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PREFACE

Sensitivity analysis is both theoretically and practically useful in optimiza-
tion. However, only a few results in this direction have been obtained for multiob-
jective optimization. In this paper, the issue of sensitivity analysis in multiobjec-
tive optimization is dealt with. Given a family of parametrized multiobjective optim-
ization problems, the perturbation map is defined as the set-valued map which as-
sociates to each parameter value the set of minimal points of the perturbed feasi-
ble set with respect to a fixed ordering convex cone. The behavior of the pertur-
bation map is analyzed quantitatively by using the concept of contingent derivative
for set-valued maps. Particularly it is shown that the contingent derivative of the
perturbation map for multiobjective programming problems with parametrized ine-
quality constraints is closely related to the corresponding Lagrange multipliers.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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SENSITIVITY ANALYSIS IN MULTIOBJECTIVE
OPTIMIZATION

Tetsuzo Tanino

1. INTRODUCTION

Stability and sensitivity analysis is not only theoretically interesting but also
practically important in optimization theory. A number of useful results have been
obtained in usual scalar optimization (see, for example, Fiacco [3] and Rockafellar
[4]). Here, by stability we mean the quantitative analysis, that is, the study of
various continuity properties of the perturbation (or marginal) function (or map)
of a family of parametrized optimization problems. On the other hand, by sensitivi-
ty we mean the quantitative analysis, that is, the study of derivatives of the per-

turbation function.

For multiobjective optimization, the "optimal" value of a problem is not unique
and hence we must consider not a function but a set-valued perturbation map. The
author and Sawaragi [7] investigated some sufficient conditions for the semicon-
tinuity of the perturbation map. However, their results are qualitative and there-
fore provide no quantitative information. In this paper, the behavior of the per-
turbation map will be studied quantitatively via the concept of contingent deriva-
tive introduced by Aubin [1]. Though several other concepts of derivatives of
set-valued maps were proposed (see Aubin and Ekeland [2]. p. 493), the concept of
the contingent derivative is the most adequate for our purpose. Because it
depends on the point in the graph of a set-valued map and when we discuss the sen-

sitivity of the perturbation map, we fix some point in its graph.

The contents of this paper are as follows. In Section 2, we introduce the con-
cept of the contingent derivative of set-valued maps along with some basic proper-
ties which are necessary in the later sections. Section 3 is devoted to the analysis
of the contingent derivative of the perturbation map, which is defined from a feasi-
ble set map by taking the set of minimal points with respect to a given closed con-
vex cone. In Section 4, we analyze the sensitivity in general multiobjective optimi-

zation problems specified by feasible decision sets and objective functions which
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depend on a parameter vector. In Section 5, we concentrate on multiobjective pro-
gramming problems in which only the right-hand side of inequality constraints is
perturbed. It is shown that the sensitivity of the perturbation map is closely re-

lated with the Lagrange multipliers of the nominal problem.

2. CONTINGENT DERIVATIVES OF SET-VALUED MAPS

In this section we introduce the concept of the contingent derivative of set-
valued maps. Throughout this section V and Z are two Banach spaces and F is a

set-valued map from Vto Z.

Definition 2.1. (Aubin and Ekeland [2]). Let C be a nonempty subset of a
Banach space Vand v € V. The set Tp(v) €V defined by

Te@W)=N N U (%‘(C—G)+€B) (2.1)
€>0 a>0 0<h Sa

is called the contingent cone to C at ¥, where B is the unit ball in V. In other
words, v € Tp(¥) if and only if there exist sequences {h; | clo?,_ and fv%{ c V such

that A, -+ 0+, v€ + v and
7 +hvk€eC for Wk

where 1§+ is the set of positive real numbers.
It is well known that Tp(?) is a closed (but not always convex) cone.

The graph of a set-valued map F from V to Z is defined and denot.ed by
grephF = {(v.2)lz eFw)lcVvxZ . (2.2)

The contingent derivative of F is defined by considering the contingent cone to

graphkF.

Definition 2.2. (Aubin and Ekeland [2]) Let (v,2) be a point in graphF. We
denote by DF(¥,z) the set-valued map from V to Z whose graph is the contingent

cone Tprqopr(V.2) to the graph of F at (¥,2), and call it the contingent derivative

grap
of F at (v,Z). In other words, z €DF (v,2)(v) if and only Iif

(v,z2) € TamphF(ﬁ.E).
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DF(7,Z) is a positively homogeneous set-valued map with closed graph. Due to
Definition 2.1, z € DF(¥,Z) (v) if and only if there exist sequences

{h,} € R,.{v¥} C Vand {z*] C Z such that h; - 0+, v€ +v,2E »2 and

F +hezk €eF(5 + hpvt) for Wk

Now we consider a nonempty point.edT closed convex cone P in Z. This cone P

induces a partial order on Z. We use the following notations: For z,z° € P
y Spy’ iff y’-y€EP (2.3)
yspy' iff y' -y €PN\ 0] . (2.4)
We consider the set-valued map F° + P from V to Z defined by
F+P)(v)=F{)+P for Vv €V

The graph of FF + P is often called the P-epigraph of F (Sawaragi et al. [6], p. 23).
The following result, which shows a relationship between the contingent derivatives
of F + P and F, is useful.

Proposition 2.1. Let (v,2) belong to graphF. Then

DF(0,z2) (v)+ P CD(F +P) (9,2)(v) for VWveV . (2.5)

(Proof). Let 2z €eDF(v,z)(v) and d € P. Then there exist sequences
bhy CR°+. fv¥] cVand §z¥] c Z such that A, -+ 0+, vk v, 2% 5 2 and

z +h 2" €eF( + hevX) for Wk
Letz* =z% + d forall k. Thenz* »z +d and
£ +hezt =% +h 2% +hd €F(@ +hv5)+ P for Wk

Hence 2z +d €D (F + P) (¢¥,z) (v) and the proof is complete. .

The converse inclusion relation of this proposition
DF +P)YB,2)(W)YCDF (9,2)(w)+ P

does not generally hold. (See Proposition 3.1 and Examples 3.3 and 3.4).

T A cone P is said to be pointed if P N (—=P) = f04.
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Since we deal with multiobjective optimization, we must introduce the concept

of minimal points with respect to the cone P.

Definition 2.3. Given a subset S of Z, a point £ € S is said to be a P-minimal
point of S if there exists no z € S such that z spZ. We denote the set of all P-

minimal points of S by MinpS, i.e.
MinpS € {2 €S| thereexistsno z €S suchthat z < pZ| (2.6)

={f €SI(S - %) N (=P) = 10}

The following theorem is fundamental.

Theorem 2.1. Let (¥,Z) belong to graphF and suppose that Z is finite dimen-

sional. Then, foranyv €V.

MinpD(F + P) (¥,2) (v) CDF (¥,2) (v)

(Proof) Let z € MinpD(F + P)(v,z) (v). Since z €D{F + P) (v,2) (v)
there exist sequences (k] cfs,,, fvk{cv and {z%¥}cZ such that

k

hy -0+, vk >V, z¥ 5 z and

Z +hzk eF(D + R v*)+P for Wk
There also exists a sequence {d" | ¢ P such that

7z +hzk —ak eF(5 + R vk) for Wk

k
We shall prove that :— - 0. If this were not the case, then for some ¢ >0, we can
k

choose a subsequence of the natural numbers {[,{ satisfying

| g |

Ly

2¢ for Vk

Taking and renumbering this subsequence, we may assume from the first that

k - th -
la* | 2 eforall k. Setd* = —= gt €P. Then d* £pd* and
h b akl -
£ +hzk ~d* eF (D +hevk) + P
Lgk !
Since - - = & for all k, we may assume without loss of generality that the se-
k

ak

h._} converges to some vector € € Z. Since P is closed, d € P and
k

quence {
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Tk
l¢ | =& >0. Thus, z* +2 —~d and hence z ~d € D(F + P) (¥,2) (v). How-
k
ever, this contradicts the assumption z € Minp D(F +P) (v,2) (v), since
k
z —d < p z. Therefore we can conclude that :— - 0. This implies that
k

k
Z + h(2* -:—k) EF(D + ,v*)

and

Therefore =z € DF(v,z)(v) and this completes the proof of the

theorem. -

The converse inclusion of this theorem is not valid generally. (See Example

3.2.)

3. CONTINGENT DERIVATIVE OF THE PERTURBATION MAP

In this section we consider a family of parametrized multiobjective optimiza-
tion problems. Let Y be a set-valued map from U to RP, where U is the Banach
space of a perturbation parameter vector, RP is the objective space and Y is con-
sidered as the feasible set map. Let P be a nonempty pointed closed convex cone
in RP. In the optimization problem corresponding to each parameter value u, we
aim to find the set of P-minimal points of the feasible set Y(u). Hence we define

another set-valued map W from U to RP by
W(u) = MinpY(u) for VYu €U (3.1)

and call it the perturbation map. The purpose of this section is to investigate re-
lationships between the contingent derivative of W and that of Y. Hereafter in this

paper, we fix a nominal value of « as & and consider a point ¥ € W ().

In view of Theorem 2.1, we have the following relationship:

MinpD(W +P) (2,y) (u) CDW(&,y)(u) for Yu €U . (3.2)

Definition 8.1. We say that Y is P-minicomplete near u if

Y(u) cW(u)+P for Wu €N (3.3)



where N is some neighborhood of .

Since W{u) € Y(u), the P-minicompleteness of ¥ near ¥ implies that
W(u)+P=Y(u)+P for YVu €N . (3.4)

Hence, if Y is P-minicomplete near 4, then D(Y + P) (4,¥) =D(W + P) (&,7¥) for
all ¥ € W(Z). Thus we obtain the following theorem from (3.2).

Theorem 3.1. If Y is P-minicomplete near i, then

MinpD(Y + P) (4,y) (u) CDW(2,y) (u) for Vu €U . (3.5)

The following example illustrates that the P-minicompleteness of Y is essential

for the above theorem.

Ezample 3.1. (Y is not P-minicomplete near 4). Let U =R, p =1, P=R,
and Y be defined by

fyly 20] ifu =0

Y(u)=lw ly >lul} ifu =0

Then

(0} if u =
W) =1g iru »0

Let 4 =0. Then
DY +P) (4,9) (w) =D¥(d,§) (w) =ty ly 2lul] for vu er
MinpD(Y + P) (2,9) (u) = MinpDY(Z,7) (u) = {lu i
On the other hand

§0] ifu =0

Dw(ﬁ-'ﬁ)(u)= ¢ ifu #0

Hence
MinpD(Y + P) (€,9) (u) € DW(Z,§) (w) for u #0

The converse inclusion of the theorem does not generally hold as is shown in

the following example.
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Ezample 3.2. Let U =R, p =2 and Y be defined by

£(0,0)§ ifu S0

Y(u) = .
() fy eR?ly,= 2,08y, Suj ifu>0

-~

Let P =Rf. © =0and ¥ = (0,0). Then W(u) = Y(u) for every u and
.Tgraph.}'(a 1ﬁ) = Tg-raphW(ﬁ »g)
=fw,y)lu €0,y =0 U f(wy)lu >0, ¥, =005y Su} ,

- o~ - - |
Tgraph(Y+P)(u' ) = Tgraph(W+P)(u-y) =f(u,y)'y 20} ,

£(0,0)4 ifu £0

DW(2,9) (u) = DY(2,7) (u) =<§y ly,=0,0<Ly, Su} ifu >0

D(Y +P) (2,9) (u) =DW +P) (1.9) (u) =ty ly 20}
and

MinpD(Y + P) (u,y) (u) = MinpgD(W + P) (u,¥) (u) = {(0,0)}

In order to obtain a relationship between DWW and DY, we shall introduce the
following property of Y.

Definition 3.2. (Aubin and Ekeland [R]) Y is said to be upper locally
Lipschitz at 7 if there exist a neighborhood N of # and a positive constant M such
that

Yw)cY@)+Mlu -4 1B for vu enN (3.6)

Remark 3.1. If Y is upper locally Lipschitz at @, then it is upper semicontinu-

ous at 4, i.e., for any ¢ >0, there exists a positive number é such that

Y(u) cY(d)+eB for Wulu—il<s

Definition 3.3. Let S be a set in RP and P be a nonempty closed convex cone
in RP. A point y €S is said to be a properly P-minimal point of S if

el U alS —-¥)IN(-P) =10} (3.7
a>0

Of course, every properly P-minimal point of S is P-minimal, since

S~-yccd U alS-9)
a>0
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Proposition 8.1. If ¥ is a properly P-minimal point of Y(2) and if Y is upper
locally Lipschitz at ¥, then

DY +PY(u,y)Yw)=DY(m.,¥y)(u)+ P for Vu €U . (3.8)
(Proof) In view of Proposition 2.1,
DYRQ,y) W)+ PCD¥ +P)(u. 7)) for Wu elU

Hence we prove the converse inclusion. Let y € D(Y + P) (Z,7) (). From the
definition there exist sequences {h,{ C]§+, fuk] cU and {y*} c RP such that

hy »0+, uk >u, y* >y and
7 +hyk €Y(d +huk) + P for Vk
Therefore there exists a sequence {d¥ { € P such that
7 + kvt —dk ev(a +hku"=) for Vk ,

i.e.,

k
7 +h(¥F —:—) €Y@ +h,uk) for VEk
k

k
Suppose that the sequence {Z—{ has a convergent subsequence. In this case, we
k

k

may assume without loss of generality that -Z— -+ d for some d. Since P is a closed
k
k _ ak
set, d € P. Moreover, the convergence ¥y~ — o +y —d implies that
k

v —d € DY(2,7) (»), namely that y € DY(2Z,7) (u) + P. Hence we have the con-

clusion of the proposition. Therefore it completes the proof of the proposition to

k
show that [Z—-{ necessarily has a convergent subsequence. If this were not the
k
bkl . . . . - .
case, then o - + o, Since Y is upper locally Lipschitz at u, there exist a
k

neighborhood N of # and a positive number M satisfying (3.6). Since
7 + h.,cu’c -4, u + h.k'u." € N for all k sufficiently large. Hence there exists a
sequence {¥*} in Y(&) such that

a*

k
Yy —gkl Smba +h uk -l

Iy +n, W% -
] e (¥ Ry

i.e.
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k
| L — g%y 4k = 2| < pyplyk!
hk(y y)+y Ry = u

k

for all k& sufficiently large. Since u® - u, the right-hand side of the above ine-

k
quality converges to Ml | Therefore, the sequence ihi@ —y") + yk - i;— |
k k
k

is bounded. Since - + o, the sequence

k
k 1 ~ -~ k dk
— — + — —
¥|d’°| (h'k (V=~¥¢) +v hy )

'.l;k_?j_’_ h'k yk_dk{
la k| lakl P

=

converges to the zero vector in RP. Since y" - 1y, the second term converges to

k - - -
the zero vector. We may assume that -hl ~+d for some d € P with ld] =1. Hence

la k|
~k o~
uki“ -+ —d. However, this implies that —d €[ ¢l U a(¥Y(a) — ¥)] N(—=P), which
) a>0

contradicts the assumption of the proper P-minimality of % . This completes the

proof of the proposition. =
Corollary 8.1. If 9/ is a properly P-minimal point of Y{(21) and if Y is upper lo-

cally Lipschitz at 2, then

MinpDY(%,y) (u) = MinpD(Y + P) (4, y)(u) for Vu €U . (3.9)

(Proof) In view of Proposition 3.1, by using Proposition 3.1.2 of Sawaragi et

al. [6], we can prove that
MinpDY(4,¥) (u) =Minp(DY(Q ¥y ) (u) + P) =MinpD(Y +P) (0, 7)) () . ™
By combining Theorem 2.1 and Corollary 3.1, we have the following theorem.
Theorem 3.2. If Y is P-minicomplete near % and upper locally Lipschitz at u,

and if ¢ is a properly P-minimal point of Y( ), then

MinpDY(u,y) (u) CDW(Z,y) (u) for Wu €U

Example 3.1 shows that the minicompleteness of Y is essential for the above
theorem. The following two examples illustrate the importance of the other two
conditions in Theorem 3.1, namely the Lipschitz property of ¥ and the proper

minimality of ¥ .
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Ezxample 3.3. (Y is not upper locally Lipschitz at ).

U=R,p =1, P=FR_and Y be defined by

{0} if v £0
Y(u) = {0, ~/ul] if u >0

Then

10} if w0
W) = l{—vu] if u >0

Let 2 =0and ¥ =0. Then

{03 if w #0
Dr(0.0) (w) = gy 14 <0} if u =0

0] if u #0
MinpDY(0,0) (u) = {¢ if u=0

ly 201 if u <O
D(Y+P)(0.0)(u)=g;y v B ‘ ifZZO

0] if u <0
MinpD(Y + P) (0,0) (u) = [¢ if w20

0} if u <0
Dw(0,0) ("‘)=[¢ if w >0

Hence

{0} = MinpDY(0,0) (u) ¢ DW(0,0) (u) = ¢ for u >0

Let

Example 3.4. ({ is not properly P-minimal). Let U =R, » =2, P = Rf and Y

be defined by
Y(u)=tylY, +y, =0y, Su Uiy ly, +y,+1=0, v, >0}
Then
W) =ty ly, + v, =0,
v, Smin(Ou) v iy ly, +y, +1=0, ¥, >0}
Let 24 =0and ¥ = (0,0). Then

Dy(4.,J) (u) = MinpDY(d,y )(u)
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={y ly, +¥,=0,y, Suj ,
DY +P) (4.9) (u) = fy ly, +vy, 20,
yp2—ulviyiy,2 0 ,

fwly; +y2=0, v Su) i » <0

MinpD(Y + P)(Z ¥ )(u) = fy !y, +y,=0,y,<0} if u 20

DW(E,9)u) =1y v, +y, =0, y; $min(0,u)}

Hence

(1,—1) € DW(2Z,y)(1), while (1,-1) € MinpDY (¥, ¥y )(1)

4. SENSITIVITY ANALYSIS IN GENERAL MULTIOBJECTIVE OPTIMIZATION

In this section we deal with a general multiobjective optimization problem in
which the feasible set Y(u) is given by the composition of the feasible decision set
X(u) and the objective function f(z,u). Namely, let X be a set-valued map from
R™ to R™", f be a continuously differentiable function from R™ x R™ into RP and

Y be defined by
Yu)srXu)u)=lyly =f(z.u) z €eX@)] for Vu €eR™ . (4.1)

First, we investigate a relationship between the contingent derivatives of X and Y.
LetZ eR™, £ eX(W)andy =f(£.4) € Y(u1).

Proposition 4.1. For any u € R™,
Vo P (E,u) IX(@,2) (u) + YV, f(£,2) uw cDY(Z,9) (u) (4.2)

where V.f(£,4) (or V,f(£,4)) is the » xn (or » X m) matrix whose (i,7) com-

(or
az" aui

ponent is ). Moreover, let

Xuy)=izlz ex) r@u)=vy] . (4.3)

If X is upper locally Lipschitz at (42,9¥) and X(&,7) = {£ 1], then the converse inclu-

sion of (4.2) is also valid, i.e.,
V.r@@a) DX (4, £)(u)+V,f(£.4) u =DY(u,¥) (u) for Vu € R™(4.4)

(Proof). First we prove (4.2). Let z € DX(.,Z) (u): Then there exist sequences
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fhyd C1§+,Iu“§ C R™ and {z¥| c R™ such that h, -+ O+, uk sy, zF -z and
£ +hz*k eX(d +h*) for Vk
Then
S (E +hezbd +huk) €Y@ + huk) for VE
i.e.

L(£ + Rk d + huk) - f(£.2)
hg

-~

?/"'h-k

€Y@ + hguk) for Wk

k

Since Ay =+ 0+, u® > u and zf - z,

lim FE + Rzt d +huf) - @E )=V f(E )z +V, S () u

Hence
V.S (EA) z +V,f(Z,4) u €DY(4,¥) (u)

Thus (4.2) has been established. Next we prove (4.4). Let v € DY(w .,y )(u) along
with sequences thed C 1%+.Iuki C R™ and fy*{ c RP such that
hy 20+, uf sy, yf sy andy + hky" €eY(u + hku"). Then there exists anoth-

er sequence {z%¥{ ¢ R™ such that
£ +hzk eX(@@ +huky +h yt
k k ' k )

Since X is upper locally Lipschitz at (4,7 ) and X(4,9) = (£}, there exists a posi-

tive number M such that
£ + h.kz’c -zl :<_.M|(12 + h.ku",y“ + hkyk) -@.9)
ie.
PLARS NI

for all k& sufficiently large. Since the right-hand side of the above inequality con-
verges to M |(u Y )I as k - o, we may assume without loss of generality that z* con-

verges to some z. Then clearly £ € DX(u,z) (u). Moreover,

Y = 1imy" = lim A +h‘kzk"2 +h.,cuk) -f(z.,)
k= k= hy

=V S (£48) = + VL (£.4) u
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Therefore

y eV f(Z,4) IX(Z.Z)(u)+V, f(£,42) u

and the proof of the proposition is completed. u

The following two examples show that the additional conditions in Proposition
4.1 are essential for (4.4).

Ezample 4.1. (X(4,9) # {£}). Let

X(u)={z €rlO €z Smax(1,1 +u)} for u €R,
f(zu)=z(z-1),7 =0,Z =0and ¥ = f(£,4) =0. Then X(&,¥) = {0,1] and

|- v £of if u $0
Y(u) = L
{yl—4§y Su(@+u) ifu>0

Hence, by taking ~, =

%, uk =1 and y* =1, we can prove that

1 € DY(12,y)(1)

On the other hand, DX(Z,) 1) =R,, V. f(£,%) =-1and V,f(£,2) =0. There-
fore

1 V. r(z,a2) DXK(@.z2) (L) +V, rf(za) 1
and (4.4) is not true.
Ezample 4.2. (X is not upper locally Lipschitz at (4,7 )). Replace X(u) by
X(u)=lz €R lo Sz <max(1,1 + u)]

in Example 4.1. In this case .’?(ﬁ 7)) = {04, but X is not upper locally Lipschitz at
(%,7). We can analogously prove that

1 eDY(2,y)(1) but
1¢ V:f(:i:'.u‘) - IX (2 ,Z) (u) + Vuf(fc,ﬁ) -1
Ezxample 4.8. (.f is not upper locally Lipschitz at (4,y)). Let

X(u) =[0,1]CR for every u €R, f(z,u)=z% 47 =0,z =0 and ¥ =0. Then
Y(u) =[0,1]and

Dv(u,y)(u)=R, for WYu €R
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However, V.S (E.0) DX(4,2)(uw) +V, f(£,4) u ={0]. In this case

f(u ,¥) = Vy for ¥ 20 and any u, which is not upper locally Lipschitz at (0,0).

Finally we should note sufficient conditions for the Lipschitz continuity of Y at

[ =Y

Lemma 4.1. If X is upper locally Lipschitz at % and if X(%) is bounded, then Y

is upper locally Lipschitz at u.

(Proof). Since X is upper locally Lipschitz at u, there exist some neighbor-

hood N of u and a positive number M, such that
X(u) cX(4) + Myhu —ZlB for Vu enN
Since f is continuously differentiable,
My =max{lv_ 7z ull(z.u) ecl(X(@) xN)} <+ .

For any u€ N and v € Y(u), there exists z € X(u) such that f(z,u) =v¥. Then

there exists £ € X(i) such that lz —2! € M,k —Zl. Hence
I (z,w) —r @ al S Mliz.u) —(Z,4)
§M2(L‘:—:E! + b =zl
M, + Mk —zl
Putting M = (1 + M4)M,, we have
v € Y(2) + M —ilB

Namely Y is upper locally Lipschitz at %. This completes the proof of the

lemma. s

The following example shows that the condition of the boundedness of X(u) is

essential in Lemma 4.1.

Ezample 4.4. (X(x1) is not bounded). Let
X(u) =iz €R21z1=u{ for u €R
and f(z,u) =z12,. Then
Y(u) =y €Rly = uz,| for uw €R

Clearly Y is not upper locally Lipschitz at z =0,
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Finally, we have the following theorem. Note that Y is P-minicomplete near 4

if X(u) is compact for each u near 2.
Theorem 4.1. Assume the following conditions:

(i) X is upper locally Lipschitz at %;

(ii) X is compact for each u near u;

(iii) ¥ is a properly P-minimal point of Y(u);

(iv) X(2.9) = {&4;

(v) X is upper locally Lipschitz at (Z,9).

Then, for any u € R™,

Minp (V. (£,4) -z + Y, f(£.4) ulz € DX(Z.£) (u)]

cDwWw(a,y) (u) . (4.5)

3. SENSITIVITY ANALYSIS IN MULTIOBJECTIVE PROGRAMMING
In this section we apply the results obtained in the preceding section to a usu-
al multiobjective programming problem:
P-minimize f(z) = (fl(z)....,fp(z)) (5.1)

subject to g(z) = (g1(Z).....on (z)) SO, z €R™

and discuss the sensitivity in connection with the Lagrange multipliers. Recall that
in usual nonlinear programming, the sensitivity of the perturbation function with
respect to the parameter on the right-hand side of each inequality constraint is
given by —)\j (7 =1,...,m), where )‘j is the corresponding Lagrange multiplier. Our
final result will be an extension of this fact. Throughout this section, each func-

tion f; (i =1,....p) and 95 (7 =1,...,m) is assumed to be continuously differentiable.

Let X be the set-valued map from ™ to R™ defined by
X(u)=fz €eR™lg(z) Su} for u €R™ (5.2)
Hence, in this case, the feasible set-map Y from R™ to RP is defined by

Y(u) =7 (X(u))

fy €RP ly =7(z), z € X(u)} (5.3)

fy eRPly =f(z), g(z) Sul

Of course, the nominal value of the parameter vector u is 0 in R™. Take a point



- 16 -

-~

£ € X(0) and denote the index set of the active constraints at £ by J(£), i.e.
J(£) =17 lg;(£) =0} (5.4)
First, we consider the contingent derivative of the set-valued map X.
Lemma 5.1. The contingent derivative of X at (0,Z) is given as follows:
DX(0,£)(u) = {z ! < Vg, (£).z > Suy for Vi €J(£)} (5.5)

where <:, *+ > denotes the inner product in the Euclidean space.

(Proof) Note that
graphX = i(u.z)fg,(z) -u; £0, 7 =1,...,m{

is specified by m inequality constraints. The gradient vector of the jth constraint
at (0,z) with respect to (u,z) is (—ej,ng (Z)). where e’ is the 7 th basic unit vec-
tor in R™ , i.e. eg =0 if £k #7 and e]i = 1. Hence these gradient vectors are

linearly independent and so the tangent cone to graph X is given by

Torapnx(0.2) = {(u.z)! <(~€7 ,Vg;(£)).(u,z) >$0  for j €J(&)]
={(u,z)! <ng(£).z >Su; for j € J(Z)}
This completes the proof of the lemma. -

In this case X(u) is a closed set for every u, since g is continuous. The next
lemma provides sufficient conditions for the Lipschitz continuity of X around
u =0.

Lemma 5.2. If there exists a vector u# >0 such that X(«) is bounded,
X(0) # ¢ and if the Cottle constraint qualification is satisfied at every z € X(0),
i.e.,

» A;Vg;(Z) =0 and A, 20 for j €J(Z)
JEJ(E)

imply that A; =0 for VJ eJ(z) , (5.6)

then X is compact-valued and Lipschitz in a neighborhood of & =0.

(Proof) This lemma is dﬁe to Rockafellar [5] (combine Theorem 2.1 and Corol-
lary 3.3 in [5]).

Of course, if X is Lipschitz in a neighborhood of =, then it is upper locally

Lipschitz at 2. Analogously we have the following lemma concerning the set-valued

map
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Xuy)=tz'!r(z)=v, g(z) Suj (5.7)

Lemma 5.3. If X is locally bounded around (0,%), )?(O.i/") # ¢ and the
Mangasarian-Fromovitz constraint qualification is satisfied at every £ exX 0, 9),

i.e.

i#—tvft(f)"' 2 A;Vg;(£) =0 and
J=1 JeJ(E)

A; 20 for j € J(£)
imply that
My =0 forall ¢ =1,...p and )\j =0 for all 7 €J(£) , (5.8)

then X is compact-valued and Lipschitz in a neighborhood of (0,7 ).

We will proceed with the discussion under the following assumptions:

Assumption S5.1.
(i) There exists « > 0 such that X(2) is bounded.
(ii) The Cottle constraint qualification (5.6) is satisfied at each £ € X(0).
(iti) X0.9) =tz |7 (z) =7, g(z) £0} = {£}.
(iv) The Mangasarian-Fromovitz constraint qualification (5.8) is satisfied at z.
In addition to Assumption 5.1, we also assume that ¢/ is a properly P-minimal
point of Y(O)T. Then we can apply Theorem 4.1 to obtain the relationship
MinpVr(£)  DX(0,£)(u) cDW(0,7)(u) for Yu €R™ . (5.9)
In view of (5.5)
V7 (£) DX(0.£)(u) ={yly; =<Vr(&E)z > for i =1,...p ;

<Vg,(£),z > §uj for Vi €J(E&)] .

Hence the left-hand side of (5.9) consists of all the P-minimal values of the linear

multiobjective programming problem:

P-minimize < V/i(€).z >, i=1,..,p
subject to < Vg;(£)z > Luy, j€J(E&) .

TIn this cese we call £ a properly FP-minimal solution to the problem (5.1).
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The necessary and sufficient P-minimality conditions for the above problems are

that there exist a multiplier vector (u,A) € RP X R™ such that

P VI E) + T A Vg;E) =0 (5.10)
1=1 Jel(E)
ueint Pr=fveRrRPl<y,d >>0 for Wd #0 € P] (5.11)
A; 20 for j € J(Z) (5.12)
Ap(< ng(:z?), z>=uy)=0 for j €J(z) . (5.13)

Since £ is a properly P-minimal solution to the problem (5.1), there exists a vec-
tor (u,A) € R™ x RP satisfying (5.10) - (5.12). Hence, if x € R™ satisfies

< ng(i),z > =<._uj for v € J(Z) such that A; =0

<Vg;(&).z >=wu; for Y €J(£) suchthat X\; >0 , (5.14)

then Vf(£) - z € MinpDY(0,¥ )(u). Moreover
- m
i W<V (E) x>+ Y Ajuy; =0
1=1 j=1

Thus we have proved the following theorem.

Theorem 5.1. Suppose that £ is a properly P-minimal solution to the multiob-
jective programming problem (5.1) and Assumption 5.1 is satisfied. Let (u,A) be

the corresponding multiplier vector. Then, for each £ € R™ satisfying (5.14),"
Vr(£) =z €eDW(0,7)(u)

Moreover,

m
1=1 i=t

6. CONCLUSION

In this paper we have studied sensitivity analysis in multiobjective optimiza-
tion. The essential result we have proved is that every cone minimal vector of the’
contingent derivative of the feasible set map in a direction is also the element of

the contingent derivative of the perturbation map in that direction under some
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conditions (Theorem 3.2). We have also obtained the relationship between the con-
tingent derivative of the perturbation map and the Lagrange multipliers for mul-

tiobjective programming problems (Theorem 5.1).

However, there remain several open problems which should be solved in the
future. Some of them are the following. First, the contingent derivative of the
perturbation map is not completely characterized. In other words, sufficient con-
ditions for the converse inclusion of Theorem 3.2 have not been obtained yet.
Secondly, the Lipschitz continuity of the perturbation map is not studied here.
Thirdly, some more refined results may be obtained in the case of multiobjective
programming. Finally, we should clarify effects of the convexity or linearity as-

sumption.
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