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STOCHASITC APPROACHES TO INTERACTIVE MU1 JI-CRITERIA 
OPTIhUZATION P R O B W E  

1. INTRODUCTION 

Multicriteria problems of ten a p p e a r  in applications, especially in technology, 

economics, engineering design. In many cases ,  ano ther  aspec t  is  added t o  t h e  mul- 

t i c r i t e r ia  c h a r a c t e r  of t he  problem - i t  includes elements of uncertainty.  For  

example, t he  simplest formulation of t he  problem of system dts.gn f o r  hazardous 

waste treatment has  t he  following c r i t e r ia :  

1) system's malfunction probabili ty 

2) system cost  

where z is  t h e  system capacity,  O is a random quantity of t he  hazardous waste. z is  

t he  unit cost of the  system. Another example deals  with energy system planning, 

where a l ternat ive  var iants  consist of s tochast ic  and deterministic components, 

such as energy consumption, energy resources  and options, resul ts  of scientific 

progress .  In a nuclear power design problem t h e r e  are the  following stochastic 

componenis: wind direction,  weather,  environmental situation, etc. In such prob- 

lems i t  is  r a t h e r  difficult t o  define a single function which measures t he  utility of 

dif ferent  components. Therefore ,  in this work, in teract ive  numerical methods are 

developed t ha t  do not requ i re  a utility function construction.  These methods use 

information supplied by t he  decision-maker (DM) who can  compare dif ferent  vari- 

an t s  (decisions) in t he  course  of i terations.  

A mathematical model of such DM's ability are pre fe rence  relations.  A p re f e r ence  

relation R is introduced on t he  set X of a l l  decisions as follows: z R y if and only 

if t he  DM says  tha t  decision z is  no worse than y . 
When a DM compare dif ferent  var iants ,  h e  makes e r r o r s .  Therefore  t he  subjective 

uncertainty t o  be  connected wlth t h e  D M ' s  errors a p p e a r s  in decision-making prob- 

lems. I t  should b e  noted t ha t  these  e r r o r s  are usually random by t h e i r  c h a r a c t e r  



in a more o r  Less ser ious  degree.  This stochastic aspec t  of t he  decision-making 

problems will be  discussed a t  the  end of th is  paper .  Now le t  assume tha t  t he  DM can 

compare decisions in an  absolutely c o r r e c t  manner. I t  is  actually not necessary 

f o r  t he  DM to compare a l l  d i f ferent  decisions from t h e  decision s e t  X. Algorithms 

discussed in th is  p a p e r  requ i re  only comparison of two dif ferent  a l ternat ives ,  

given by the  computer at each interaction. 

By introducing t h e  relatlon R ,  t he  decision-making problem is reduced to t he  

optimization problem on the  p r e f e r ence  field (R,X). The l a t t e r  assumes t he  follow- 

ing formulation which is  r a t h e r  general .  The set of a l l  possible decisions X = iz 1 
and i t s  subset of a l l  admissible decisions D  are specified. A binary relation R is 

also specified on t he  set X. I t  is  necessary t o  choose such z '  ED t h a t  f o r  V 

z 6 D ,  z ' R  z holds. This problem is called the  most p re fe rab le  element s ea r ch  

problem is denoted as follows: 

z -+ pref (1) 

If t he  relation R possesses such p rope r t i e s  as reflexivity,  completeness, transi-  

tivity, continuity [B], a continuous utility lndex u ( z )  (called a lso  value function) 

exists and t he  problem (1) formally is  reduced to the  mathematical programming 

problem: min u ( z ) .  However, i t  should b e  noted tha t  nei ther  analytical form of 
z ED 

u ( z )  nor  its values in given points are known. This f a c t  consti tutes t he  basic diffi- 

culty when problem (1) is  solved. Sometimes, when vector  z consists of stochastic 

components, it is known [I] tha t  u ( z )  has a form of E v ( z ,  o ) ,  where v ( z  , o )  is  an  

unknown function ar.d o-random parameters .  In applied problems, assumptions 

about t he  analytical form of u ( z )  are often taken, f o r  example: u ( z )  is a l inear  

function Z a i z i .  But even in this case a difficult problem of t he  identification of 
1 

weights at a r i s e s  

The lack of information about  t he  objective function u ( z )  makes problem (1) 

appea r s  similar t o  t he  stochastic programming problems. Therefore ,  i t  is  natural  

to use t he  approach of the  stochastic programming t o  solve the  problem (1). 



2. THE BASIC ALGORITHM O F  SEARCH FOR A MOST PREFERABLE ELEMENT 

Let us i l lustrate this idea f o r  t he  simplest case when t he  s e t  D is a compact subset  

from En and the  relation R possesses the  proper t ies  of convexity and regulari ty 

[3] besides t he  p roper t i es  required above.  In this case  the  utility function u ( z )  is  

a continuous quasiconvex function (i.e. the  function with the  convex level s e t s  

y :  u y  5 u z The differentiability of u ( z )  i s  a n  additional assumption fo r  

this case .  

It should be noted tha t  in th is  case ,  at every  point z ,  and f o r  every  direction h 

(except directions from a se t  of measure zero) ,  t h e r e  exists y ( z  , h )  5 0 such that  

e i the r  ( z  + y(z  . h ) h  ) R z  o r  (z - y ( z , h ) h )  Rz holds. Therefore ,  a random vec tor  

( ( z . 0 )  can be constructed by the  formula 

(where O is  a random direction vec tor  uniformly distributed over  the  n- 

dimensional unit sphe re )  which will be,  with probability 1, the  direction of a 

decrease  of u (2 ) .  This fac t  makes i t  possible t o  use,  in o r d e r  t o  solve problem 

( I ) ,  random search  procedures  of the  stochastic quasigradient type.  

Let us give some definitions which will help in the  calculation of E(((z ,O)) .  The 

support  functional to t he  convex s e t  G at t he  point z i s  a bounded vec tor  l ( z )  such 

tha t  (1 ( z ) ,  z y) 5 0 holds f o r  any y E G [lo]. The set of a l l  suppor t  functionals 

t o  set G at point z is t he  support  set L ( z ) .  I t  i s  known 1101 t ha t  if u ( z )  is  a 

quasiconvex function, then t he  set of a l l  support  functionals t o  s e t  

[ y  : u (y ) 5 u ( z  ) 1 in point z ,  which is  not optimal, is not empty. If th is  function is  

differentiable,  then f o r  every  1 l ( z )  EL ( z )  and l Z ( z )  E L ( z  ), 

L,(z) L,(z) 1 = = holds f o r  every  z such t ha t  [ y :  u ( y )  5 u ( z ) {  has  more 
1 ( z )  z ( z )  

than one point. If the  gradient of the  function u ( z )  in point z is not equal 0, then 

1 2 )  ur (2 )  A = - holds, where u, ( z )  is  the  gradient  of u ( z ) .  Hence, the  
L(z) 1 u r ( z )  

suppor t  functional to [ y :  u ( y )  5 u ( z ) l  is  the  generaiization of t he  gradient  f o r  

quasiconvex functions. 

Now l e t  us calculate the  value of E(( , (z ,O)) .  It i s  c l e a r  f o r  z +z' t ha t  i - t h  com- 

ponent of E ((.(z ,O )) is  equal to:  



where v is t he  measure of n-dimensional sphere .  According t o  t he  definition of 

the  support  functional: 

j . .  . j t i d t  l . . . d t n  = j . .  . j ( - t i ) d t l ,  . . d t ,  (3) 
u  ( I  + y ( z , t  ) t  ) s u  (2) u ( z  - 7 ( z , t ) t  s u ( z )  

:! t  I! s 1 I l l  I s 1  

= j . . .  1 t i d t  . . .  d t ,  

[*&o 

where L(z) i s  t he  suppor t  functional t o  the  s e t  [ y  :u ( y  ) 5 u (z) j  a t  the  point z 

L(z) Rotating t he  coordinate system f o r  integral  (2) in such a way tha t  m,, will 
l ( z )  

become coll inear with one of t he  ax l s  in new system (see  Flgure 1) w e  can obtaln: 

where k > 0 depends only on n . 

This statement was proved in details in [ Z ] .  The statement (4)  justifies t he  idea of 

using the  direction t ( z , @ )  as an  analogue of t he  stochastic quasigradient in sto- 

chast ic  quasigradient projection method. In th is  fashion the  following interact ive  

method is obtained. 

Take the  initial point z0 t o  be  a n  a r b i t r a r y  n-dimensional vector .  The algorithm 

consists of constructing t he  sequence [ z S  1 by t he  following rule .  Suppose t ha t  t he  

approximation z S  t o  t h e  solution z' of the  problem (1) is obtained before  the  

beginning of t he  s-th s t ep  of algorithm. On s tep  numbers s computer genera tes  B S  

-- t h e  s-th independent observation of t he  realization of random vec tor  O  and cal- 

culates z s  -' + y  0 ' .  If DM considers tha t  zS-1+yf3s  i s  no worse than zs - I ,  then 

t ( zS  - l , O S )  = 6' ; otherwise DM should compare decisions z S  - 78 and z S  If 

DM considers that  z S  -' - 70" is  no worse than z S  -', then t ( zs  , f3 ' )  = -0 ' ;  
otherwise t he  value of y  is  decreased  and t he  p rocedure  of comparison of 
,s - l + y e S , z S - l , z s  -1 -70 continues for a new value of y  (but f o r  t he  old value of 

.  Having defined t ( zS  - l . B S ) ,  computer calculates z s  by the  formula: 

where r r D ( . )  i s  the  p ro jec tor  on s e t  D, i.e. the  point from D being neares t  t o  t he  

argument. The choice of t he  s tep p,  m u s t  satisfy t he  conditions: 



- Old coordinate system 
---- New coordinate system 

Figure 1. Rotating the  coordinate system in the  case  n =2. 

I t  should be  noted t h a t  the  sequence of zS is a random sequence determined on 

some probabil i ty space  f n . A , P j .  According t o  (4) 

This fac t  is  t h e b a s i s  f o r  the  proof of convergence of t h e  algorithm. But i t s  con- 

vergence does not follow immediately from the  convergence of a n  analogous algo- 

rithm given in [4]. A quasiconvex function is  not always convex hence the  proof of 

t h e  algorithm (5) convergence is  a n  independent problem. However, i t  is  possible 

t o  p rove  tha t  E (((2" ,O " +I) 1 z O ,  . . . , z s )  possesses the  main p roper t i e s  of a quasi- 

gradient t h a t  a r e  needed in the  proof of convergence.  Namely i t  is t h e  di rect ion in 

which distance between point zs and t h e  set X* of optimal points decreases .  Let us 

p rove  it.  

Lemma 1. Let zs -r z ' ( o )  -W f o r  some o e ,  BEA , P(B)>O. Then t h e r e  exis ts  

such A > O  which depends only on z '  and o tha t  



f o r  sufficient  l a rge  numbers s , f o r  any w E B and any z *  E P . 

Proof :  

Because of zs -. z'(w) ? X  f o r  w E B, the  following statements holds: 

(A) fo r  any w E B and e>O such s0(w,e)  exis ts ,  t h a t  f o r  s > s o  we have 

(B) f o r  any w E B such 6(w) exis ts  t h a t  

min 1 z '  - z * !  >6(w) 
r' E X '  

Let in (A) e = 6(w)/2, then t h e  statement 

(C) f o r  any w E B such 6'(w) > 0 exists ,  tha t  f o r  s > so w e  have 

z s  E l z :  min I! z - z *  >6,(w)l . 
r' EX' 

this  follows from (A) and (B). 

According t o  (C) and continuity of u ( z ) ,  t h e r e  exis ts  such s2. which depends only 

on z '  and w ,  t h a t  f o r  6 > so and f o r  a l l  z* E X  t h e  points z* - 6 I" belong 
/I1 (zS)/I 

t o t h e s e t  f y  : u ( y )  4 u ( Z S ) I  

Therefore  f o r  any w E B, any z* E X and any s > so. 

holds. If we define t h e  point as follows: 

W e  obtain t h e  inequality (I ( z S ) . z S  - 4 0 from t h e  definition of t h e  support  

functional This means t h a t  

Lemma is proved. 



Using th is  lemma, le t  us p rove  the  following theorem 

Theorem 1. 

Let the  sequence f zS  b e  const ructed by (5) and t h e  s t e p  p, satisfy the  conditions 

(6). Then 

min 1 1  z s  - z *  1 1  + 0 a.s. 
2' EX' s -. - 

Proof :  

Let u s  show t h a t  if z S  + ~ ' ( 0 )  X ,  f o r  some w E B ,  P(B) > 0, then f o r  sufficiently 

large  s 

min I !  z S  -z*!i2 s min I! z s  -z*!12 - A '  p, + W, 
2' E X .  r' E X  

(a) 

holds, where A' > 0 depends only on z '  and u, 

Indeed, 

min 1 1  z S + l  -z* )12 = 1 z s  +l -z*(zS+1)l12 s $ 1  z s + l  -z*(zS)l12 
(9) 

2' E X S  

where z* (z ") EX, i s  such Z* , f o r  which 

min : I  z v  -,*!I2 = 1 zv  -z*(zv)12 holds. 
2' E X .  

According t o  (5) and projection p roper t i e s  (4) ,  

1 1  zS+' -z* i j2 = ! nD(zS + ps ( (zS ,  e S + l  )) - z *  ( z s ) ?  5 

s 112 s IlzS + ps ( ( z S .  @'+I) -z*(zs)!12S I zS  - z * ( z  ) .  + 

s @ S + l  + 2pS (( (2 s ), z S  - z*(zS))  + p: = min 1 z s  -z*112 + 
2' EX' 

According t o  lemma 1 f o r  s > so,  and w E B 



where  A > 0  depends  only on  z '  and  o; acco rd ing  to t h e  t heo rem assumpt ions  for 

suff icient ly l a r g e  s (i .e .  for s > s ' )  Ak > ps holds.  

T h e r e f o r e  if s > max(s , , s ' )  t h e n  for a r b i t r a r y  o E B 

1 * (  5 m i  1 z s  -z*/!' - Ak p, + Ws 
I' EX' 

holds,  whe re  

According to (7) 

According to t h e  t heo rem assumptions E(w:) S C E ( ~ : )  , w h e r e  c  <-, so 

By combining (9) a n d  ( l o ) ,  t h e  s t a t emen t  (8)  is  ob ta ined .  The conclusion of t h e  

proof of t h e  t heo rem is  based  on  Nurminsky's r e s u l t s  (6) a n d  i s  fully ana logous  to 

t h e  proof  of t heo rem 3 f rom C h a p t e r  4 [4]. 

Method (5) ana lysed  a b o v e  is t h e  bas is  for a n  i n t e r a c t i v e  decision-making method 

which uses compar ison  p r o c e d u r e s .  T h e r e  c a n  b e  d i f f e r e n t  ways of implementing 

such  p r o c e d u r e s  such  as a d i r e c t  compar ison  of t h e  va lues  of c r i t e r i a  by  t h e  DM; a 

d i r e c t  compar ison  of a l l  components  o f  decis ions by  DM; simulatlon. 

S e v e r a l  numer ica l  expe r imen t s  b a s e d  on t h e s e  ideas  were made with a n  appl ied  

decision-making sys tem for a dynamic planning model of a n  economic system. 

The  bas ic  model in t h i s  example  h a s  t h e  form: 

(Y ( 1 ) .  . . . . Y ( T )  , z ( T + l ) )  + p r e f  

whe re  z ( t )  i s  t h e  va lue  of t h e  sys tem to t a l  p r o d u c t  at t h e  time i n t e r v a l  t ,  y ( t )  is 

t h e  va lue  of t h e  system f ina l  p r o d u c t  at t h e  time i n t e r v a l  t ,  z0 is  t h e  known va lue  



of t he  system total  product  at the  beg inn ing .~ .  b are known paramete rs  

Information f o r  the  comparison procedure  was introduced in a combined form: the  

information about ( y  (1). . . . , y (T)) was given in graphical  form, and the  informa- 
T 

Lion about  z ( T + l )  ( together  with information about y ( t ) )  in numerical form 
t =1 

(see  Figure 2) 

- Var. 1 - Var. 2 

Variant 1 : Total product at T + 1 equals 12.32 
Total consumption equals 47.5 

Variant 2: Total product at T + 1 equals 11.5 
Total consumption equals 49.7 I 
What variant is better? 

Figure 2. Example of the  information given t o  DM in the  dynamic planning model 

f o r  economic system. 

Tests were made f o r  a case  when T = 5. In t he  test runs ,  a known utility function 

u ( y  (1). . . . , y (T).z (T+ l ) )  was used as a DM model. Sufficiently good approxi- 

mates t o  solutions (with t h e  accuracy from 5% to 1% of z* measured by t he  distance 

' 1  z -2- I! ) were obtained between 4 1  and 65 i terations of method (5) ( these  

resu l t s  depend on the  accuracy  and assumed utility function). Experiments with 

this algorithm in in teract ive  option were made also. 

Another set of numerical experiments were made a lso with consumption models. 



- l o  - 

3. Generalizations of main al~orithm 

I t  is  r a t h e r  difficult t o  find the  projection of the  point on set D if the  dimension of 

z is  l a rge  and D is  given by many constraints.  There fore  a method t h a t  substi tutes 

the  projection by solving a l lnear problem in each i teration might be  useful. The 

idea of this method is  t h e  following: i t  i s  known t h a t ,  if gradient of u ( z )  is  not a 

L(z )  - u, (2)  zero  vec to r ,  then !I - T. This makes i t  possible t o  minimize at each 
L(z )  IU, (2 )  

i teration t h e  l inear  approximation z - zs of t h e  function u ( z ) .  I I I l ( z ~ - 1 )  ' 1 
where zS-' is  t h e  point obtained in t h e  previous i tera t ion.  The value of 

L ( z  -I) 

I l l  ( z S  -1)ll 

may be approximated by i t s  stat ist ical  estimate z S  which is  obtained by t h e  for-  

mula: z S  = z S  -' s - 1  @S) - z s - l  + J , ( - ( ( Z  ) , s = ~ , 1 , 2  ,... 

where z O  is a n  a r b i t r a r y  vec to r ,  6, must possess t h e  proper t ies :  

Such approximations were investigated in (4) where i t  w a s  proved that  

0 z s  -E( - (  ( z S - l .  O S )  ! z . . . . . z 1 + o as. 
s -- 

These estimates are used in t h e  so-called s tochast ic  linearization method, which 

produces t h e  sequence [ zs ,  z s  1 according t o  t h e  rule :  

z0 is a n  a r b i t r a r y  admissible decision 

z O  is an a r b i t r a r y  vec to r  from E n ,  

where t h e  s t e p s  6,,p, satisfy t h e  conditions: 

O ~ P ,  <I, s = 1 , 2  ..... as. 

This method is convenient f o r  the  case when the  set D is given by a set of l inear  

equations and inequalities. In this case the  decision zS-' may be used as the  



s tar t ing approximation of the  solution f o r  solving the  problem min ( z S ,  z ) .  
I E D  

For a case  when the  set D is specified by non-linear inequalities, specia l  penalty 

function methods are presented in (7). These methods a r e  applicable f o r  cases  

when some const ra ints  are specified by p r e f e r e n c e  relat ions o r  have a form of 

E pi ( z , o )  5 0 where pi ( z , o )  are convex with r e s p e c t  t o  z f o r  almost every  

realization of s tochast ic  var iable  o. 

Another approach  to the  multicrl teria problems is connected with constructing the  

Pareto-optimal decision s e t .  Let t h e  consequences of decision z in problem (1) be  

descr ibed by t h e  c r i t e r i a  vector  U l ( z )  , . . . .p  , (z) ) .  Typically, scalarizing func- 

tions G ( z  . d )  of known analytical form which depend on additional pa ramete rs  a 

are used t o  parametr ize  t h e  set of al l  P a r e t o  decisions. It 1s done by solving t h e  

problem: 

For a l l  pa ramete r  values a from a specified set H the  Pareto-optimal decision set 

with r e s p e c t  t o  the  c r i t e r i a  U l ( z )  , . . . , pm (2) )  will be  e i t h e r  covered o r  approxi-  

mated by t h e  set of problem (12) solutions. Examples of such scalarizing functions 
m 

are 2 at P i ( z ) ,  m a d a t  f i b ) ) ,  and many o t h e r s  (see  [ I l l ) .  
1 =1 i =1,m 

Hence, the  solution of  problem (1) may b e  obtained as the  solution of problem (12) 

f o r  some "best" value of a". Our idea is  to use t h e  s e a r c h  f o r  the  most p r e f e r a b l e  

elements t o  identify this "best" value. 

Let z* ( a )  be  the  solution of the  problem (12) obtained f o r  a oiven value a. The 

new re la t ion R1 may b e  const ructed on t h e  set H of  a l l  possible values of a in t h e  

following way: 

a(') R1 a(') if ,  and only if ,  z* (a(')) Rz* (a(')) holds. (Usua1ly.H = E m  o r  i s  a unit 

simplex from E m . )  Now the  problem (1) is substituted by t h e  problem: 

This problem may be solved by t h e  above mentioned methods, f o r  example, by 

method (5). The advantages of such a n  approach is t h e  possibility of using fast 

deterministic methods (such as variable-metric methods (5) o r  quadrat ic  



approximation methods) for the  solving of  problem (12) in t h e  case  when D i s  given 

by non-linear constraints;  often,  ano ther  advantage is  t h e  d e c r e a s e  of dimen- 

sionality of t h e  problem. This approach  gives good possibilities f o r  DM'S learning 

(11). But t h e  assumption about quasiconvexity and differentiability of the  function 

V(a) = u (z* (a)) is  not necessari ly justified even in t h e  case of quasiconvexity and 

differentiability of t h e  functions u(z )  and C(z,a). There fore ,  i t  is interesting t o  

substantiate t h e  methods of s e a r c h  f o r  the  most p r e f e r a b l e  element such as (5) f o r  

the  case  when we do not r e q u i r e  the  differentiability and quasiconvexity of u(z) .  

Let us start with the  case when function u(z)  is  quasiconvex but nondifferentiable. 

The approach  similar to the  s tochast ic  smoothing (9) is  used f o r  th is  case. Because 

of i t s  quasiconvexity, t h e  function u ( z )  will be  differentiable with probability 1 at 

a randomly chosen polnt Z = z + $, where 2 is  the  random vec to r  with independent 

components uniformly distr ibuted o v e r  [-a,a], a>O. There fore ,  t h e  v e c t o r  

t (zS Q ) in (5) may be const ructed by the  rule :  

where Zs = z s  + +s ,sS is  t h e  observation of t h e  random vec to r  with indepen- 

dent components uniformly distr ibuted o v e r  [-a,, a, 1. 

Because of t h e  differentiabil i ty of u (z ) a t  the  point z"' w e  have: 

z"' -1 
E ( - c ( ~ ~ - ~ . Q ~ )  I z O , .  . . ,  zs  -1, +I, . . . , +,) = k u  

I l l  (ZS 

and 

This f a c t  indicates t h a t  t (zS-', 0') determined by (13) is  not a s tochast ic  quasi- 

gradient of u(z) .  But i t  possess t h e  basic p roper ty  necessary  f o r  the  conver- 

gence of t h e  algorithm (5) - i t  is  t h e  direction in which t h e  distance t o  P 

decreases ,  if z"' i s  not too close t o  P . 
- 

Lemma 2. Let zs + Z '  E P f o r  Some o E B , P(B) > 0,  le t  [ (zs.  eSt1) b e  de te r -  

mined by (13) and a + 0 
P - -  

Then t h e r e  exis ts  X > 0, which depends only on z' and o, such that :  



(E(-( (zS.  0"l ) i z", . . . , z s ) ,  z S  - z*) = 

f o r  sufficiently l a rge  numbers s ,  f o r  any w E B and any x*  6 X*. 

The proof of th is  lemma is not principally d i f f e r e n t  from the  proof of lemma 1. 

Lemma 2 shows t h a t  the  dlrection ((2" , 0 +I) being determined by (13) may b e  used 

in the  frame of method (5) if a, + 0 from s + - holds. For example, while using 

lemma 2 instead of lemma 1, i t  is  possible t o  p rove  t h e  following theorem (which 

proof does  not d i f fer  from t h e  proof of theorem 1): 

Theorem 2 

Let [ zS be constructed by algorithm (5), where ((2" 0') i s  specified by (13) 

and suppose t h a t  

Then 

min z S  - z* I 1  -r 0 with probability 1 
r' EX' s - -  

The convergence of methods (5) and (11) were examined a lso  f o r  the  case  when 

function u (z) is  non-convex, but differentiable.  The convergence of these  

methods t o  t h e  set of  points which satisfied the  Kukn-Tucker conditions was proved 

with t h e  additional assumption about t h e  choice of t h e  pa ramete r  y (zS -'. 0 '). 

namely, t h a t  y (zs -I, 0 ') -r 0 a.s. 
s -.- 

4. Stability analysis 

The stability of the  method (5) w a s  investigated in the  following model. 

Let a randomization Re ( represent ing distort ion by DM'S random e r r o r s )  be  used in 

(1) instead of re la t ion R and le t  p (z , y )  charac te r ize  t h e  distort ion by specifying 

t h e  probabil i ty of a n  e r roneous  comparison of the  decisions z and y . 

I t  was proved in [7] tha t  if p (z . y ) 5 p ,  < 1/ 2 f o r  a l l  z ,  y , then t h e  usage of Re 

in (2), (13), instead of R does  not influence the  convergence of t h e  method (5). 



In p a r t i c u l a r ,  t h e  following theorems were proved in [7] 

T h e o r e m  3 

Let  t h e  funct ion u (z )  b e  convex a n d  d i f f e ren t i ab le ,  p ( z  , y )  = p,  < 1/ 2 for any 

z , y ,  a n d  l e t  7(z.O) . Y, w h e r e  Y, + 0 a.s. b e  used in (2) ins tead  of 7(z , 0) (s 
S - -  

deno tes  h e r e  t h e  number  of i t e r a t ion  of t h e  method (5)). Let  [ z S  I b e  cons t ruc t ed  

by (5) with t h e  use  of Re instead of R .  Then 

min ' z S  - z *  + O  with probabi l i ty  1 ( a . s ) .  
2- EX. s - -  

T h e o r e m  4 

Let  t h e  funct ion u(z )  b e  convex and d i f f e ren t i ab le ,  p(z  , y )  < 1/2 for any  z , y 

and l e t  D = E n .  Let  I z S  b e  c o n s t r u c t e d  by (5) with t h e  u s e  of Re ins tead  of R .  

Then 

Similar  r e s u l t s  were proved also for  more  g e n e r a l  ca ses .  

The  idea  of p r o o f s  of t h e s e  theo rems  i s  t h e  following. Let  u s  examine t h e  conver-  

gence  of a random p r o c e s s  of t h e  form: 

where  z 0  is  a n  a r b i t r a r y  v e c t o r  z 0  i i  5 c 5 -, vs i s  a n  a r b i t r a r y  random v e c t o r .  

The condit ions for vS v e c t o r s  t h a t  e n s u r e  t h e  conve rgence  of lzS j to t h e  set XI of 

e x t r e m e  points  of some convex d i f f e ren t i ab le  funct ion  u(z)  c a n  b e  spec i f ied  as 

follows: 

(1) if z s  -. ~ ' ( w )  F 1'" for some L: E B,  P (B)  > 0 ,  implies 

for w E B, for suf f ic ien t  l a r g e  s and for e v e r y  z*  E XI,  and if t h e  s t e p  s i ze  of 

pS sa t i s fy  t h e  condit ions:  

t h e n  

min I zS  - z *  + 0 a.s. 
zs EX' s + -  



(2) zS -t ~ ' ( o )  Z P fo r  some (; E B . P ( B )  > 0, implies: 

f o r  almost every  o E B. P (B) > 0, f o r  sufficient  Large s and f o r  every 

z* E P, and if t h e  s t e p  size of p, satisfy the  conditions: 

then 

min " zs - z* 1 1  + o a.s 
I' E X .  S *' 

There fore  w e  have t o  estimate t h e  value of 

assuming tha t  ( ( z S  -I, Q S )  is obtained by (2) with t h e  use of Re instead of R 

and t o  show tha t ,  under t h e  adopted assumptions, this  value satisfies t h e  con- 

dition (14) o r  t h e  condition (15). 

It should be  noted t h a t  under  th is  assumption the  value of 

may be far from the  gradient  of u ( z ) ,  but i t  possesses t h e  p r o p e r t y  (14)  o r  the  

p roper ty  (15) t o  ensure  t h e  convergence of the  algorithm (5). 

The conditions (14) and (15) and t h e i r  generalizations may be successfully used f o r  

the  analysis of stability of  t h e  s tochast ic  quasigradient method f o r  the  c a s e  of 

e r r o r s  in t h e  calculation of s tochast ic  quasigradient [6]. 

These resu l t s  make i t  possible t o  use t h e  proposed methods even under  the  assump- 

tion tha t  DM might do random e r r o r s .  These resu l t s  a r e  very helpful in t h e  cases 

of nontransitivlty of DM'S answers (if th is  nontransitivity could be explained as 

random e r r o r s  of DM), f o r  example, in collective decision-making problems. 

Computer implementation is being developed on the  basis of the  above descr ibed 

methods. They include s tep  control  procedures  t o  control  p, ,  6, and o t h e r  param- 

e t e r s  and special  p rocedures  which make i t  possible f o r  DM to o f f e r  his own deci- 

sions and check t h e i r  consequences. 

These software packages  a r e  or iented towards t h e i r  incorporation in a system of 

applied software f o r  decision support .  
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