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PREFACE 

The roots  of cu r r en t  interest  in the  theory of approximate soiutions of optimiza- 
tion problems lie in approximation theory and nondifferentiable optimization. In 
this paper  an approximate saddle point theory is presented f o r  vector  vaiuea con- 
vex optimization problems. The considerations cover  different possible types of 
approximate optimality, including both the efficient, o r  Pareto-type, which is more 
frequently used in pract ical  decision making applications, and the  absolute, o r  
s t r i c t  type, which is more of theoretical interest .  The saddle point theorems a r e  
used to  study duality in t he  context of approximate solutions. The approach of the  
paper  aiso provides f o r  a unified, view of a number of resul ts  achieved e i ther  in 
approximate sca la r  optimization o r  exact  vector  optimization. 

Alexander B. Kurzhanski 
Chairman 
Systems and Decision Sciences Area 
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ON APPROXIMATE VECTOR OPTIMIZATION 

Istvdn Vdlyi 

1. INTRODUCTION 

The aim of the present  paper  is  to  give the  proofs of the  theory presented at the 

IIASA Workshop on Nondifferentiable Optimization held between 1'7 and 22 Sep- 

tember, 1984, Sopron, Hungary. (See Vdlyi (1985a)),but some m o r e  recent  re la ted 

results are also included. 

The cen t ra l  results are Hurwitz-type saddle point theorems corresponding to  ap- 

proximate solutions extending the  theory developed by Zowe (19'7'7) f o r  one type of 

optima, o r  by Tanino and Sawaragi (1980) fo r  another.  By these theorems then w e  

investigate the  respective duality type problems. The study of this subject was 

s ta r ted  by Hiriart-Urruty (1982) and Strodiot et al .  (1983) in the sca la r  case,  and 

by Kutateladze (19'78) and Loridan (1984) in the vector  valued case.  

The paper  is divided into two pa r t s  according to  the  type of optimality considered. 

Chapter 2. covers  the case of s t r ic t ,  o r  non-Pareto optimality. This type of optim- 

ization in ordered spaces is  regarded by many as having little pract ical  use. This 

criticism, however is of less force  in the  approximate case, since f o r  some vaiue of 

the approximation e r r o r  w e  may find soiutions even if exac t  solutions do not exist  

(like the s o  called utopia point so  often used in the  Pare to  case). Anyway, interest  

in i t  appears  t o  be lasting as is shown e. g. by t h e  r ecen t  paper  of Azimov (1982). 

Section 2.1. is devoted to  some basic propert ies  of approximate extremal elements 

in ordered vector spaces and in Section 2.2. the  main results are proved. Appiica- 

tions expounded in Section 2.3. clarify the relationships between approximate sad- 

dle points and approximate solutions of the primal and dual problems associated t o  

the  original problem. In this w e  also show the  connections t o  analogous results,  

namely the corresponding Kuhn-Tucker theorems based on the  c-subgradient cal- 

culus, obtained by Kutateladze (19'78). In such a way the  analogy will be complete 

with the theory developed fo r  the scaiar case in the  paper  by Strodiot e t  al. 

(1983). Finally w e  give a par t ia l  generalization to  the  vector valued case of 



Golshtein's duality theorem dealing with generalized solutions of convex optimiza- 

tion problems and of Tuy's r esu l t  character iz ing well posed problems, i. e. those  

where t h e  primai and dual vaiues coincide. (See 14H in Holmes (1975)). 

Chapter  3. deals with P a r e t o ,  o r  nondominated optimality. Here  we define dif- 

f e r e n t  types  of approximate efficient solutions t o  vec to r  optimization problems and 

deveiop t h e  corresponding saddle point theorems along t h e  logics of Tanino and 

Sawaragi (1980) o r  Luc (1984). 

Section 3.1. i s  devoted t o  definitions and some basic p r o p e r t i e s  of approximate ex- 

tremai eiements in o r d e r e d  vec to r  spaces  and in Section 3.2. t h e  saddie point 

theorems are proved. As f o r  appiications, in Section 3.3. we show t h e  equivalence 

between approximate saddle points and t h e  corresponding primal-dual p a i r s  of 

solutions. 

As a consequence of t h e  f a c t  t h a t  t h e  notion of approximate solution coincides with 

t h a i  of (exact)  soiution in t n e  case when t h e  approximation e r r o r  i s  ze ro ,  o u r  

resu l t s  r educe  t o  those  obtained in t h e  above mentioned papers .  Throughout t h e  

p a p e r  we r e l y  on a knowledge of convex analysis and t h e  theory  of o r d e r e d  vec to r  

spaces ,  and t h e r e f o r e  basic notions and fac t s  are used without special  expianation. 

If needed see e. g. Peress ini  (1967), Holmes (1975) o r  Akilov and Kutateladze 

(1970). 

All t h e  vec to r  spaces  appear ing in t h e  p a p e r  are r e a l  and order ing cones are sup- 

posed t o  be  convex, pointed and algebraically closed. In t h e  p resence  of a topolog- 

ical s t r u c t u r e  w e  suppose compatibility, i. e. tha t  t h e  order ing cone is  closed. W e  

.denote by X and V vec to r  spaces  and by (Z,K) a n  o r d e r e d  v e c t o r  space  with 

core (K) +d, where core r e f e r s  t o  t h e  a lgebraic  in ter ior .  Similarly, rcore denotes 

t h e  re la t ive  a lgebra ic  in ter ior .  (Y,C) i s  a n  o r d e r  compiete space ,  i.  e. a vec to r  

la t t ice  wnere e v e r y  nonvoid set with a lower bound possesses a n  infimum. In o r d e r  

t o  e n s u r e  t h e  exis tence of infima, r e s p ,  suprema f o r  e v e r y  (i.e. nonbounded) sets, 

we supplement t h e  space  (Y,C) with t h e  elements = and -= using t h e  notation 

Y=Yu! -=, = j ,  and suppose t h a t  t h e  usual a igebraic  and order ing p r o p e r t i e s  hold. 

Hence f o r  t h e  set HcY, which i s  not bounded from below, we have inf (H)=-- and 

inf (@)=a. The dual space  of Y is  Y while t h e  topological dual i s  rC . The cone of 

positive functionais with r e s p e c t  t o  t h e  cone C cY, o r  t h e  dual of C is  C S .  The func- 

tional y* EY denotes an  eiement of C+.  L +(Z,Y) cL (Z,Y), o r  A+(Z,Y)cA(Z,Y) s tands  

f o r  t h e  cone of positive l inear ,  o r  continuous positive l inear  maps from Z t o  Y, 

respectively.  



W e  reca l l  now that f o r  t h e  various order ing reiat ionships between two elements of 

an o r d e r e d  vec to r  space  w e  shall  use t h e  foilowing notations f o r  exampie in ( Y , C ) :  

Yz LY1 iff Yz -Y1 E C  

Y ~ ~ Y ~  iff Y ~ - Y ~ E C \  0  

Y Z  > y 1  iff y z  -Y? E c o r e ( C )  

To denote opposite relat ions we use symbols Like ;): and $. Accordingly 

r e f e r  t o  t h e  f a c t  t h a t  y l ~ Y  dominates o r  does not dominate y2EY from below, 

respectively.  

The vec to rs  e ,  en ,e7EY and t h e  s c a l a r s  E , E ,  dR r e p r e s e n t  t h e  approximation e r -  

r o r ,  of them w e  suppose t h a t  e  5 0 ,  e ,  2 0  and e,r_O holds and similarly t h a t  E , E ,  a r e  

nonnegative. 

Now t h e  usuai definition of t h e  main subject  of study in this p a p e r  foliows, i. e .  tha t  

of t n e  convex minimization problen and of t h e  corresponding v e c t o r  valued 

Lagrangian (see  e .  g. Zowe (1976)). 

Definition 1.1. 

Let 

p r o p e r  convex functions with A = d o m  j' n d o m  h , and L E L ( X , V ) .  We define t h e  

minimization problem ( M P )  by way of t h e  set of solutions: 

where 

F = l z   EX:^ ~ A , h ( z ) s O , L ( z ) = O j  

i s  called t h e  feasibility s e t  of t h e  problem (MP) .  

The a lgebraic  Lagrangian of t h e  convex minimization problem ( M P )  

i s  defined by t h e  equaiity 



I eo i f x e ' A  

@ L ( ~ , R , S )  = 4 f ( x )  + R . h ( x )  + S - L ( x )  i f x ~ A  a n d ~ a + ( Z , Y )  
I 
I -- if X E A  and R ~ ' L + ( Z , Y )  

with t h e  set 

cailed t h e  domain of @L . 

The element (zo ,Ro,So)  E dom @L is  a saddle point of t h e  Lagrangian aL if t h e  fol- 

lowing is  met 

(i) @L(xo,Ro,So) E MliY[@L(~,Ro,So)  : z  EX^ 
(ii) 5,L(zo,Ro,So) ci MkXj9L(xo,R,S) : ( R , S )  E L (Z,Y) X L(V,Y){ . 

Instead of t h e  symbol MliY or MAX, one h a s  t o  subst i tu te  one  of t h e  approximzte  ( o r  

exac t )  notions of minimality or maximality from t h e  l a t e r  foilowing respec t ive  de- 

finitions. Depending on th i s  choice ,  w e  cali t h e  eiements of MIN(W) solutions of 

tine probiem (MP) of t h e  corresponding approximate ( o r  exac t )  type .  

The continuous Lagrangian is  defined as t h e  res t r i c t ion  of 4L t o  

X x A(Z,Y) x A(V,Y) and t h e  notion of saddle point of t h e  continuous Lagrangian @,, 

i s  defined in a corresponding manner. 

The above notations and conditions are supposed to b e  valid throughout  t h e  p a p e r  

and will not b e  mentioned again. 



2. STRICT OPTKMA 

2.1. Approximate  Extremal  P o i n t s  and Approximate  Solutions 

Now we start with the  definition of s t r i c t  extremal and s t r i c t  approximate extremal 

points, and then w e  formulate some simple relationships between approximate ex- 

tremal points corresponding t o  different values of the  approximation parameter.  

Definition 2.1.1. 

Suppose tha t  H C Y. Then an element y EH is  called a s t r i c t  minimal element of H, 

o r  

The set 

S(e)-MIN(H) = jy EH : H c y - e  - C j  

is called the  set of s t r i c t  e-approximate minimal o r  S(e)-minimal points of H. 

By convention w e  say that  

S - M ( $ )  = S ( e ) - M ( 4 )  = 

and if H c Y is not bounded from below 

S-MIN(H) = S ( e ) - M ( H )  = f - a j  

Remark 2.1.1. 

By the  pointedness of the  cone C cY the  set S -MIN(H) cannot have more than one 

element. If i t  has  one, this obviously means that  in4 (H) = S - M ( H ) .  

The notions of S(e)-maximal and S-maximal elements are to  be  defined in a 

corresponding manner. 

The statements in t he  following proposition are straightforward consequences of 

the  definitions. 



Proposition 2.1.1. 

(a) S -Mn\l(H) = S ( 0 )  -Mn\l(H) 

(b) If 0 5 e l  5 e 2 ,  then S(el ) -MlN(H) c S(e2)-MIN(H).  

(c) If H c Y  is  bounded from below then S ( e )  -MIN(H)=(inf (H)+e -C)nH. 

Corollary 2.1.1. 

Let ( Y , C )  b e  equipped with a topological s t r uc tu r e  and H c Y closed. Suppose t ha t  

a ne t  l e y  E C : y E rj decreasing t o  e E Y exists with 

( a ) S ( e y ) - M l N ( H ) n Y # d  V y ~ r  and 

(b) S ( e y J  -MIN(H) c Y is compact f o r  some y o d ' .  

Then S ( e  )-MlN ( H )  # @. 

Proof.  

A s  a consequence of t h e  closedness of C c Y ,  w e  have t ha t  e E C ,  and s o  

S ( e )  -Mn\l(H) is  well defined. S ( e  y )  -Mn\l(H)#@ obviously implies i n f  ( H ) # w ,  and 

s o  w e  can apply (b) and (c) in Proposition 2.1.1. t o  conclude t ha t  S ( e )  -Mn\l(H) i s  

t h e  intersection of nonvoid compact sets. 

Proposition 2.1.2. 

Let ( Y , C )  b e  equipped with a topological s t r uc tu r e  and l e y  E C : y E rj a decreas-  

ing ne t  t ha t  converges t o  e EY. 

Then 

Proof .  

By Corollary 3.2., Chap. 2. in Peressini  (1967) w e  have e = i n f  le E C : y E rj. 
Hence by Proposition 2.1.1. t h e  lef t  hand s iae  in (2 .1)  i s  a subset  of t he  r igh t  hand 

siae.  

For t h e  r e v e r s e  inclusion l e t  y E Y b e  an  element of S ( e  ?) -Mn\l(H) f o r  each y E r. 
This means tha t  y E H and f o r  each  fixed h E H ,  t h e  ne t  fh --y +eY€Y : y € r j  is  

contained in t he  closed cone C cY, hence h --y +e EC aiso holds. 

8 



Corollary 2.1.2. 

Let (Y,C) be  equipped with a weakly sequential complete topology, the  ordering 

cone CcY normal and suppose tha t  fen EC : n E N !  is  a decreasing sequence. 

Then 

exists and 

Proof. 

The statement is  a consequence of our  Proposition 2.1.2. and the  Corollary 3.5. 

Chap. 2. in Peressini (1967). 

Remark 2.1.2. 

A s  a consequence of Proposition 2.1.1. t he  case with e =O provides f o r  conditions 

ensuring the  existence of exact  extremal points based on information about ap- 

proximate ones in t he  previous Proposition and Corollaries. 

Now, using Propositions 2.1.1. and 2.1.2. w e  formulate a f e w  simple propert ies  of 

the  approximate solutions. 

Corollary 2.1.3. 

Suppose, that  (Y,C) is  equipped with a topoiogical s t ruc ture .  

Then the  following hold: 

(a) S -M.ZiY (MP) = S (0) -MhV (W) 

(b) O~el~e2impliesS(el)-MIN(MP) c S ( e 2 ) - M ( M P ) .  

(c) If f e y  E C : y E rj is  a decreasing net that  converges t o  e EY, then 

n IS(e,.)-MnV(MP) : y E rj = S ( e )  - MIN(MP). 

(d) If t he  topology of (Y,C) is weakly sequentially complete, t he  cone CCY is  nor- 

mal, {en E C : n E N ]  is a decreasing sequence with t he  infimum e EY, then 

niS(en)-MIN(MP) : n EN] = S(e)-IWN(MP). 

(e) Suppose that  t he  set f (F) E Y is  closed, ten E C : n E N ]  is a decreasing se- 

quence that  converges t o  e EY, zyEX is an S(ey)-solution of (MP) f o r  each 

7 ~ r  and t h e r e  is a yo E r such that  the  set s ( e Y J - M {  f (z) E Y : z EFj C Y 



- 8 -  

i s  compact. Then (MP) h a s  a n  S(e)-minimal solution. 

2.2. The Saddle Point Theorems 

The presen t  section is  closely re la ted  t o  Zowe's r esu l t s  both as f a r  as proofs  and 

notions are concerned (Zowe (1976) and Zowe (1977)). As t h e r e ,  in t h e  case of ex- 

act solutions, one  implication between t h e  exis tence of solutions and saddle points 

i s  valid under  fa i r ly  general  conditions while w e  need additional assumptions in t h e  

case of t h e  o t h e r .  

Proposition 2.2.1. 

If (zo ,Ro,So)  Edom cPL i s  a S ( e  )-saddie point of t h e  Lagrangian cPL , then 

Proof .  

Follows from zo@ and (ii) of Definition 1.1. if one considers t h e  case (R,S)=(O,O) 

in S(e)-MAX. 

Theorem 2.2.1. 

If (zo,Ro,So) E dom cPL i s  a n  S ( e  )-saddle point of t h e  Lagrangian c P L ,  then zo E X i s  

a n  S (2.e )-solution of ( M P )  . 

Proof.  

Fi rs t  w e  p rove  t h a t  th is  implies t h a t  zo@. 

zo ED follows from t h e  re la t ion (zo,Ro,So) E dom c P L ,  Using t h e  choice  

( z  ,R,S)=(zo,R,So)  in (ii) of Definition 1.1. w e  obtain t h a t  

and using ( z  ,R,S)=(zo,Ro,S)  t h a t  



If h (z  o) !Z -K, then the  s t r i c t  separation theorem applied t o  the  singleton set 

ih(zo)jcZ and t h e  algebraically closed convex cone KcZ with a nonempty co re  

(Kothe Sect.  17, 5, (2)) yields a z* EK+ with 

sup I < z 4 , - k > :  ~ E K  1 = 0 < <z4 ,h(z0)> .  

Let c EC\ I O j  be a fixed vector ,  t o  be  specified l a t e r  and le t  us define REL+(z ,Y)  
with the  equation 

By inequality (2.2) now w e  have 

Selecting f i r s t  any c EC\ I0 j ,  w e  see tha t  Ro.h (zo)  +e +O holds, t he re fo re  w e  are 

allowed t o  set at a second s tep  

leading to  a contradiction with (2.4). 

A similar argument shows the  impossibility of 1 (zo)20,  and so w e  can conclude that  

zoU.  

Again, by the  definition of @L and the  S(e)-saddle point, w e  have f o r  each 

( z  ,R ,S)  E dom GL : 

f (zo) + R e  h ( z o )  + S  .L(zo) - e  $ f (x) + R o .  h ( z )  + S O .  L(z) + e 

A s  a consequence of (zo,Ro,So) E dom @L the  relation RoEL+(2,Y) hoids and there-  

fo re  a substitution ( z  ,R,S)=(z  ,O,O) completes the  proof. 

Using the  topological version of the  s t r i c t  separation theorem in t he  above proof, 

w e  readily obtain t he  following f o r  t he  continuous Lagrangian QA. 

Theorem 2.2.2. 

Suppose tha t  (Y,C), (Z,K) and V a r e  equipped with a topological s t ruc ture .  



If (zo,Ro,S0) E dom is an S(e)-saadle point of the  Lagrangian Q A  then zo€X is a 

S (2.e )-solution of (MP). 

Definition 2.2.1. 

W e  say tha t  the  problem (MP) meets the  algebraic Slater-Uzawa constraint qualifi- 

cation if e i ther  

( i )  t he re  exists an z l€rcore  (A) with h (zl)€-rcore (K) and 1 (z l )  =0, 

or 

(ii) no l inear constraint is present  and t h e r e  exists an  z l€A with 

Definition 2.2.2. 

The problem (MP), where (Y,C), (Z,K) and V are topological spaces  meets the  topo- 

logical Slater-Uzawa constraint qualification if t h e r e  exists an zl€int (A) with 

h ( z l ) € i n t ( K )  and l(zl)=O. 

Now fo r  t he  convenience of the  r eade r  w e  quote from Zowe (1976) the  algebraic 

and topological vector  valued versions of the  Farkas-Minkowski lemma. 

Theorem 2.2.3. 

Suppose tha t  the  minimization problem (MP) meets the  algebraic Slater-Uzawa con- 

s t ra in t  qualification. 

Then the  following statements a r e  equivalent: 

( a ) f ( z ) S O  vz* 

(b) t h e r e  exist  opera tors  R EL+(Z,Y), SEL O/,Y) such tha t  

f ( z )  + R . h ( z )  + S . I ( z ) & O  V Z E A .  

Theorem 2.2.4. 

Let (Y,C) and (Z,K) be  equipped with a topological s t ruc ture ,  X a completely 

metrizable topological vector space and the  cone CcY normal. Let fu r the r  V be  a 

Hilbert space with 1 (X)CV a closed subspace and suppose that  the  minimization 

problem (MP) meets the  topological Slater-Uzawa constraint qualification. 

Then the  following statements are equivalent: 

( a ) f ( z ) S O  vz* 
(b) t h e r e  exist  opera tors  REA+(z,Y), S€AO/,Y) such that  

f ( z )  + R . h ( z )  + S . L ( z ) z O  V Z E A .  



Now w e  are able  t o  formulate and prove the  converse statements t o  Theorems 

2.2.1. and 2.2.2. 

Theorem 2.2.5. 

Under t he  assumptions of Theorem 2.2.3. the  following holds: 

If zo€X is an  S(e)-solution of the problem (MP), then t h e r e  exist  opera tors  

Ro EL '(2 ,Y) and So EL (V, Y), such tha t  (zo ,  Ro,So) E dom Q is an S ( e  )-saddle point 

of t he  Lagrangian %. 

Proof. 

A s  zo is an S(e)-solution, w e  can apply Theorem 2.2.3. fo r  t he  function fl, where 

instead of the  original j' . Therefore t h e r e  exist  opera tors  such tha t  

From Proposition 2.2.1. and (2.5) now w e  have 

on one hand, and by 

on t h e  o the r ,  completing the  proof. 

Repeating the  above procedure with t he  topological Theorem 2.2.4. instead of 

Theorem 2.2.3. w e  obtain: 

Theorem 2.2.6. 

Under t h e  assumptions of Theorem 2.2.4. t he  following holds: 

If zo€X is an S(e)-solution of t he  minimization problem ( M P ) ,  then t h e r e  exist  

opera tors  R~EA+(Z,Y)  and S0€A(V,Y), such tha t  (zo,Ro,So) E dom IpA is  an  S (e ) -  

saddle point of the  continuous Lagrangian IpA. 



Remark 2.2.1. 

A s  a consequence of Proposition 2.1.1. (a) ou r  resui ts  reduce t o  those of Zowe 

(1977) and Zowe (1976) in the case when e =O. 

2.3. Primal and Dual Problems 

In this section w e  place the  results of Section 3. in t he  context of some related 

resul ts  and apply them t o  analyze the primal slid dual problems associated with the 

problem (MP). 

Definition 2.3.1. 

Consider t he  following functions: 

and 

which w e  call the  (algebraic) s t r i c t  primal and dual functions of t he  minimization 

problem (MP), respectively. The vectors  defined as 

and 

are the  (algebraic) s t r i c t  value and dual value, respectively. 



The algebraic s t r ic t  primal and dual problems are formulated by way of the  sets of 

solutions: 

and 

The relationship between the  original minimization problem ( M P )  and i ts  primal 

problem ( P )  is shown by the  following proposition, namely that  the  l a t t e r  is  just t he  

reformulation of a constrained problem into a nonconstrained one. 

Proposition 2 .3 .1 .  

If t h e  space ( Y , C )  is  Archimedean then the  problem ( P )  is equivalent t o  (W) ,  i.e. 

Proof. 

If z EF,  then w e  have 

and therefore  

but t he  equality is  valid in t he  case  (R,S)  = (0 ,O) .  

If z g F  because of z g A, then @L ( z  ,R,S)=- ,  and hence P ( x  )=-. If x  $Z F because 

of h ( x  )a, then by the  separation argument in t he  proof of Theorem 2.2 .1 .  ensures  

t h e  existence of a z* EK+ with <z* ,h ( x ) >  > 0 .  This enables us t o  construct a se- 

quence of opera tors  fRn E L + ( Z , Y )  : n E N j with 

Let, namely be  c EC\ f 0 {  a fixed vector  and define Rn E L + ( Z , Y )  by t h e  equation 

From the  Archimedean proper ty  of ( Y , C )  now ( 2 . 6 )  follows, and a similar argument 

shows P ( z  )== in t he  case of 1 ( z  ) $0.  



Proposit ion 2.3.2. 

The primal function P is  convex and t h e  duai function D is  concave.  

Proof .  

The f i r s t  s tatement d i rec t ly  follows from Proposit ion 2.3.1. The domain of t h e  dual  

function is  c l ea r ly  convex, and concavity follows from t h e  superaddit ivi ty of t h e  

in4 operat ion.  

Proposit ion 2.3.3. 

(a)  Tine primai vaiue i s  g r e a t e r  or equal  than t h e  dual  value. 

(b) If + EX i s  a n  S(e)-soiution of t h e  primai problem ( P )  and 

( R o , S o ) U  (Z,Y)xL (V,Y) i s  t h a t  of t h e  dual problem (D) then  

P ( z 0 )  r, D(ROlS0) .  

(c) Let  us  nave f o r  some x o m ,  (Ro,So)EL(Z,Y)XL (V,Y) 

Then so is a n  S ( e  )-solution of t h e  primal problem ( P )  and ( R o t s o )  

i s  a n  S(e)-solution of t h e  dual problem (D). 

Proof:  

The statement i s  a n  obvious consequence of t h e  definitions. 

Riow w e  t u r n  to t h e  consideration of t h e  connection between o u r  Hurwitz-type 

r e s u l t s  and those  obtained by Kutateladze (1978). In th i s  w e  shal l  r e l y  on t h e  no- 

tion of pe r tu rba t ion  function and approximate subgradients.  

Definition 2.3.2. 

The function 

where 



i s  called t h e  pe r tu rba t ion  function associated with t n e  problem ( M P ) .  

Proposition 2.3.4. 

Suppose tha t  I? EL + ( z , Y ) ,  then 

inf j p ( z , v )  + R  . z  + S .  v  : ( z , v )  € 2  x V 1 = D ( R , S )  

Proof .  

The foilowing equation is a d i rec t  consequence of t h e  definitions; 

inj' i p ( z , v )  + R . z  + S . v :  ( z , v )  € 2  x V !  = 

Therefore  we only have t o  p rove  t h a t  t h e  r igh t  hand side equals with D ( R , S ) .  To 

do th is  consider t h e  inclusion 

By th i s  and t h e  definition of t h e  dual function D  t h e  re la t ion 5 always holds. On t h e  

o t h e r  hand R d  ' ( 2 , ~ )  implies 

and hence we a l so  have t h e  opposite reiat ion.  

The definition of approximate,  o r  e-subgradient and t h e  foliowing theorem is  taken 

from Kutateladze (1978). 

Definition 2.3.3. 

The set 

is  called t h e  approximate,  o r  e-subdifferential of f at zom. 

Remark 2.3.1. 

The statement t h a t  O € a e f ( z o )  i s  obviously equivalent t o  t h e  re la t ion 

zo  ES (e ) - M I N ( W )  if t h e r e  are no feasibility constraints.  



Theorem 2.3.1. 

Suppose t h a t  t h e  problem (W) meets t h e  a lgebraic  Slater-Uzawa const ra int  quaiif- 

ication, then  

if and only if 

t h e r e  exis t  RoEL +(z,Y), SOEL (V,Y) and e lgo ,  ez.O with 

such t h a t  

Theorem 2.3.2. 

Suppose t h a t  S(e)-MlX(MP)f d and f o r  (Ro,So) EL+(z,Y)xL (V,Y) 

holds. 

Then 

Proof .  

A s  t h e  conaitions ensure  t h e r e  is  a xoES(e)-MlN(MP). 

Now using th is  and t h e  definition of t h e  e-subgradient w e  obtain 

P ( ~ O ) - ~ . ~ S P ( ~ , V ) + ( R ~ . S ~ > - ( ~ , V )  V(z ,v)EZXI / :  

Proposit ion 2.3.4. yields 

and by feasibility t h e  proof i s  complete. 

Theorem 2.3.3. 

Suppose t h a t  t h e  problem ( W )  meets t h e  a lgebraic  Slater-Uzawa const ra int  qualif- 

ication, and suppose t h a t  S ( e  ) -MlX(MP) f 0. 



holds then 

Proof.  

Sy t h e  conEitions w e  have ar. zoES(e)-MIN(M.P) and hence 

Tneorem 2.2.5. ensures  t h e  existence of a p a i r  ( R ~ , s ~ ) E L + ( Z , Y ) ~ L  (V,Y) such tha t  

(zo,R1,S1) E dom @L i s  a S(e2)-saddie point f o r  t h e  Lagrangian aL, t h a t  i s  by t h e  

definition of t h e  probiem (D) and (i) of Definition 1.1. th i s  means t n a t  

Now Proposit ion 2.3.1. implies 

f ( z o >  - 2 . e S D(R1,S1) 

and as ( R o , S o ) ~ S ( e )  -Mn\l(D), w e  also have 

From h e r e  by Proposition 2.3.4. t h e  statement follows. 

Theorem 2.3.4. 

Suppose t h a t  t h e  probiem ( M P )  meets t h e  Siater-Uzawa const ra int  qualification and 

consider  t h e  foiiowing statements.  

(a)  (zo,Ro,So) E dom 9L i s  a n  S(el)-saddle point f o r  aL. 
(b) For  ( z  o,Ro,So) E dom aL w e  have 

with 

e' 2 0 ,  e" s: 0 and 0 g e' + e" g R o  h ( z O )  + e 2  



Then (a) implies (b) with e2=2.el, and (b) implies (a) with el=2.e2. 

Proof .  

If (a)  holds then  according to Theorem 2.2.1., xot;S(2.e ) -IUIN(IUP) and so Theorem 

2.3.1. e n s u r e s  (2.11) and. (2.12). On t h e  o t h e r  hand, by Proposit ion 2.2.1. and t h e  

saddle point p r o p e r t y  we have  

and hence  

From h e r e  by Proposit ion 2.3.4. (b) follows. 

Suppose now t h a t  (b) holds, t h a t  i s  again by Proposit ion 2.3.4. on  one hand we have 

As by Theorem 2.3.1. xo€S(e2)-IWN(MP), implying 

On t h e  o t h e r ,  by  feasibil i ty and (2.12): 

In view of Proposit ion 2.3.1. t h e  above c a n  b e  reformulated as: 

Coroilary 2.3.1. 

Suppose t h a t  t h e  problem ( W )  meets t h e  Slater-Uzawa cons t ra in t  qualification and 

consider  t h e  following statements:  

(a) (xo,Ro,So) E dom aL i s  a n  S(el)-saddle point f o r  t h e  Lagrangian $ associat-  

ed  with t h e  problem ( W ) .  

(b) For  (xo,Ro,So) E dom eL w e  have 

(i) xo€X i s  a S(e2)-solution of t h e  primal problem (P) and 

(ii) (Ro,So) EL + (Z,Y) >(L (V,Y)  i s  a S ( e  2)-solution of t h e  dual  problem (D). 

Then (a)  implies (b) with e2=4.el, and (b) implies (a) with el=6.e2. 



Now w e  t u r n  t o  t h e  consideration of generalized solutions. 

Definition 2.3.4. 

Suppose t h a t  (Y,C) i s  eqiupped with a topological s t r u c t u r e ,  and Ie7€C : 7 € r j  i s  a 

decreas ing net  t h a t  converges  t o  OEY. Let f u r t h e r  z7€X be  a n  S(e7)-solution of 

(MP) f o r  each 7 € r. Then we call  t h e  net  Iz7€X : y E r j  a generalized s t r i c t  solu- 

tion of t h e  minimization problem (MP). 

Suppose, in addition t h a t  t h e r e  exis ts  a ne t  f(R7,S7) EL (Z,Y)xL (V,Y) : y € r j  with 

t h e  p roper ty  t h a t  (z7,R7,S7) is a n  S(e7)-saddle point f o r  t h e  Lagrangian aL. Then 

w e  ca l l  t h e  net  f(z7,R7,S7) EXxL (Z,Y) >(L (V,Y) : y ~ r j  a generalized s t r i c t  saddle 

point of t h e  i agrang ian  aL. 
Proposition 2.3.5. 

For t h e  s t r i c t  vaiue of (MP), v EY w e  have 

v = in9 [ f (z7) E Y : !z7 E X :  7 E r{ a generaiized solution, 7 E r { .  

Proof .  

The equaiity is  a d i rec t  consequence of t h e  definitions. 

Definition 2.3.5. 

Suppose t h a t  (Y,C) i s  equipped with a topological s t r u c t u r e .  W e  call  t h e  problem 

( M P )  weli posed if t h e r e  exis ts  a ne t  i (z  7,R7,S7) : y ~ r  j such t h a t  

Remark 2.3.2. 

By t h e  definition of infimum and supremum, o u r  definition coincides with t h e  single 

requirement of v =v* in t h e  s c a l a r  vaiued case. 

Theorem 2.3.5. 

Suppose t h a t  (Y, C) i s  equipped with a topological s t r u c t u r e  and t h a t  t h e  cone C cY 

is  normal. If t n e  Lagrangian Q,L h a s  a generalized saddle point, then t h e  problem 

(MP) is  well posed. 

Proof .  

A s  a consequence of Proposit ion 2.3.3. (a) w e  only have t o  p rove  v 5 v * .  By t h e  

definition of t h e  generalized saddle point, t h e r e  exis t  a decreas ing ne t  

!e 7 ~ C  : ~ ~ r i ,  tha t  converges  t o  OEY such t h a t  



Hence fo r  every fixed 6 E w e  have 

and, by the normality of the  cone C cY, from h e r e  t he  statement follows. 

m 

Corollary 2.3.1. 

Under the  conaitions of T'neorems 2.2.5. and 2.3.5. t he  existence of a generalized. 

s t r ic t  solution t o  the  problem ( M P )  impiies tha t  the  probiem is well posed. 

Proof. 

Easiiy follows from the  combination of t he  quoted theorems. 

Remark 2.3.3. 

I t  i s  worth noting tha t  t he  r eve r se  implication seems not t o  hold in t he  vectorial 

case  while i t  is trivial f o r  scalars .  

Similariy t o  t he  preceding, notions and statements of Section 2.3. can also be  for- 

mulated in a purely topological way. Proofs a r e  analogous, but of course relying 

on Theorem 2.2.6. instead of Theorem 2.2.5. 



3. NON-DOMINATED OPTIMA 

3.1. A p p r o x i m a t e  Non-domina ted  E l e m e n t s  

Definition 3.1.1. 

The vec to r  y EH is a P(e)-minimal eiement of HCY o r  approximately P a r e t o  

minimal, in notation 

WP(e )-minimal, in notation 

( y  - e - core (C)) n H = @. 

Here,  of course ,  we need t h e  condition t h a t  core(C)+@ and speaking about WP- 

minimality, we always suppose i t .  

and P ( y *  , &)-minimal, in notation 

By convention, we say  t h a t  a l l  kinds of minima of t h e  void set consist of t h e  single 

element ~ E Y .  The approximately maximal elements are t o  b e  defined in a 

corresponding manner. 

Remark 3.1.1. 



Our definitions, in t h e  case of e =0, o r  &=O, r eproduce  t h e  usual e x a c t  notions of 

minimality. Weak approximate minimality means t h e  corresponding approximate 

minimality with r e s p e c t  t o  t h e  (algebraically non-closed) cone C' = I0 j ucore (C). 

The notion of y EY being P ( y *  ,&)-minimal means t h a t  <y* , y >dR i s  a P(&)-minimal 

element of t h e  set y * ( H ) = { < y * , h > E R  : h ~ H i .  

Remark 3.1.2. 

In t h e  scalar case t h e  di f ferent  notions of approximate solutions f o r  t h e  minimiza- 

tion problem (MP) coincide and t h e r e  w e  simply speak of &-solutions o r  &-saddle 

points. 

Let us formulate some simple fac t s  t h a t  are easy consequences of t h e  definitions 

but are s t i l l  interesting because they c lar i fy  t h e  relat ionships between t h e  dif- 

f e r e n t  notions of minimal solution. Omitted proofs  are trivial .  

Proposition 3.1.1. 

Suppose t h a t  e l s e 2  and E ~ B ~ ~ .  Then we have 

W P  (e ,) - MIN (MP) c W P  (e 2) - MIN (MP) 

Proposition 3.1.2. 

(a) Suppose t h a t  we have <y* , e  > > 0. Then 

with 

e' = E . e  
<y* , e  > 

(b) WP(e)-MRY(MP) = uIP(y*  ,<y*  ,e  >)-MIN(MP) : y *  E c+\ f O j  j. 

Proposition 3.1.3. 

Suppose t h a t  (Y,C) i s  equipped with such a weakly sequentially complete topology 

t h a t  t h e  order ing cone C c Y  is  normal. Consider a sequence !en EC : n € Rj  de- 

creas ing t o  e EC. 



Then 

P(e)-MIN(MP) c ntP(e,)-MIIY(MP) : n~ Nj c WP(e)-MIN(MP) 

and 

ntWP (en)-MIIY(MP) : n~ Nj = WP(e)-MIN(MP) 

Proof. 

The f i r s t  inclusion is  obvious. 

For the  second le t  us reason by contradiction and suppose tha t  the  element x o W  is  

not WP(e)-minimal. This means tha t  w e  can find another  x l  W with 

By normality int ( C ) # $  and therefore  int (C)=core  ( C ) .  Hence t h e  formula under 

( 3 . 1 )  is equivalent t o  

A s  a consequence of Corollary 3 .5 .  Chap. 2. in Peressini (1967) fo r  the  sequence w e  

have 

Lim f f ( x O ) - e n  - P ( x l ) : n  ~ N j = f ' ( x ~ ) - e  - P ( x l ) E i n t ( C ) ,  

and so, t h e r e  exists an m EN with 

This means that  J' ( x l )  dominates t he  element f ( x o )  -em EY from below. 

The proof of the  second statement is  analogous. 

Proposition 3 .1 .4 .  

Suppose tha t  the  sequence I E ,  E R+ : n EN j decreases  t o  E a+. 

Then 



3.2. Saddle Point Theorems 

Proposition 3.2.1. 

The element (zo,Ro,So) ~ d o m  cPL is a P(e)-saddle point of the  Lagrangian cPL, iff 

(a) @L(zO,RO,SO) €P(e)-MIN !cPL(z,Ro,So) E Y :  z EX{ 

(b) zo  EF 

(c) - e + R o  . h (zo)  s 0. 

Proof. 

Condition (a) is identical with the  f i r s t  p a r t  of t he  definition. Suppose now tha t  

(zo,Ro,So)~dom aL is  a P ( e  )-sacidle point. The definition of dom @L immediately 

yields (b), and w e  have 

From the  definition of t h e  P ( e  )-saddle point w e  also know that  

f o r  each (R,S)EL (Z,Y)xL (V,Y). Selecting S=So and R =Ro w e  obtain 

and 

respectively. Suppose now tha t  h ( zo ) sO  does not hold. Then by the  s t r i c t  alge- 

braic  separation theorem (see Kothe (1966) Section 17.5. (2)) applied fo r  the  sets 

f h ( z o ) j  cZ and -KcZ ,  t h e  existence of a functional z* EK' is guaranteed with 

Let c20, c EY be  an  a rb i t r a ry ,  fixed element, and define the map REL (Z,Y) as 

For this opera tor  R w e  obviously have REL +(Z,Y) and 



in contradiction with (3.3). A similar argument leads t o  contradiction with (3.4), if 

w e  suppose 1 ( z  o) +O. Here w e  define an  opera tor  S EL (T/,Y) as 

The last inequality in (c) is a consequence of z and RoEL +(Z,Y), while t he  f i r s t  

follows from (3.2) if w e  choose (R ,S)=(O,O). 

To prove the  r eve r se  implication, suppose tha t  (a), (b) and (c) are valid. From the  

last  two w e  have t h e  following relations: 

fo r  each (R ,S )  EL +(Z,Y) xL (T/,Y) implying the  missing relationship f o r  

(zo,Ro,So) ~ d o m  aL t o  be  a P ( e  )-saddle point. 

Remark 3.2.1. 

The property stated in Proposition 3.2.1. is as much negative as positive, and 

therefore  is  a f i r s t  sign of t h e  problems t o  be  seen in t he  sequel. Point (c), name- 

ly, turns  into t he  well-known complementarity condition 

in t h e  case of exact  saddle points. In general,  however i t  only means that  

and t h e  r ight  hand side h e r e  i s  an unbounded set. 

The proof of t he  following two statements is  analogous. 

Proposition 3.2.2. 

The element (zo,Ro,So) Edom @L is a WP(e )-saddle point of t he  Lagrangian @L iff 

(a) @L ( z  o,Ro,So) E WP(e ) -MY @L (z  ,Ro,so) E Y : z E X j 

(b) zo  E F  

(c) - e  $ R o e  h ( z o )  S 0. 

Proposition 3.2.3. 

The element ( z  ,, Ro.So) E dom $ is a P ( y  * , &)-saddle point of t he  Lagrangian @L 

iff 

(a) @L(zo,Ro,So) E P(y*,&)-MlIY [@L(z,Ro,So) E p: z E X !  



(b) zo E F  

(c) - E 5 < Y* ,Ro h (20) > 5_ 0, 

Theorem 3.2.1. 

Suppose that  t he  point (zo,Ro,So) Edom @L is  a P(e)-saddle point / WP(e )-saddle 

point / P ( y +  ,&)-saddle point of t he  Lagrangian @ L .  

Then zo€X is  an  approximate solution of the  minimization problem (MP) in the  

respective sense where t he  approximation e r r o r  is  

in the  f i r s t  and second, and 

in the  last  case. 

Proof. 

By Proposition 3.2.1. zo€X is  a feasible point. If z EF is another ,  then f o r  the 

s a m e  reason w e  have 

and this means 

By feasibility I (zo)=O, and s o  the f i r s t  case is  proved. 

The proof of the r e s t  is analogous, with the  additional use in the  las t  case of the  

transitivity of the relation on R. 

Remark 3.'2.2. 

Instead of the relation (3.5) f o r  the  approximation e r r o r  ~ ' E Y  w e  have 

0 8 e 1 ) 2 . e  and O p e '  t 2 . e .  

as a consequence of the  points (c) in Proposition 3.2.1. and 3.2.2., respectiveiy. 

However, unlike the  scalarized case, transitivity f o r  the relation of non- 

domination or weak non-domination does not hold, and s o  we cannot claim in 

Theorem 3.2.1. tha t  zo€X is a P(2.e)-solution o r  WP(2.e)-solution. 



Theorem 3.2.2. 

Suppose t h a t  t h e  problem (MP) meets t h e  a lgebraic  Slater-Uzawa const ra int  qualif- 

ication. If zo€X i s  a P ( y *  ,&)-approximate solution of t h e  problem, then t h e r e  ex- 

i s t  o p e r a t o r s  R o G  ' ( 2 , ~ )  and SOEL (V,Y) such t h a t  ( z o , R o , S o ) ~  dom @L i s  a 

P ( y *  ,&)-saddle point of t h e  Lagrangian IPL. 

Proof.  

I t  i s  supposed t h a t  zo€X is  a n  &-solution of t h e  s c a l a r  valued optimization problem 

m i n  I < y * , f ( z ) >  E R :  z E A, h ( z )  5 0 ,  l ( z )  = 0 j  

By Theorem 2.2.5. in t h e  s c a l a r  valued case ,  t h e r e  ex i s t  functionals T * ~ U +  and 

S*~EV' ensuring t h a t  ( ~ ~ , r * ~ , s * ~ )  is  a n  &-saddle point f o r  t h e  Lagrangian 

corresponding t o  t h e  above s c a l a r  problem, i.e. 

If c EC i s  a n  element with <y* , c  >=I, then defining R o  EL ' ( 2 , ~ )  and SOEL (V,Y) with 

t h e  following correspondences ,  

t h e  theorem is  proved. 

Theorem 3.2.3. 

Suppose t h a t  t h e  problem (MP) meets t h e  Slater-Uzawa const ra int  qualification, 

and core(C)#@. If zo€X i s  a WP(e)-solution of t h e  problem ( M P )  then t h e r e  exis t  

o p e r a t o r s  RoEL '(2,Y) and SOEL (V,Y) such t h a t  ( z o , R o , S o ) ~ d o m  aL i s  a WP(e)- 

saddle point of t h e  Lagrangian @ L .  

Proof.  

By point (c)  in Proposition 3.1.2. t h e r e  exis ts  a n  y *  EC+ such tha t  z o € X  i s  a 

P ( y * , < y * , e  >)-solution of ( M P )  and s o  Theorem 3.2.2. implies t h a t  t h e r e  exis t  a 

P ( y *  , <y* , e  >)-saddle point f o r  Now, obviously y *  EC' i s  s t r i c t ly  positive f o r  

t h e  cone C1=core (C)ufOj .  From a n  argument similar t o  t h e  one used in t h e  proof of 



(b) in Proposit ion 3.1.2. w e  can conclude t h a t  th is  P ( y * ,  <y* ,e >)-saddle point i s  a 

WP(e )-sacidle point as well. 

w 

Remark 3.2.3. 

A respec t ive  theorem concerning P(e)-solutions cannot. b e  s t a ted  as a y *  EC+, 

which i s  s t r i c t ly  positive f o r  t h e  whole cone C CY, does not always exist .  

3.3. Primal and Dual Functions 

In th is  final section w e  only deal  with t h e  scalarized case, i.  e. P ( ~ * , E ) - t y p e  

minimality, as otherwise being t h e  solution of t h e  respec t ive  approximate primal 

problem c a r r i e s  l i t t le  information, as i s  indicated in Remark 3.3.1. 

Definition 3.3.1. 

W e  cali  t h e  following set valued maps t h e  approximate primal and dual functions of 

t h e  minimization problem ( M P ) :  

and 

The approximate primal and dual problems (P(y*  , E)) and (D(y* ,E)) are defined in 

terms of t h e  functions P ( y *  ,E)  and D(y*  ,E). Accordingly zoEX o r  

(Ro,So)EL +(z,Y)%L (V,Y) i s  a solution of t h e  approximate primal or dual problems, 

if 



respectively. 

Proposition 3.3.1. 

Proof. 

For z EF w e  have 

@,~(z ,R,S)  E Y u !-,a{ : R €Lf(Z,Y) ,  S €L(V,Y) j = 

Remark 3.3.1. 

If w e  define e.g. the  approximate primal problem (P(e))  in a corresponding manner 

t o  Definition 3.3.1. then the  analogue of Proposition 3.3.1. is  valid, and in such a 

way that  t he  set P ( e ) ( z )  is not bounded from below if z E F  and h(z)#O.  A s  a 

consequence, i t  would have only -a a s  a solution. A s  w e  know from e.g. Luc (1984) 

this irregularity disappears if e =O. 

Proposition 3.3.2. 

(a) If zo€X is  a P ( y *  ,&)-solution of the  problem ( W )  

then i t  is a solution of t he  problem (P(y* ,&)). 

(b) If zo€X is  a solution of t he  problem (P(y* ,&)) 

then i t  i s  a P (y*  ,4&) solution of t h e  problem ( W ) .  

Proof. 

(a) By Proposition 3.3.1. w e  have fo r  all z EF that  

Therefore i t  i s  sufficient t o  prove that  

Again by the  last proposition: 



Hence by the  definition of P ( y *  ,3&) -MAV, the  validity of (3.6) follows from the  ine- 

quality: 

And this is a consequence of t he  relation w e  supposed. 

(b) Let us suppose now tha t  zo€X solves (P(y*  ,&)), i.e. t h e r e  exists an  

Belonging t o  the  f i r s t  set means tha t  

where co€C and OS<y* ,cO>S&. AS w e  have f o r  all z EX\F tha t  P ( y *  , ~ ) ( z ) = t = j ,  i t  

is enough t o  consider z EF, impiying 

Hence belonging t o  t h e  second set implies: 

and by (3.7) 

<y* , f (zo)>  - 4 c S < y * , f ( z ) >  vz EX. 

Definition 3.3.2. 

The element (zo,Ro,So) EXXL (Z,Y) xL (V,Y) is  called a P ( y *  ,&)-dual pair  of solu- 

tions if 

(i) 

zo E X is  a solution of the  problem (P(y* , E ) )  

and 

(ii) 



Remark 3.3.2. 

The definition could equivalently be  formulated as: xo€X and 

(RolSo)EL(Z,Y)XL (V,Y) is  a solution of t he  primal and the  dual problem respec- 

tively, where the latter is  valid by way of j' (xo)€Y. 

Theorem 3.3.1. 

(a) If (xo,Ro.So) Edom cPL is  a P ( y *  ,&)-saddle point of the  Lagrangian I P L ,  

then i t  is a P ( y *  ,&)-dual pa i r  of solutions. 

(b) If (zolRo,So) EXXL (Z ,Y)U (V,Y) i s  a P ( y *  , &)-dual pa i r  of solutions 

then i t  is a P ( y *  ,2&)-saddle point of t he  Lagrangian cPL . 

Proof. 

(a) On one hand by Proposition 3.3.1. w e  have 

On t h e  o ther ,  by Theorem 3.2.1. w e  know tha t  xo€X is  a P ( y *  ,2e)-solution of t he  

problem (W). Together with Proposition 3.3.1. this yields t he  relation 

This proves t he  f i r s t  requirement of (xo,Ro,So) E$ being a P ( y *  ,&)-dual pa i r  of 

solutions. If (xo,Ro,So) E dom aL i s  a P ( y *  ,&)-saddle point then by (c) in Proposi- 

tion 3.2.3. w e  have 

and also by the  definition of t h e  saddle point 

If w e  combine these two reiations then w e  obtain 

a n d a s a  consequence 



W e  a lso  have  t o  p r o v e  t h a t  

If th i s  i s  not  s o  then t h e r e  ex i s t  R EL (Z ,Y) ,  S EL (V,Y) and y l ~ ( y *  , .z)(R,S) such 

t h a t  

Here  i t  i s  necessa ry  t h a t  REL+(Z,Y) b e  valid because  otherwise 

D(y* , &)(R ,S )  = I  --I and consequently <y* , y >=-w. There fo re  

f o r  some z l W .  Using (c)  in Proposit ion 3.2.3 and t h e  formula under  (3.8), w e  ob- 

ta in  

This, and y €D(y*,  &)(R ,S) ,  however, contradic t  to (3.9). S o  t h e  second requ i re -  

ment i s  proved.  

(b) By t h e  f i r s t  p a r t  of t h e  definition of t h e  P(y*  ,&)-dual p a i r  of solutions, t h e  

conditions imply t h a t  w e P ( y * ,  .z)(z0), and, t h e r e f o r e  zoW. By t h e  second w e  know 

t h a t  - 0 4  D(y* ,2&)(Ro,So) and t h e r e f o r e  R o e  +(Z,Y). Hence, (zo,R0,So)€dom GL 

holds. A s  a consequence of z w e  have  

and so 

implies 

From (3.10) i t  also follows t h a t  



B y  (3.11) (3.12) and the relation sow, Proposition 3.2.3. holds and therefore 

sow is a P(y* ,2e)-saddle point of aL. 
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