f o r  specific types  of s tochast ic  systems [6,7] which w a s  

pointed out  in C8.91. 

A special  application of the  resu l t s  of th is  pape r  could b e  t he  derlvation of 

solving re la t ions  f o r  nonlinear f i l tering under set-membership constra ints  on the  

"noise" and t he  description of the  analogies between t he  theor ies  of "guaranteed" 

and stochastic filtering. 

1. Discrete-time Uncertain Systems 

Consider a multistage process  described by a n  n-dimensional r e c u r r e n t  inclu- 

sion 

where k EN, z ( k )  € E n ,  F ( k . z ( k ) )  i s  a given multivalued map from IN XiRn into 

compiRn (IN i s  t he  set of natural  numbers, complRn is the  set of a l l  compact sub- 

sets of lRn) .  



Suppose t he  initial s t a t e  z ( k , )  = z 0  of the  system is confined t o  a preassigned 

set :  

where X 0  i s  given in advance. A t ra jec to ry  solution of system (1.1) t h a t  starts from 

point z 0  at instant k o  will b e  denoted as z ( k  l ko . zO) .  The set of a l l  solutions f o r  

(1 .1 )  tha t  start from z O at instant k O  will be  denoted as X(k i k , , z O )  ( k  E N ,  k l k O )  

with f u r t h e r  notation 

Let Q ( k )  be a multivalued map from IN into complRm and G ( k )  be a single- 

valued map from N  t o  t he  set of m Xn-matrices. The pa i r  G ( k ) ,  Q ( k ) ,  introduces 

a state constra int  

on the  solutions of system (1 .1) .  

The subset of IRn t h a t  consists of all t he  points of IRn through which at s tage  

s € [ k o , ~ ]  = I k : k o S k  S T  I t h e r e  passes  at leas t  one of t he  t ra jec to r ies  

z ( k l k o , z o ) ,  t h a t  satisfy constra int  (1 .3)  f o r  k € [ k 0 , r ]  will be  denoted as 

X(s l ~ , k ~ . z O ) .  

The aim of th i s  p a p e r  is f i r s t  t o  study t he  sets X ( T I T , ~ ~ . X O )  = X ( T , ~ ~ , X O )  and 

t he l r  evolution in "time" T .  

In o t h e r  words, i f  a t ra jec to ry  z ( k  l ko . zO)  of equation (1 .1)  tha t  satisfies the  

constraint  (1 .3)  f o r  all  k E [ k o , s ]  is  named "viable until instant T" ("relative t o  

constraint  (1.3)"),  then o u r  objective will be  t o  descr ibe  t he  evolution of t he  set of 

a l l  viable t ra jec to r ies  of (1 .1) .  Here at each instant k > k O  t h e  constra int  (1 .3)  

may "cut off" a p a r t  of X(k / k O . z O )  reducing i t  thus t o  t h e  set x ( k , k O , z O ) .  

The sets X(k . k D , z O )  may also b e  interpreted as "attainability domains" f o r  

system (1 .1 )  under t h e  s t a t e  space  constra int  (1 .3) .  The objective is to descr ibe  

evolution of these  domains. 

A f u r t h e r  objective will b e  t o  descr ibe  t he  sets X ( s  I r , ko . zO)  and t h e i r  evelu- 

tion. 



2. The Attainabi l i ty  Domains 

From the definition o f  sets X(s I ~ , k ~ . z ~ )  it follows that the following proper- 

ties are true. 

Lemma 2.1. Whatever are the ins tants  t , s , k ,  ( t  a s  >k  2 0 )  and the set 

IF Ecomp I R n ,  thefollowing relation i s  t rue 

Lemma 2.2. Whatever are the instants s ,t , ~ , k  ,l ( t  a s  2 1 ;  ~ a l  a k ;  t > T )  and 

the set F Ecomp IR " t h e  following relation i s  t rue 

Relation (2.1) shows that sets X ( ~ , T . X )  satisfy a semigroup property which 

allows to  define a generalized dynamic system in the space 2"" o f  all subsets of 

I R " .  

In general the sets X(s ! t ,k .F ) need not be either convex or connected. How- 

ever, it is obvious that the following is true 

Lemma 2.3. Assume that the map F i s  Linear in z: 

where PEconvIR". Then for a n y  set F EconvlR" each of the sets 

X ( S ~ , ~ , I F ) E C O ~ V I R " ( ~  a s  a k r o ) .  

Here conv IR" stands for the set o f  all convex compact subsets o f  IR" . 

3. The Onestage Problem 

Consider the system 

z E F ( z ) ,  GZ E Q .  z E X .  

where z E I R  " , X E comp IR" , Q E conv IR m ,  F ( K )  is a multivalued map from IR" into 

conv IR " . G is a linear (single-valued) map from IR " into IR m .  

I t  is obvious that the sets F(X)  = I u F ( z ) z  E X  1 need not be convex. 

Let Z ,  Z' respectively denote the sets o f  al solutions for the following sys- 

tems: 



(a) z €F(X),  Gz EQ,  

(b) z ' ~ c o F ( X ) ,  GZ 'EQ,  

where c o F  s tands  f o r  the  closed convex hull of F(X). 

The following statement is t r u e  

Lemma 3.1. The s e t s  Z ,  c o Z ,  Z' sa t i s fy  thef i l lowing i n c l u s i o n s  

L e t  p(l Z )  = sup { l'z z € 2  I denote t he  support  function [4] of set Z. Also 

denote 

Then t he  function O(1 ,p , q )  may b e  used t o  descr ibe  t h e  sets coZ.Z0.  

Lemma 3.2. Thefil lowing r e l a t i ons  a r e  t r u e  

p(l  Z )  = p(l  l c o ~ )  = sup inf O(l,p , q )  , q EF(X), p c I R m  
I P 

(3.2) 

p(l 123 = inf sup O( l , p , q )  , q EF(X),  p E!R 
P v 

(3.3) 

I t  is  not difficuIt to give an  exampIe of a nonlinear map F ( z )  f o r  which Z i s  

nonconvex and t h e  functions p(l ICOZ), p ( l 2 3  do  not coincide, s o  t ha t  t he  inclu- 

sions Z C c o Z ,  c o Z  c Z b a r e  s t r i c t .  

Indeed, assume X = [ 0  j , z E R' 

Then 

The set F(0)  is  a nonconvex polyhedron 0 K D L in Figure 1 while set Y i s  a 

s t r ipe .  Here,  obviously, set Z which i s  t he  intersection of F(0)  and Y,  tu rns  to b e  

a nonconvex polyhedron 0 A B D L,  while sets co Z , Z ' a r e  corlvex polyhedrons 0 A 

B L and 0 A C L respectively (see  Figures 2 ,  3). The corresponding points have the  

coordinates 

A = (0 . 2),  B = (1/2 , 2 ), C = (1 , 2) ,  D = (3/7 , 3/7), K = (0 , 3) ,  L = (3  . O), 

0 = ( 0 ,  0). 



Clearly Z c co Z C Z' 

This example may also serve to illustrate the existence of a gap between (3.2) 

and (3.3). 

? 
F i g u r e  1 

F i g u r e  2 

'7- 

1 

F i g u r e  3 



F o r  a l inear-convex map F ( z )  = Az +P ( P  Econv IR " )  t h e r e  is no  dist inct ion 

between Z ,  c o Z ,  and  2': 

Lemma 3.3 S u p p o s e  F ( z )  = Az + P w h e r e  P Econv IR ", A is a l i n e a r  m a p  prom 

IRn i n  to IRn. T h e n Z  = c o Z  = 2'. 

4. The One S t e ~ e  Problem - An Alternative Approach. 

The desc r ip t ion  of Z ,  coZ. Z ' m a y  b e  given in a n  a l t e r n a t i v e  f o r m  which, how- 

e v e r ,  allows to p r e s e n t  all of t h e s e  sets as t h e  in t e r sec t ions  of some va r i e t i e s  of 

convex multivalued maps. 

Indeed,  wha teve r  are t h e  v e c t o r s  1 .p (1 #0) I t  i s  poss ib le  to p r e s e n t  p =ML 

where  M belongs to t h e  s p a c e  lh4 m x n  of real m a t r i c e s  of dimension m X n .  Then, 

obviously, 

p ( l 1 ~ )  = s u p  inf O(l,ML,q) = p ( ~  C O Z )  , q EF(X),  MEW.^^". 
v Y 

p(L Iz') = inf s u p  #(L , M L , ~ )  q EF(X). M EIM" '~"  
hJ g 

or 

w h e r e  

p ( L 2 3  = inf 1 O(1.M) I M ~lh4"""  ) ,  

From (4.1) I t  follows t h a t  

Z r  u n R ( M , q ) C n  u R ( M . ~ ) ,  M c N r n X n  
v<F(XJ Y M ~ E F ( X J  

where  

Similarly (4.2) yields 



Moreover a stronger assertion holds. 

Theorem 4.1. Thefollowing relations are t rue  

where M E I M " ~ " .  

Obviously for F ( z )  = .4Y + P , ( X , P  E C O R " )  we have F ( X )  = coF(X) and 

Z = Z' = c o z .  

This first scheme o f  relations may serve t o  be a basis for constructing 

recurrent procedures. Another recurrent procedure could be derived from the 

following second scheme. Consider the system 

for  which we are t o  determine the set Z o f  all vectors z consistent with inclusions 

(4.7), (4.8). Namely, we are t o  determine the restriction F r ( z )  o f  F ( z )  t o  set Y .  

Here wehave 

F ( z ) i f z  EY 
F r ( z )  = I 4 i f z  E Y 

where as before Y = [ z : G z  E Q  1 .  

Lemma 4.1 A s s u m e F ( z )  EcompIRn for a n y  z and Q EconvR "'. Then 

over all n x m matrices L ,  (2 € I M n  

Denote the null vectors and matrices as [ D i m  ERm , [ O l m , n  €Rmxn , the 

(n  x n )  unit matrix as En and the (n  x m )  matrix Lmn as 

Suppose z € Y .  Then f O j m  E Q - Gz and for  any (n  x m )  -matrix L we have 

) O l n  E L (Q - G z )  . Then it follows that for  z E Y .  



On t h e  o t h e r  hand,  suppose  z ? Y. 

Let  u s  demons t r a t e  t h a t  in t h i s  case 

n I F @ )  + L ( Q  - G z )  1 = 4 
L 

Denote A  = F ( z ) ,  B = Q  - G z .  F o r  a n y  A > O  we t h e n  h a v e  

Since f 0 I,?B we have  f 0 jn ?L,B. T h e r e f o r e  t h e r e  e x i s t s  a v e c t o r  L SIRn, L # O  

a n d  a number y  >O such  t h a t  

( ~ , z ) z y > O  f o r a n y  z € L , B ,  

Denote 

L  = f z : ( L , z ) > y j  

Then L 2L,B a n d  

( A  +XL,B)r , (A  -XL,B)C(A + U )  n ( A  - U )  

S e t  A  being bounded t h e r e  e x i s t s  a A > 0 such  t h a t  

( A  + A L ) n ( A  - A L )  = 4 .  

Hence  

a n d  t h e  Lemma i s  p roved .  

5. Sta t i s t i ca l  Uncertainty.  The Elementary Problem. 

Consider  t h e  system 

z = q +( ,  Cz = v  + 7 ) ,  

where  



and t.7 are independent gaussian random vec tors  with ze ro  means ( E t = O , E v  = O )  

and with var iances  E t t '  = R .  E v v '  = N ,  where R > O n  N > O  (R  EIM,. N E N  ,). 

Assuming at f i r s t  tha t  t he  pa i r  h = [ q . v  1 i s  fixed, l e t  us find t he  conditional 

mean E ( z  y =0, h =ha) under the  condition t ha t  after one realization of t he  values 

t.7 the  relations 

a r e  satisfied. After a s tandard calculation we have 

where P-' = R-I + G'N-lG. 

After  applying a well-known matrix transformation [6] 

we have 

The matrix of conditional var iances  is  

I t  does not depend upon h and is determined only by q , v  and the  element 

A = RG'K-'G. Therefore  i t  makes sense t o  consider t he  sets 

and 

of conditional mean values. Each of the  elements of these  sets has  one and t he  

same var iance P,. The sets W.(A) and W ( A , q )  are obviously convex while W ( A )  may 

not b e  convex. 

Lemma 5.1 The fo l lowing  i n c l u s i o n s  a r e  t r u e  ( Z  c Z 7  

z C W ( A ) ,  z 'c w'(A),  W ( A )  CW' (A)  , (5.2) 



I t  can be seen tha t  W ( h , q )  has exactly t he  same s t ruc tu r e  as R(M,q)  of (4.3) 

(with only hsubst i tu ted by M). Hence f o r  the  same reason as before  w e  have 

where the  intersections a r e  taken over  the  c lass  D of all  possible pa i r s  

D = f R,N j of nonnegative matrices R,N of respect ive  dimensions. However, a 

proper ty  similar Lo tha t  of Lemma 4.1 happens t o  be  t rue .  Namely if by D(a ,@)  w e  

denote t he  c lass  of pa i r s  [ R,N j where R = aE, , N = @Em, a > 0 ,  @ > 0 ,  then t he  

element X will depend only upon two parameters  a ,@.  

Theorem 5.1 Suppose matr iz  G is  o f f u l l  rank  m.  h e n  the following equali- 

t ies are t rue  

Here  i t  suffices Lo t ake  the  intersections only ove r  a one-parametric variety 

D eD(1,B) .  

There  are some specific di f ferences  between this scheme and the  one of 54. 

These could b e  t raced  more explicitly when we pass  Lo the  calculation of support  

functions p(l I z ) ,  p ( l /Z ' )  f o r  Z,Z'.  

Lemma 5.2 Thefollowing inequal i ty  is  t rue  

~(1123 = f " ( l ) s f ( l )  = inf [ + ( l , h ) l D  € D ( l , @ ) , @ > O j  (5.6) 

where f "(1 ) is  the second conjugate to f ( 1 )  in the sense ofFenche1 [ 4 ] .  

Moreover if we substi tute D(1 ,@)  in (5.6) f o r  a broader  c lass  D then an  exac t  

equality will b e  attained, i.e. 

~ ( 1 1 ~ 3  = f " ( 1 )  = inf ftJ(1,h)jD E D  j (5.7) 

More precisely,  w e  come t o  

Theorem 5.2 Suppose matr iz  G is of fu l l  rank m .  Then equal i ty  (5.7) will be 

t rue  together w i t h  thefollowing relation 

p(l I z )  =p ( l  l c o ~ )  = sup inf I tJ(l . h . q ) d  E D I ~  e F ( X )  I (5.0) 



Problems (5.73, (5.8) a r e  "stochastically dual" t o  (3 .3 .  ( 3 . 2 ) .  

The resul ts  of t he  above may now be applied t o  o u r  basic problem f o r  multis- 

tage systems. 

6. Solution to the Basic Problem 

Returning t o  system ( 1 . 1 ) - ( 1 . 3 )  we will seek f o r  t he  sequence of sets 

X [ s ]  = X ( s , k , . ~ ~ )  toge ther  wlth two o t h e r  sequences of sets. These a r e  

- t h e  solution set of t h e  system 

zk.1 ~ c o F ( k  . X 0 [ k ] ) ,  X ' [ k  01 = X' 

G ( k  +1)  E Q ( k + l ) ,  k  a k ,  

and X . [ s ]  = X.(s . k , . ~ ' )  which is  obtained due t o  t h e  following relations: 

X . [ s ]  = C O Z [ S ]  

where Z [ k  +1] i s  t h e  solution set f o r  t he  system 

z ( k  +1)  E F ( k  , c o Z [ k I ) ,  Z [ k o ]  = X u .  

The sets X.[T].  X T T ]  a r e  obviously convex. They satisfy t he  inclusions 

X [ T ]  ~ X . [ T ]  c X ' [ T ]  

where each of t he  sets X [ T ] ,  X.[T]. X * [ T ]  lies within 

Y ( T )  = [ z : G ( T ) z  E Q ( T ) I ,  ~ > k , + l ,  

The set x'[T] may t h e r e f o r e  b e  obtained f o r  example by e i t he r  solving a 

sequence of problems ( 6 . 1 ) ,  ( 6 . 2 )  ( for  every k E [k , . s  -11 with X t k o ]  = x u )  (the 

f i r s t  scheme of 54) o r  by finding all  t he  solutions z [ k ]  = E ( k . k O , z o )  of t he  equation 

t ha t  could be prolongated until t h e  instant T + 1 and finding t h e  relation of th is  set 

LO X [ T ] ,  X . [T] ,  and X.[T].  



Following t he  f i r s t  scheme of 54 w e  may t he r e fo r e  consider the  r e c u r r e n t  sys- 

t e m  

z ( k  + I )  = ( I ,  -M(k + l ) G ( k  +l ) )F"(k  , S ( k  )) +M(k  + l ) Q ( k  +1)  (6.4) 

where M ( k  +1)  E IR mX". 

From Theorem 4.1 w e  may now deduce the  resul t  

Theorem 6.1 The so lv ing  relat ions  por X [ s  1, X.[s], X*[s ] a r e  a s  pollows 

~ [ s ]  = s ( s )  f o r  ~ O ( k , s ( k ) )  = F ( k  . S ( k ) )  (6 .6)  

x 0 [ s ]  = ~ ( s )  f o r  ~ ' ( k  , S ( k ) )  = c o F ( k  , S ( k ) )  (6 .7 )  

x.[s] = c o S ( s )  f o r  ~ O ( k , s ( k )  = F ( k  , c o S ( k ) ) .  (6.8) 

~t is obvious thrlt X [ T ]  is  the  exac t  solution while X.[T], X'[T] are convex 

majorants f o r  X [ T ] .  Clearly by interchanging and combining relations (6 .7) ,  (6.8) 

from s tage  t o  s tage i t  is  possible t o  construct  a var ie ty  of o t h e r  convex majorants 

f o r  X [ T ] .  However for the  l inear  case they all  coincide with X [ T ] .  

Lemma 6.1 Assume F O ( k , s ( k ) )  = A ( k ) S ( k )  + P ( k )  w i t h  P ( k ) ,  X O  being closed 

a n d  compact. Then X [ k  ] = X'[k ] = X.[k ] por a n y  k  r k 0. 

Consider the  system 

z ( k  + I )  = ( I ,  -M(k + l )G(k  +1))F0(k , Z ( k ) )  -M(k + l ) Q ( k  + l ) , Z ( k d  =xO,  (6 .9)  

denoting i ts  solution as 

z ( k ; M k ( . ) )  f o r  F o ( k , Z )  = F ( k , Z )  

z.(k .Mk(.))  for FO(k , Z )  = F ( k , c o Z )  

Z*(k.Mk(.))  f o r  FO(k  , z )  = c o F ( k , Z )  

Then the  previous suggestions yield t he  following conclusion 

Theorem 6.2 Whatever i s  the  sequence hi,(.), thepollowing solv ing i n c l u s i o n s  

a r e  t r u e  



with Z ( S  ,M.(-)) ~ Z . ( S  ,Ma(-))  CZ.(s.M,(.)) 

Hence we a l so  have 

ove r  a l l  M, ( s  ) 

However a question a r i s e s  which is  whether (6.11)-(6.13) could t u rn  into 

exac t  equalities. 

Lemma 6.2 Assume the  s y s t em  (Z.Z), to be l inear:  F ( k , z )  = A ( k ) z  + P ( k )  w i t h  

se ts  P ( k ) ,  Q ( k )  convez  a n d  compact. Then  t he  i n c l u s i o n s  (6.11)-(6.13) turn 

i n t o  t he  equa l i t y  

Hence in th is  c a se  t he  intersections ove r  M ( k )  could be taken e i the r  in each 

s tage  as in Theorem 6.1 (see  (6 .6) ,  (6 .7 ) )  o r  at the  final s tage as in (6.14). 

Let us  now follow the  second scheme of 54, considering the  equation 

and denoting t he  set of i ts  solutions tha t  starts at z 0  EX' as ~ ' ( k  , k O , z 0 )  with 

(, ~ z ~ ( k , k ~ , z ~ ) l z o ~ ~ ~ j  =Xo(k  , kO ,xo )  = X o [ k ]  . 

According t o  Lemma 4.1 w e  substi tute (6.15) by the  equation 

z ( k  + l )  E n ( P ' ( k  ,Z ( k ) )  - L G ( k ) z ( k )  + L Y ( k ) )  , z 0  E X ' ,  
L 

and t he  calculation of X O [ k ]  should thence follow the  procedure  

Denote t he  whole solution "tube" f o r  k o 5 k  S s  as fro[.]. Then t he  following 

asser t ion will be  t r ue .  

Theorem 6.3 Assume Z o [ k  I to be t h e  cross-section of t he  tube  ei;,[.] a t  i n s t a n t  

k .  h e n  



Here 3 z o [ s ]  2%;' [ s ]  and the  set f ; ,[s]  may not l ie totally within Y ( s )  

The solution of equation (6.16) is  equivalent t o  finding all  the  solutions f o r  the  

inclusion 

~ ( k  + I )  E n (P(k  , z )  - L G ( ~ ) z  + L Q ( ~ ) )  , z (k , )  E X ,  (6.17) 
L 

Equation (6.17) may be substituted by a system of "simpler" inclusions 

f o r  each of which t he  solution set  f o r  k o S k  S s  will be  denoted as 

Theorem 6.4 The set Yt.,[..L ( . ) I  of viable solutions to the inc lus ion 

is  the restriction of set 

defined for stages [ k g ,  . . . . s  + l ]  to the stages [k, ,  ..., s ] .  The intersection is  

taken here over all constant matrices L .  

However a question a r i ses ,  whether this scheme allows a l so  t o  calculate 

&', [s  1. Obviously 

over  a l l  sequences L [ a ]  = L ( k  ,). L (k,+l) , .  . .,L ( s  +1) j .  Moreover t he  following 

proportion i s  t r ue .  

Theorem 6.5 Assume F ( k  ,z) to be linear-convez: F ( k . 2 )  = A ( k ) z  + P ( k  ), w i t h  

P ( k ) ,  Q ( k )  convez and compact. Then (6.19) t u r n s  to be a n  equali ty .  



7. Solution t o  the Basic Problem. "Stochast ic" Approximations. 

The calculation of X [ s ] ,  X . [ s ] ,  X '[s]  may be a lso  performed on t h e  basis of t h e  

resul ts  of 55. Namely system (6.61, (6.7) should now be substi tuted by t h e  following 

z ( k  + l )  = ( I ,  - ~ ( k  + I ) G ( ~  + I ) ) F ~ ( ~  , ~ ( k  )) - ~ ( k  + l ) ~ ( k  + l )  (7.1) 

Theorem 7.1 Assume that  in Theorem 6.1 S ( k )  i s  substituted by H ( k )  and 

M(k)  by F(k ). Then the result of th i s  theorem remains true.  

If set Q ( k )  of (1.3) i s  of specif ic  type 

where y ( k )  and 6 ( k )  a r e  given, then (1.3) is transformed into 

which could be  t r e a t e d  as a n  equation of observations f o r  the  uncertain system 

7 S e t s  X [ s ] .  X . [ s ] .  X ' [ s ]  t h e r e f o r e  give us the  guaranteed estimates of the  

unknown s t a t e  of system (1.1) on t h e  basis of a n  observation of vec to r  y ( k ) .  

k E [ k , , s ]  due t o  equation (7.4). The resu l t  of Theorem 7.1 then  means t h a t  t h e  

solution of th is  problem may be obtained via equations (7.1)-(7.3), according t o  

formulae (6.8)-(6.10) with M ( k ) ,  S ( k )  substituted respectively by F ( k ) ,  H(k ) .  The 

deterministic problem of nonlinear "guaranteed" fi l tering is  hence approximated 

by relat ions obtained through a "stochastic f i l tering" approximation scheme. 

8. T h e S e t X ( s  1 t , k , I F ) .  

Assume tha t  the  sequence y [k , t ]  is  fixed. Let us  discuss t h e  means of con- 

s t ruct ing sets X(z ! t , k , I F ) ,  with s E [k , t ] .  From t h e  respect ive  definition one 

may deduce t h e  asser t ion 

Lemma 8.1 The following equality is  t r u e  



Here t he  symbol X(s I s , t , IF), taken f o r  s 5 t ,  s tands fo r  t he  set of states z ( s )  

tha t  s e rve  as s tar t ing points f o r  a l l  t h e  solutions z (k , s . z ( s ) )  t ha t  satisfy t he  

relations 

Corol lary 8.1 Formula (8.1) may be substituted f o r  

where R is any subset of W" tha t  includes X(t . k , IF). 

Thus t he  set X(s 1 t , k , IF) i s  described through t he  solutions of two prob- 

lems t he  f i r s t  of which is t o  define X(s , k , IF) (along t h e  techniques of the  above) 

and the  second is t o  define X(s I s . t , R). The solution of the  second problem will 

be  f u r t h e r  specified fo r  IF 6 compRn and f o r  a closcd convex Y. 

The underlying elementary operation is t o  descr ibe  X* - t h e  set of a l l  t h e  vec- 

t o r s  z E W" t h a t  satisfy t he  system 

In view of Lemma 4.1 w e  come t o  

Lemma 8.2 Th set X' may be  described as 

From h e r e  i t  follows: 

Theorem 8.1 

The set X(s 1 s , t , R) may be described as t he  solution of t he  r e c u r r e n t  system 

(in backward "time") 

where 



Finally w e  will specify the  solution for the  l inear case 

z ( k  +I) E ~ ( k ) z ( k )  + ~ ( k )  ~ ( k )  = : G ( ~ ) z  E Q ( ~ ) I  

Assume 

where A E i M n X n  , G E IM , P , Q , Z are convex and compact. 

Lemma 8.3 The s e t  X may be defined as 

P(L I X) = inf lp(X I P )  + P(X I Z )  + P@ I Q ) I  

over  all  the  vec tors  X € R n  , p € R m  tha t  satisfy the  equality t  = A' X + G ' p .  

The l a t t e r  relation yields: 

Lemma 8.4 The set X may be defined as 

X r L ' ( Z  + P )  + M'Q = H(L  , M )  ( 8 . 5 )  

whatever are the  matrices L € i M n X n  and M E IM m x n  t h a t  satisfy the  equality 

L '  A + M'G = E n .  Moreover the  following equalities are t r u e  

ove r  a l l  L E i M n X n  , M E h( mXn 

Corollary 8.2 Suppose I A / # 0 .  Then conditions (8 .5 ) ,  (8 .6)  may be substi tuted 

f o r  

X r (En - M ' G )  A-' ( Z  + P )  + M ' Q  = H ( M )  , 

where 

M E ~ M ~ ~ .  

The l a t t e r  re la t ions  may b e  used f o r  r e c u r r e n t  procedures .  These are e i t he r  

X [ k ] = n ( H k ( L , M ) L A ( k ) + M G ( k ) = E n I ,  ( 8 . 7 )  



with 

or 

with 
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Hk(L , M )  = L ' ( X [ k  + 11 + P ( k ) )  + M ' Q ( k )  XLt1 = Y [ t l  3 

s s k s t  

where 

Theorem 8.2 The set X ( s  1 s . t  , Y )  may be derived due t o  either equations ( 8 . 7 )  

- ( 8 . 9 )  or ( 8 . 1 0 ) ,  ( 8 . 1 1 ) .  

Remark As mentioned in the sequel t o  5 7 ,  set Y ( t )  may be generated due to a 

measurement equation 

where 6 ( k )  is the restriction on the "noise" in the  observations. Then each o f  the 

sets X(T , k ,  XO) gives a " guaranteed" estimate for the unknown state of  the system 

( 1 . 1 )  on the  basis o f  the available measurement y (.) = ( y  ( k o )  , . . . , y  ( k ) )  obtained 

due t o  equation 

Thus sets X(T , k ,  , xO) solve the "filtering" problem, whilst X(s  1 T , k o  , Xu) gives 

the solution o f  either the interpolation ("refinement") problem ( i f  k ,  s s s T )  or 

the  extrapolation problem ( i f  k ,  5 T S  s ) .  

In $ 7  the approximation of  X ( T  . k g ,  x') was given through stochastic filter- 

ing procedures. The same approach may be propagated t o  give an alternative 



approximation scheme f o r  sets X(s 1 s , k D  , XD). 

The schemes of this paper  allow to treat nonlinear systems. However in t he  

l inear case they do  not coincide with t he  procedures  given in [2.10] f o r  solving 

guaranteed estimation problems with set-membership instantaneous constraints.  
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