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FOREWORD
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doxes” in social choice and probability theory. The approach is a geometrical one;
the underlying principle emerges from a wide variety of examples ranging from
elections and agenda manipulation to gambling and conditional probabilities.
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1 INTRODUCTION

The social choice literature and the probability literature are filled with
descriptions of "paradoxes”. As we show here, many of them can be explained and
extended by using the same, simple, geometric argument. Our extensions include
several new results about the intransitivities of election results over subsets of al-
ternatives, the cycles of agenda manipulation, gambling, and Simpson's paradox
from conditional probability. Furthermore, we prove that these paradoxes must
accompany the modeling in a robust fashion. Qur approach appears to be new, it is
elementary (based on the open mapping principal), and it uncovers new examples.
Indeed, one point that emerges is the ease with which paradoxes (i.e., apparent

contradictions in a relationship) can arise.

Our argument extends beyond social choice and probability, but we emphasize
these two areas because of their familiarity and their importance as standard
modeling tools for economics and decision analysis. Examples from probability are
discussed in Sections 2 and 3; examples from social choice are discussed in Section
3. To simplify the exposition, we use discrete random variables. However, all this

work easily generalizes to more general models.

The flavor of our results is indicated by the following two prototype examples.
In the following sections, we show how they are related and how they can be ex-
tended.
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1.1 Conditional Probability and Simpson’'s Paradox

Suppose a certain drug is tested in Chicago (C) ad in Los Angeles (C’). A test
group (T) receives the new drug, and a control group (T’) received the standard
treatment. Some people are returned to health (#), while others are not (#’).
Suppose that in both communities the new drug is judged to be successful because

it cures the sick with a higher ratio than the standard treatment
{P(H:CT) > P(H:CT"), P(H:C'T) > P(H:C'T")}.

Is it possible for the aggregated test results to have the reverse conclusion
P(H:T) < P(H:T’)? It is, and this is known as Simpson’'s paradox. An explanation
(which differs from that given here) and how it relates to the "sure thing” princi-

ple is given by Blyth (1972a). Examples with real data are given by Wagner (1982).

This inconsistency phenomenon turns out to be a characteristic of models
based on conditional probability or the combination of random variables. When ad-
ditional conditions are introduced, almost any imaginable extension can occur. For
instance, suppose that the tests are conducted using facilities provided by univer-
sities () and privale laboratories (U’). There exist examples whereby the new
drug is unsuccessful at each university and at each laboratory as well as in each
community, but it is successful in the aggregate, and there exist examples where
the conclusions oscillate with the level: the new drug is successful at each of the
facilities, it is unsuccessful in each community, and it is successful in the aggre-

gate, etc.

The appropriate ratio of success to failure in each of these examples can be
made to exceed any predetermined constant. This means that there exist examples
of data where at each facility the probability of regaining health by use of the
drug is at least twice that obtained by the standard treatment; in each community,
the standard treatment is at least three times better than the drug; and at the total
aggregated level, the drug is at least four times better than the standard treat-

ment!

1.2 Voting and Ranking Methods

The aggregation of preference is a central issue in the social sciences. A sim-
ple system is voting. Here, several paradoxes occur when the voters rank a set of
three alternatives {a,b,c} by using the stand ird plurality voting system. Suppose

there are nine voters where four of them giv the ranking ¢ >a > b, three give
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the ranking & > a > ¢, and two give the rankinga > & > c. The group's ranking is
¢ >b >a with atally of 4 : 3 : 2. This ranking is inconsistent with the fact that a
majority of the voters (five of them) prefer the bottom ranked alternative a to the

top ranked alternatives c.

It might be suspected that an election ranking of N alternatives must have
some relationship to how the group ranks at least one of the pairs of alternatives.
This need not be the case. For each of the N(W ~1) /2 pairs of alternatives desig-
nate, in an arbitrary fashion, one of the alternatives. We show that there exist
examples of voters’ rankings of alternatives so that (1) the plurality election
result isay > a, > ... > ay, and (2) for each pair of the alternatives, a majority of

the same voters prefer the designated alternative.

2. THE GENERAL RESULT

The simple geometric property where open sets are mapped to open sets is the
unifying explanation for all th paradoxes described in this paper. The following

standard statement (see Warner, 1970) suffices for what follows.

Proposition 1

Let © be a smooth mapping from an m-dimensional manifold M to an n-
dimensional manifold N where m > n. Let ¢ be an interior point of N. Assume that
P in F_l(c) is an interior point of #. If the Jacobian of F at p has maximal rank,
then there is an open neighborhood of » that is mapped onto an open neighborhood

of c.

The proof of the following theorem illustrates why the above property is the

source of the paradoxes.

Theorem 1

Consider the example in Section 1.1 where a drug is compared with a standard
treatment. Let A4 be the wvariable representing the seven sets
c +c’,c,ccucu’,.c'U, and C'U’. For each choice of A, designate which term
from the pair (P(H:TA),P(H:T’'A)) is to have the larger value. Choose a constant
d; greater than unity and express each pair as a ratio that is bounded below by

d;s. There exist finite examples of data that simultaneously satisfy all the seven

specified inequalities.
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To prove the theorem, it suffices to show that, for any choice of signs for the
seven quantities P(H:TA) — P(H:T’4), there exist sample points that realize them.
View these quantities as defining the seven components of a mapping F' into R7. The
choice of the signs identifies an orthant B of R7.

The origin O of R7 is a boundary point for each of the orthants. This "com-
parison point” is used in the following way. First, a point p» in F~1(0) is found so
that (i) it is an interior point of the domain, and (ii) the Jacobian of F at p has
maximal rank. According to Proposition 1, 7 maps an open neighborhood of p onto
an open neighborhood of 0. This open image set meets each of the orthants; in
particular it meets orthant B. Therefore, there are sample points that satisfy all
seven conditions simultaneously. The technical part of the proof is to define the

domain so that F° can be represented by a smooth mapping.

Proof

There are eight sets determined by the intersections of the sets 7,C,U and
their compliments. They are:
Sy =TCU S,=TCU" S3=TC'U Sg=TC'U’
Sg=T'CU Sg=T'CU" Sqe=T'CU Sg=T'C'U’

Treat each of these sets as a disjoint space. Let Xj designate the characteristic
function of H in Sy. Define Y; =X5; +X354.7 =1,....4, and
Zj =Y2j + Yzj -1:J =1,2. The random variable Yj, which is the characteristic
function of A over SZj +SZj _1, represents the resullts at the community level,
while ZJ- = Y2j + Y2j _1 represents the final aggregated resuits.

If z; denotes the value of P(Xj = 1), then z; is in the unit interval
I.j =1,...,8. Let dj designate P(Sj) in the space |S;. The dj variables describe

a simplex in R® which is denoted by Si (8) and defined by
8
dj =1 .
J=1

These 16 variables are in the 15-dimensional space M = I8 x Si (8).

By use of the standard relationship, for any set F,
P(B) =P(BE) + P(BE’'Y =P(E)P(B:F) + P(E")P(BE’) 2.1)

it follt vs that the probabilities Yy = P()’} =1) and z; = P(Zj =1) are the rational



functions
v. = ZTgj-1825 -1 + Tz
4 4
21 = Exjd:’/ dj
j=t j=1
and

Comparison map: Let F:M - R be

2 2

F=3tx; —zj.40e; + Ylyy —vjeplejiq + (21— 220ey (2.2)
j=1 j=1

where ey is the unit vector in R7 with unity in its 7!* component. The components

of F represent P(H:TA) — P(H.TA") as A ranges through its seven values.

Open mapping: Clearly, F is a smooth mapping. That the Jacobian of F has maxi-
mal rank at some preimage of O is a direct computation. Indeed, this rank condi-
tion holds everywhere except on a certain lower-dimensional subset of M. These
points of lower rank are where either the y values or the z values are uniquely

determined because the corresponding pairs of z or ¥ are equal.

The signs chosen for the seven quantities determine an orthant of R", denoted
by B. By construction, all the sample points with this behavior are in U = F"l(B).
By the continuity of F',U is an open set; we must show that it is nonempty. The Jaco-
bian of F has maximal rank at some interior point of # in F"l(O), so F maps an open
set from M onto an open set of O. This open set meets B. Consequently F"l(B) is

nonempty.

Next we show that U contains points that can be identified with a finite data
set. Any rational point will suffice. A multiple of the common denominator of d is
the total number of subjects. The same multiple of the numerator of d corresponds
to the cardinality of Sj. and it serves as a multiple of the denominator of z;. Be-
cause the rational points are dense, there is an infinite set of rational points in
F~1(B). Each point can be identified with an infinite number of different finite

data sets.
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The set F1(0): It remains that the inequalities can be bounded below by the desig-
nated constants. Once the values of &, are specified, the inequalities are of the
type z; > dAXj +4 With a similar relationship ¥ and z. Let ¢ = (¢4,....¢7) be a point
in B. The set F"l(_q) is given by equations of the form z; —z;,4 = Iqjl with similar
equations for ¥ and z. These equations define lower-dimensional hyperplanes in

the domain, so there are points in U satisfying inequalities of the form

The assertion follows if there is a point in U such that the right-hand sides of
these inequalities are bounded below by d,, with similar statements for v and z.
These inequalities are satisfied if the values of the denominators on the right-hand
sides can be chosen to be arbitrarily small. This involves a direct computation
that is easily done because F_l(O) contains the intersection of O X .Si(8) and the

boundary of U. The points are chosen arbitrarily close to this set.

Comments:

(1) The basic idea of this proof extends to all the paradoxes discussed here.
Individual comparisons are one dimensional. When several comparisons
are made, they must be viewed as defining a comparison mapping F with a
higher-dimensional range space. A higher-dimensional space admits sym-
metries and cycles, so it should be expected that these cycles are mani-
fested as paradoxes by the comparisons. To prove that all the sym-
metries are admitted, locate a "comparison point" on the boundary of
each of the comparison regions. Next, show that the image of F includes
an open set about the comparison point. The intersection of this open set
with each comparison region is a nonempty open set. Because F is con-
tinuous, this means that there is a nonempty set of points in the domain
with the desired properties. To complete the proof, impose conditions so
that in each of these sets in the domain there exist points that are identi-
fied with sample points from the model. This simple idea is the essence of

our explanation for all the paradoxes in this paper.

(2) The number of possible, paradoxial relationships is determined by the di-
mension of the domain for a comparison mapping. If this dimension
exceeds that of the range, then the comparison mapping is not "com-

plete”; there exist additional relationships that may define more complex
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paradoxes. As a corollary, the above illustration and extension of
Simpson's paradox is not the "best possible” result. The domain of F is
15 dimensional while the range is only seven dimensional; eight more com-
parisons using these variables can be added. (They may involve different

levels of aggregation, waiting times, etc.)
(3) Other conclusions are derived from the properties of F1

(i) It is natural to determine the limits of a paradox. (This is illustrat-
ed in Theorem 1 with the assertion that d, is not bounded above.)
Often, as for this model, these limits are determined by the proper-
ties of the points near the intersection of F_l(O) and the boundary

of the domain.

(ii) In order for a paradox (described by B) to occur, we may need a
certain number of data points. The minimal size is given by the smal-
lest "lowest common denominator’of the admissible points in
FiB)=U.

(iii) The probability that a paradox (described by B) occurs is given by

the measure of a probability distribution over the open set F~1(B).

(4) Other conclusions are derived from the structure of the image of F. For
instance, the image contains an open set about the origin, so it meets any

sector defined by a specified ratio of the outcomes; e.g.,
[(P(Y; =1) —P(Y3 =) >42[P(X; =1) —P(X;=1)] >0

The above shows that there are sample points that satisfy these condi-

tions.

(5) To avoid the above behavior, the Jacobian of F cannot be of maximal
rank. This singularity constraint becomes a necessary condition to avoid
a paradox. Often, as for the above model, these lower-dimensional singu-

larity conditions correspond to familiar constraints such as the "in-

dependence of random variables”.

This approach can be used as long as the components of a comparison mapping
are smooth functions. These components could be functional combinations of pro-
babilities, expected values, the various moments, waiting times, loss functions, de-
cision rules, correlation indices, scattering indices, covariance, etc. If the open
mapping condition holds at a comparison' peoint, then all possible comparisons < re

realized. In this way it is easy to show that there exist examples illustrating, ‘or
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instance, that the expected value may satisfy E(X) > E(Y), yet E( X)) < E(L ()
for some monotonically increasing function f, and that certain decision rules may
be inconsistent with other measures. (Indeed, a discrete version of this can be
used to explain the Arrow social choice paradox.) Theorem 2 is the formal state-

ment that covers all these situations.

Before stating Theorem 2, we formally define the structural relationship

between a comparison point and a comparison region.

Definition
Let a topological space N be partitioned. A comparison point is a boundary

point for each partition set. For a given comparison point », a comparison re-

gion is a partition set such that the closure of its interior contains p.

Definition
Let F:M - N be a comparison mapping for a given model. A point in M is an

admissible point if it can be identified with a sample for the model.

Theorem 2

Let F:M - N be a smooth comparison mapping where the dimension of M is
bounded below by the dimension of N. Assume that the admissible points form a
dense set in M. Let ¢ be a comparison point in N. If p in F—i(c) is an interior
point of M such that the Jacobian of F at » has maximal rank, then the behavior

characterized by any comparison region of N is admitted.

Example

Consider the following dice game. Each of the players rolls his own weighted
die. (Each die is marked in the standard fashion.) On each roll, the winner is the
player that rolled the larger face value. For each choice of ¥ = 1,...,4, the losing
player pays the winning player the difference between the face values raised to
the kth power. For each of the four choices of &, arbitrarily select a die to have
the larger expected payoff, and then arbitrarily select a die to have the higher
probability of winning a roll. It is a direct consequence of Theorem 2 that the dice
can be weighted in such a fashion that all five selected conditions are satisfied
simultaneously. This illustrates the possible incompatibil!.y among reward func-

tions and the distributions.
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As a special case (Ky =1), the following demonstrates that the more probable

of two events may have the longer waiting time.

Corollary 2.1

Let each of the two urns U, and U, contain red and black balls. Each urn is
randomly sampled without replacement. For a positive integer &, let wy (k) be the
probability that it takes at least & tries before a red ball is selected from urn Uj.
J =12, Let ky # k,. For each of the two pairs (w,(kg)w,(ks)),s =1,2, choose
the value that is to be the larger. There exist examples of data so that both condi-

tions are satisfied simultaneously.

Outline of the proof

We proof the special case where Xy =1 and X, =2. The general case follows

in much the same manner.

The domain of the comparison mapping F" is I X I X K, where K, is the half-

line of positive numbers. A point in the domain is denoted by (z,y,2). Let

l-z)zz 1= n
Fole-ye s SRR oy - SRR

be a mapping into RZ%. At the rational points in the domain, F can be identified with
the mapping (w (1) —w,(1),w,(2) —w,(2)). This identification follows by assuming
that there are zzn red and zn (1 — z) black balls in U; and yn red and n(1—y)
black balls in Uy, and by choosing an appropriate value for the parameter n.

The comparison point is 0 = (0,0). Any domain point p of the form (z,z,1) is
in F1(0). The gradient of the first component of F is (1, —1,0); the gradient of

the second component evaluated at p is

[+ (1-=2z an' —f1 (1—2x)zn;' (z 1)z
zn =1 zn -1 (zn —1)?
where z = 1. Clearly, these two vectors are linearly independent. This completes

the proof.

The conclusion of this corollary holds even if ohe of these pairs is replaced
with the pair of expected waiting times. However, the conclusion does not hold if
the sampling is with replacement, or if the number of balls is the same for each
urn. For each of these models, the z terr: does not appear in the definition of F.

As a result, the third component of the s -adient is zero, and the second is the
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negative of the first. Therefore, the Jacobian of the comparison mapping is singu-

lar. This illustrates comment (5).

A more interesting paradox is obtained by combining the model in Theorem 1
with the one given above. Here, several pairs of urns with red and black balls are
used. As the contents of the urns are combined in a specified way, the urn with the
higher probability of selecting a red ball may change with the level of aggregation.
Furthermore, the waiting time to select a red ball may vary. However, as demon-
strated above, to obtain these examples, often we need the extra degrees of free-
dom offered by varying the number of balls per urn. Also, the number of indepen-

dent comparisons is bounded by the dmension of the domain.

Several interesting paradoxes from population dynamics involve only a small
number of comparisons, so it is to use Theorem 2 to explain and extend them (see,
for example, the paper by Vaupel and Yashin, 1985). However, often these exam-
ples, as given by Vaupel and Yashin, are based on continuous random variables. To
use Theorem 2, the continuous variables are approximated by discrete valued ran-
dom variables. Alternatively, Proposition 1 can be extended, in the obvious
fashion, to permit M to be a function space. In this way, the examples of Vaupal

and Yashin can be treated directly.

Another source of paradoxes subsumed by Theorem 2 is Blyth's paper (1972
b). One of his paradoxes with random variables X and ¥ has P(X > 7Y) as close to
unity as desired, even though P(X <a) < P(Y < a) for all choices of a. This, of
course, is an example of the boundary behavior of the comparison mapping. Both
Blyth (1972 b) and Vaupel and Yashin (1985) describe the paradoxes in terms of ex-
amples. The above treatment explains and unites them, it shows that they can be
extended in several ways, and it proves that the paradoxes are "robust” in that

they are satisfied by open sets of examples.

Theorem 1 and its generalization to a set of N characteristic functions are
corollaries of Theorem 2. The only surprising feature of the generalization is that
the dimension of the domain for a comparison mapping can be very large. To see
this, let the first N —1 characteristic functions define 2¥ ! sets. The last random
variable is treated as a characteristic function on each set. Thus, the domain of a
comparison mapping has the dimension V-1 4 (ZN‘1 -1 = 2V —1. According to
comment (2) this means that up to 2V — 1 functional relationships can be defined

from these random variables with possible concomitant unexpected behavior.
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We conclude this section with a partial converse for Theorem 2. It asserts
that if a certain set of examples can be found, then examples of all types exist.
Such a result is of value because when the dimension of the range space is suffi-
ciently large it may be difficult to verify the rank condition. However, the speci-
fied set of examples might be identified by a computer search. For simplicity, we

restrict attention to linear comparison maps.

Corollary 2.2

Suppose that F is a linear comparison mapping from a linear space to a range
space Rk, Assume that the 2% orthants of R are comparison regions. If there ex-
ist 2¢€ 1) + 1 examples, each in a different comparison region, then F has maximal

rank and all possible comparisons are admitted.

Proof

The image of a linear space under a linear mapping is a linear space. If this
image space has dimension k£, then the conclusion follows. By assumption, ¥ image
points can be found that do not lie in the same (k —1)-dimensional subspace. This

completes the proof.

Extensions are obvious. For instance, the proof requires only k£ examples
that are not in the same (k —1)-dimensional plane. For other choices of comparison
regions, the emphasis is placed on the geometry defined by the image points with

respect to the properties of the image set.

3 RANKING PARADOXES

A richer assortment of paradoxical behavior emerges from multivalued ran-
dom variables. (This is because the dimension of the domain for a comparison map-
ping increases with the number of values admitted by a random variable.) We illus-

trate this with several new results about ranking and voting procedures.

Our main results concern weighted or positional voting. This is defined in the
following way. To rank the N alternatives, aq,...,ay, choose N scalar weights
(Wy,....wy) where w; = w, if and only if 7 <k and where w, >wy =0. Each voter
lists his ranking of the N alternatives on a ballot. To tally a ballot, wy points are
assigned to the j”‘ ranked alternatives, 7 =1,...,N. In the obvious way, the
groip’s ranking of the alternatives is determined by the sum of the assigned

we shts.
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The weights define a voting vector Wy = (wq,...,wy) in RY¥. For plurality vot-
ing, the voting vector is (1,0,...,0). Another well-known voting system, called the
Borda count, is defined by the voting vector By = (N .N —1,...,1). (If a voting vec-
tor is a linear combination of By and Ey = (1,...,1), then we call the system a Borda
system. This is because the election result for any Borda system always agrees
with the result when By is used to tally the ballots (see Saari (1982.))

This tallying process can be identified with the expected value of multivalued
random variables. For N alternatives, there are N! different ways to rank the N
alternatives. Since the sum assigned to any alternative is a linear relationship,
the group’s ranking is not altered should each sum be divided by the total number
of voters. This means that the number of voters is replaced with the fraction of
the voters with each ranking. In this way the domain for this problem can be iden-
tified with (the rational points in) the simplex Si (N!). The simplex is in the posi-
tive orthant of an N!-dimensional space. If Aj is the random variable assigned to
alternative ay, then P(Aj = w, ) denotes the fraction of the voters who rank the
J th alternative in the Kth place. Let A be the vector valued random variable
(44,....4y). A point in Si(N!) can be viewed as being a probability distribution, and
so the tally of the ballots can be identified with the expected value £(4).

The following definitions are used in what follows.

Definition

A voters’ profile is a listing of each voter’s ranking of the N alternatives.

Definition
The voting vector Wy defines a reverse neutral system if

Wy + (wy,...,wq) = CEy = (C,...,C) for some scalar C.

A Borda system is always reverse neutral. An easy algebraic argument demon-
strates that the space of reverse neutral systems is a hyperplane of RV with di-
mension 1 + [N/ 2] where [] denotes the "greatest integer function”. A basis for
this hyperplane can be computed directly. For N =3 only the Borda systems are
reverse neutral. For N =4, a basis for the hyperplane is given by E, and

(2,1,1,0). For N =5, a basis is £,55 and (2,1,1,1,0); etc.
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Although weighted voting systems are an important class of voting methods,
the interpretation of election results is problematic. This is illustrated by the fol-

lowing theorem which includes Example 2 as a special case.

Theorem 3

Let N = 3. Let Al; be the subset {a;,...,a;}. Let W, be the voting vector used
to rank Al,. Assume that wk is not reverse neutral, k¥ =3,....N. For each of
N(N —)/2 pairs of alternatives, arbitrarily designate one of the alternatives. Ar-
bitrarily choose a ranking KK, for the set Al, .k =3,...,N. There exist profiles of
voters such that (i) the election result for Al, is RK, ,k = 3,....N, and (ii) for each
pair of alternatives, a majority of these same voters prefer the designated alter-

native.

The proof of this theorem and an extension are given in Section 4.

A simple consequence of this theorem is that, if a Borda system is not used,
then there are profiles of voters where most of the voters prefer a; to a,, most
prefer a, to a3, most prefer ay to ag, yet the electionresult is az > a; > a;. The
implied ranking obtained by majority vote over the pairs of alternatives is the re-
versal of the election result! (In the example in Section 1.2, such a profile is given
for plurality voting.) A more striking example is that for N =5 there is a profile
of voters such that majority votes determine the rankings a; > Qg4 for j =1,...,4,
ag > ay {these five alternatives from a cycle} a4 > a; for j =1.2,a; > ajs and
ay >ag for j =2,3, and the plurality election results of Alj.j = 3,4,5, are
a; >ag>aza;>ag3>ay >a, and az>a; >a5 > ap >a, respectively. Other

examples are limited only by the imagination of the designer.

By use of different techniques, Fishburn (1981) proved Theorem 3 for the spe-
cial case N =3. (More accurately, Fishburn gave a proof only for the first exam-
ple above. However, it is possible that his approach extends to include our gen-
eral statement for N = 3.) For N > 3, the first conclusion without the second is a

special case of a result given by Saari (1984).

The second part of the theorem is of independent interest. Essentially, it as-
serts that if the pairs of alternatives are ranked by majority voting, then any type

of cycle, subcycle, etc., can occur. To highlight this result, we restate it.
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Definition
Let N =>3. For1 =k <j =N, let R be the set fap > a;.a; >a; |. Let the
space of binary rankings BR be the cartesian product of the N(N —-1)/2 sets R,CJ-.

An element of BR is a sequence that imposes an ordering for each of the N(N-1)/2
pairs of alternatives. These binary rankings need not be transitive, nor need they

satisfy any other consistency requirement.

Corollary 3.1

Let ¢ be an element BR. There exist examples of voters' profiles such that,
for each pair of alternatives, a majority of the same voters have the ranking

specified by q.

The remainder of this section is devoted to extracting some of the consequences of
Theorems 3 and Corollary 3.1. We start by obtaining new results about those
schemes that depend on majority votes over pairs of alternatives (see the exposi-
tory article by Nierni and Riker (1976).) For example, an alternative is called a
Condorcet winner it is receives a majority vote when compared against each of
the other alternatives. A Condorcet winner does not always exist (e.g., the above,
second example), so other schemes have been proposed to determine the winning
alternative. The following definition appears to include all methods based on the

ordinal rankings.

Definition
A binary ranking method is a nonconstant mapping from a subset of BR into
faq,...,ay}. That is, based on the ordinal rankings of pairs of alternatives, one of

the N alternatives is selected.

Examples

(1) A Condorcet winner is a binary ranking method. The subset is the set of
all elements of BR where some one alternative is preferred to all other

alternatives.

(2) An obvious extension of the Condorcet winner is to select the alternative
that wins the largest number of pairwise comparisons. This extensio~ ad-

mits a larger subset of elements from BR.
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(3) Suppose N -1 alternatives are proposed to replace the status quo, a,.
The selected alternative is a4 if and only if a, is a Condorcet winner. If
not, then from the set of those alternatives that beat a,, select the one

that wins the most pairwise comparisons.

(4) A commonly used binary ranking method is an agenda.

Definition

Let N > 3. An agenda is an ordered listing of the N alternatives. The first two
listed alternatives are voted upon. The alternative receiving the majority vote is
then compared with the third listed alternative. This iterative, pairwise comparis-
on procedure is continued to the end of the listing. The remaining alternative is

the selected alternative.

The following statement extends several results from "agenda manipulation”
(see, for example, McKelvey (1976) and Plott and Levine (18978)). It implies that
the right to set an agenda for a meeting is a potential source of power (the first

conclusion) that may lead to an undesired outcome (the second conclusion).

Corollary 3.2

Let N > 3. There exist vectors' profiles and N agendas such that, when the
same voters use the ,7'”1 agenda, the outcome is a.j,j =1,...N. For N >3, there
exist voters' profiles and N agenda so that the above holds even though all the

voters prefer a; {to ay, a, {to] as,..., fand] ay_4 to ay.

An interesting feature of this corollary is that for a fixed profile of voters,
the winning alternative varies over all possible outcomes as the "seeding”, or the
choice of the agenda, changes. The proof depends on the fact that majority, pair-
wise voting can define any desired cycle and subcycle. Thus, this conclusion ex-
tends to the other binary ranking methods that depend on the initial seeding. This
includes tournaments, whether single, double, or k-fold elimination, certain
hierarchical methods, etc. In particular, because a change in the seeding changes
the definition of a binary ranking method, Corollary 3.2 is a special case of the

following.
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Corollary 3.3

Let P4 and P, be different mappings from BR to {a;....,ay{. There exist pro-

files of voters so that the outcome of the two binary voting methods differ.

The next result.' compares the outcome of a binary ranking method with the
election results of a weighted voting system. As special cases, it shows that a Con-

dorcet winner, or the result of an agenda, need not agree with an election ranking.

Corollary 3.4
Let N > 3. Let the set A, be ranked with the voting vector W, ,K =3,....N.

Let a binary ranking method be given. Assume that W ,k =3,...,N, is not reverse
neutral. Let Rk, .,k = 3,...,N, by any ranking of Al;, and let ay be an arbitrary ele-

ment in the image of the binary ranking method. There exist voters’ profiles such

that (i) the election result of Al ., X =3,...,N, and (ii) the binary ranking method

selects ay.

As a consequence of this theorem, there is a profile of voters so that their plurali-
ty election ranking of S is @y > a, > ... > a, if k is even and the reverse of this if

k is odd, and the Condorcet winner is a,.

This chaotic state of affairs cannot be eliminated if the selection method is
defined to combine, in some way, the election results over all of subsets
Al K =2,...N. For instance, in a run-off election, the lower ranked alternatives
are dropped, and the remaining set is reranked in a separate election. The follow-

ing definition extends this notion.

Definition

A dynamical selection process consists of (i) a set of voting vectors
{Wy...W3,(1,0){, (ii) rules that eliminate a specified, positive number of alterna-
tives from a set of k alternatives, k& =2,...,N, and (iii) a selection function. Thg
procedure is defined in the following way. The set Aly is ranked by using Wy.
Then, based on the elimination rule for the N alternatives, N —s alternatives are
eliminated. The remaining set of s alternatives is ranked by using W;. Iteratively,
this procedure is continued. Based on these election rankings, the nonconstant

selection procedure selects one alternctive.
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Examples

(1) The standard '"run-off" election is a dynamical procedure. At each step,
the bottom ranked alternative is eliminated. The selected alternative is
the one remaining at the end of the process.

(2) This run-off procedure can be generalized in the following way. Choose a
positive integer £k < N. The elimination procedure is the same as in (1),
but the selection rule selects the top ranked alternative from the elec-
tion ranking of & alternatives. If & = 2, this is the above procedure. If
k = N, this is a standard election procedure.

(3) The run-off procedure can eliminate more than one alternative at each
stage. For instance, after the N alternatives are ranked, all but the top
two alternatives may be dropped.

(4) Let a4 represent the status quo, and let a._.,.j = 2,...,N represent the con-
tending alternatives. Use Wy to rank the N alternatives. If a, is the top
ranked alternative, it is declared the winner. If it is not, then eliminate
a, and rank the remaining alternatives with Wy, _,. The top ranked alter-
native from this election is declared the winner.

(5) The elimination rule may depend on the alternatives. For instance, the
process described in (4) can be modified to eliminate not only a4 but also

all alternatives ranked below a4 in the first election.

As a special case, the following asserts that the winner of a run-off election need

not be a Condorcet winner.

Corollary 3.5

Let N > 3. Assume that a binary ranking method and a dynamical selection
process are given. Suppose that, for each X = 3, the weight vector W, is not re-
verse neutral. Arbitrarily select ay from the range of the binary ranking method
and a, from the range of the dynamical process. There exist profiles of voters so

that the binary ranking outcome is ay while the dynamical method outcome is a; .

Recently there has been interest in election procedures where a voter can

choose a voting vectcer to tally his ballot.
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Definition

A multiple voting system used to rank N alternatives is determined by a set
My of voting vectors where at least two of these vectors and Ey are linearly in-
dependent. Each vector ranks the N alternatives on his ballot, and then he selects

a vector from My to tally his ballot.

Examples
(1) Bullet voting: The defining set of voting vectors is
My = {(2,0,...,0),(1,...,0), (1,1,0,...,0)}. This procedure was used during
the 1970s for some legislative offices in Illinois.

(2) Cardinal voting: The set My contains all voting vectors where the com-

ponents sum to unity. Occasionally, cardinal voting is used to define

rankings for methods from decision analysis.

(3) Approval voting: The defining set of N-1 vectors is
{1,0,...,0),1,1,0,...,0),..., (1,1,...,1,0){. For this method, which was intro-
duced by R. Weber, among others, and ithas been analyzed by Brams and
Fishburn (1982), a voter indicates either approval or disapproval of

each alternative.

Often the results of multiple voting systems are compared with the Condorcet

winner. The following shows that the results can be incompatible.

Corollary 3.6

Let N = 3. Let a binary ranking method be given. Let M, define a multiple
voting system for Al .,k = 3,...,N. Assume that, for each k,M; contains at least one
vector that is not reverse neutral. Let Kk, be a ranking for A4l;, and let a; be an
alternative in the range of the binary ranking method. There exist voters’ pro-
files so that (i) the multiple election result for Al, is Rk;.k = 3....,N, and (ii) the

binary ranking outcome is a;.

A consequence of this result is that, for any choice of s, there exist examples

where the alternative ranked in stt

place in an approval voting election is the
Condorcet winner, and there exist examples where the results based upon approval
voting are a4 > a3 > a, > a4 for the set of four alternatives, a; > a; > a3 for the

<1bset of three alternatives, and a, is a Condorcet winner.
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It follows from t.his approach that the principal cause of the social choice
pvaradozes is the di_ﬁ’erence between the dimensions of the domain and the
range of a comparison mapping (see Section 2, comment (2)). To model a weighted
election for N alternatives, the domain Si (N!) has dimension N!'=1. The image is
E(4). Because the domain is St (N!), this image is in the simplex Si (N¥) in RYN. (The
sum of the components of wN define this simplex. Without loss of generality, as-
sume that this sum is unity.) Thus, the range space has dimension N-1. This
difference of N{(N—1)!—1} is zero if and only if there are only two alteratives.
Therefore, if N 2 3, other relationships with resulting paradoxes can be added.

This is illustrated by Theorem 3.

This dimensional argument also proves that, for N 2 4, Theorem 3 is not the
"best possible” result. To see this, we need to describe the comparison mapping L
for Theorem 3. The first N components of L are given by F(4), the next N—-1 by
the expected value of the weighted voting method defined by Wy _;, etc. The last
N(N -1)/2 components are given by the expressions P(4,) —P(Aj),lc < 7. Thus,

the range space for L is
Si(N) X SE(N-1) x... xS(3) x JYN-1)/2

where J 1is the interval [-1,1]. This range space has the dimension
N+ N—-1)+...43 + {(WHWN-1)/2} =N? -N —-1. For the model described in the
theorem, the difference between the dimensions of the domain and the range is

N!' —N? + N. This value is positive if and only if N = 4.

Corollary 3.7

Let N =2 4. In addition to the subsets of alternatives described in Theorem 3,
N! —N? + N additional relationships involving the rankings of the N alternatives
can be defined in such a way that, for certain profiles of voters, the results are

independent of the rankings obtained in Theorem 3.

A simple dimensional argument shows that even if Theorem 3 can be extended from
nested sets of three or more alternatives to all possible subsets of alternatives,

for N = 4 additional relationships can still be found.
To complete our description of L, notice that the comparison value on each
simplex in the range is the point of complete indifference N ‘1EN. For each of the

intervals J, the comparison value is 0. Thus, the comparison point is
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(NEy, (N —1)"Ey_4,...,371F5,0,0,...,0) .

Therefore Theorem 3 is an example of Theorem 2 where M and N are manifolds and

where the comparison point is not the origin of a Euclidean space.

The comparison mapping L is linear. Therefore L “1(0) must be a linear sub-
space with dimensibn N' —N%?+N. If N >3this space must intersect the boundary
of Si(N!). A boundary point of Si(N ') corresponds to a profile of voters where
none of the volters rank the alternatives in certain ways. This extreme boundary
behavior describes the limits of the voting paradox. A special case is described in

Corollary 3.2.

Corollary 3.8

Let N =2 4. The results in Theorem 3 can be obtained with profiles of voters

where no voter has certain rankings of the alternatives.

We have not tried to find a general characterization of the boundary behavior.

The proof of Theorem 3 involves showing that the linear comparison map has
maximal rank. The rank condition does not hold if W,k =3,....N are Borda vec-
tors. It turns out that L has corank (with respect to the range space) of at least
{N(N —1)/2] — 1. This means that although a Borda election ranking admits incon-
sistencies with respect to a given binary ranking method, not all possible incon-
sistencies are admitted. In particular, Theorem 3 does not hold if even one of the

W, is a Borda vector. A direct verification of this for N =3 is given in Section 4.

With only slight modifications, these results can be used to describe certain
ranking procedures coming from probability and statistics. For instance, suppose
N forms are making the same product, and they are to be ranked based on the qual-

ity of their products. In Theorem 3, identify the "i!" alternative” with the "ith

nth yoter” with the "jth

firm" the vector sample'” of the product taken from each
of the N firms, and the "j"‘ voter's preference ranking” with the linear 'quality
ranking” of the products in the jth sample. The relationship a; > a; means that,
based upon the samples, form k’s product appears to be superior to firm j’'s. It
follows from Corollary 3.1 that any possible choice of binary rankings is realized
by an open set of data points. Binary sampling approaches need not lead to a
linear ordering of the "'quality of the firms". Indeed, in this way, the well-known
Steinhaus-Trybula paradox (Steinhaus and Trybula, 1959), where the final ranking

of three forms is a; > aj,a; > ag but a; >a,, becomes a special case of Corol-
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lary 3.1.

It follows from Theorem 3 that, even if the firms are ranked by use of weight-
ed ranking methods, the results could be difficult to interpret. For instance, the
weight vectors W, = (1,0,...,0) correspond to the natural ranking method based on
P(X; =max in:j €A, {). It follows from the above that, should some one firm be
deleted, the revised ranking could drastically change. Other measures experience
similar problems. A similar effect occurs for the scoring of athletic events where
a voter’'s ranking corresponds to how the various teams are placed in a particular

event, etc.

As a final amusing example, note that a connoisseur is often described as a
person whose taste preferences are based upon several attributes (e.g., the color,
the taste, and the bouquet of a wine), and whose rankings are based on an aggrega-
tion of them. If so, we should not expect his binary comparisons to define a transi-
tive ordering. This is, of course, an N alternative version of the famous folklore
"pie" example (I prefer "apple” to "cherry”, but if "blueberry"” is available, then

my choice is "cherry"”).

As in Section 2, there exist open sets in the domain which exhibit each of the
above behaviors. Consequently, these examples cannot be dismissed as being iso-
lated; the behavior is robust. As the number of agents increases (the denomina-
tors of the rational points become larger), so do the number of the possible exam-

ples, which leads us to the following corollary.

Corollary 3.9

Consider a system of weighted voting methods as described in Theorem 3. Let
¢ denote an outcome over the various sets as described in Theorem 3. Let n (@,m)
be the probability that the election result for a group of m voters is €. Assume
that the profiles of voters are uniformly distributed. Then, as m = »,n{(@,m) ap-

proaches the ratio of the area of L "1(0) to the area of the simplex Si (N!).

For elementary number theoretic reasons, the sequence {n(Q,m)| may not be
monotone. The limit is positive if L —1(0) contains an open set; this is true whenev-
er @ does not admit ties. For other distributions, the ratio is determined in a simi-

lar fashion, but with a different measure.
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4. PROOFS

The proof of Theorem 2 is obvious. To prove Theorem 3, we first prove Corol-

lary 3.1.

Proof of Corcllary 3.1

List the pairs of alternatives in the following order: the first pair is (a{,a;),
the second set of two pairs is given by (a.j,aa),j = 1,2, and the _7'”l set of k£ pairs
is given by (aj,a.,c ;,1),_7' =1,...,k; k =3,...,N-1. A ranking of the N alternatives de-
fines an {N(¥ -1)/2]-dimensional vector in the following way. The _7'”l component
is determined by the ranking of the j th pair of alternatives. This component is 1 if
the first listed alternative is preferred to the second; otherwise, it is —1. For ex-
ample, the vector associated with the preference ranking a; >a,; >... > ay has
the value 1 in all the components.

Because the N alternatives can be ranked in N! different ways, the comparis-

JNN-1)/2 yhere J is the interval [-1,1]

on map is a linear mapping from St (N!) to
and the comparison point is 0. (this map defines a convex combination of the
above N! vectors.) We must show that there is a point » in the interior of Si (N!)
such that (i) p is in the preimage of O and (ii) the Jacobian of the comparison map
at p has full rank. Let p = (N!)'l(l.....l). Because p is the profile where there
are equal numbers of voters for each of the N! possible ways to rank the alterna-

tives, p is mapped to O.

The comparison mapping is linear, so it has a matrix representation. The ma-
trix is the Jacobian, and it consists of the N! column vectors defined above. It
remains to show that this set of N! vectors includes N(N —-1)/2 linearly indepen-

dent vectors.

Consider the vectors Vj,j =1,. . N\N-1)/2, where Vj has the value 1 for the
first IN(N-1)/2} — (j =1) component and —1 for the remaining components. This
set of vectors is linearly independent. This is because they form a square array
where the entries on and above the diagonal from the lower left-hand corner to the

upper tight-hand corner are all equal to 1. All the other entries are —-1.

There are 2 vectors with entries of either 1 or —1. Most of them are not re-
lated to the described ranking method. So, to complete the proof, it remains to
show that each Vj is associated with one of the N! rankings of the alternatives. The

choice of the components and the vectors Vj makes thi: fairly simple. The vector

vy corresponds to the ranking a; >ay >..>ay. Vecte © V; has =1 only in the last
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component; this corresponds to a transposition of ay and ay_,. These two alterna-
tives are adjacent in the first ranking, so the ranking for V, can be obtained from
the ranking for V; by transposirig these alternatives. Thisv defines the ranking
Ay, >Q3 >... >0y 5 >ay >ay_4. '

Indeed, the only difference between I/} and V:f+1 is in one component. This
component reflects a change in the ranking of precisely one pair of alternati§7es.
By construction, these two alternatives are adjacent in the ranking Rlcj that is as-
sociated with I/_'f Therefore, the ranking for V}+1 is obtained by transposing these

two adjacent alternatives in Rkj. This completes the proof.

This proof is based on the fact that the -1's in the square array correspond to
the N -1 adjacent transpositions required to move ay from last place in
a; >ap >.. >ay to first. This defines N -1 rankings where the last one is

ay >ay >az>..>ay_4. Next, move ay_, from what is now last place to second,

etc.

Proof of Theorem 3

Let the weight vectors W, .,k =3,....N, be as specified in the statement of the
theorem. With each ranking of the N alternatives, we associate a vector with
{(N(N-1)/2} + 3 + ... + N components. The first N(¥—1)/2 components are defined
as above. The next three are given by the appropriate permutation of W, to
correspond to the specified ranking. For instance, the ranking a; > a3 > a, is
identified with the vector (wj,w,,w;). In general, the set of £ components is the
appropriate permutation of W, to reflect the ranking of the k alternatives,
k =3,....N. The comparison mapping L which is a mapping from Si(¥!) to
JrN1)/2 « 53 (3) x...x Si (N) is described in Section 3. The point p described
above is mapped to the comparison point (0,0,...,0;(1/3)E,,....(1/ N)Ey).

Because L is linear, its matrix representation defines the Jacobian. This ma-
trix has N! column’ vectors with {NW-1)/2]{ +3 + ... +N = N? —3 components.
(The dimension of the range space is smaller; it has dimension N?—N —1. The

- difference results from the constraints defining the N —2 simplices Si (k) in the im-

age space.) We must show that there are N? -3 linearly independent vectors.

In the proof of the corollary, 1 set of N(N —1)/2 vectors that are independent
in the first N(N-1)/2 compo.:'nts were found. To obtain the remaining

IN(N+1)/2!—-3 independent vector s, take the vector associated with each of the N!
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rankings and add it to the vector associated with the reversal of this ranking.
Eac}i of the first N(¥ —1)/2 components of the vector associated with the reversed
ranking will differ in sign from the original vector. Therefore, the sum vectors
will have zeros in each of these first N(N—1)/2 components. Consequently, these
new vectors are orthogonal to the range space used in the proof of Corollary 3.1.
All we need to do is to show that these new vectors contain a set of {IN(N +1)/2{-3

independent vectors.

For a reverse neutral vector, these new vectors are all multiplies of Ey. In
all other cases, the j'* component has the value w; + Wy _y49. For instance, for
the voting vector (4, 3, 0), the new vector corresponding to the rankings
a>b>candc >b >a is (4, 6, 4). The vector corresponding toa >c >b an
b >c >a is (4, 4, 6). In general, these new vectors would correspond to a voting
vector except that they do not satisfy the monotonicity condition. However, the
results given by Saari (1984) hold even for vectors that do not satisfy these mono-
tonicity properties. Therefore, the above reduces to a special case of the one

given by Saari (1984). This completes the proof.

Proof that a Borda weight vector does not work for N =3

Assume that the alternatives are a,b, and ¢. assume that the Borda weight
vector is B3 = (3,2,1). The comparison mapping is linear and its image includes the
comparison point (0,0,0;6,6,6). (B3 is not normalized, and so the sum of the com-

ponents of Si (3) is 6.)

The comparison regions in St (3) are identified with the linear rankings of the
three alternatives. To obtain them, note that if the axes of B3 are labeled in the
usual z,y,z notation, then the region = >y corresponds to a >b,y > =2
corresponds to & > ¢, 2 >z corresponds to ¢ > a, etc. In this way, the simplex
Si (3) is divided into six open sets which are defined by the intersection of the sim-

plex with the three hyperplanesz =y,y =z, and z =z (see Saari (1978, 1982)).

Suppose that the different behaviors described in the theorem hold for Bj.
This means that the image of the comparison mapping meets each of the six regions
of Si(3) as well as all of the open regions in J3. In all, it would meet 48 open re-
gions. If this happens, then, by the linearity of the mapping and a comparison of
the dimensions of the domain and range, it follows that the mapping is onto a neigh-
borhood of the comparison point. This forces the matrix to be of rank five. To

show that this 1. not so, we list all six of the vectors and then extract a four-
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dimensional basis.

The vectors are as follows:
a >b >c,(1,1,153.21);a >¢c >b, (1,1,-1;3,1,2) ;
c>a >b6,(1,-1,-1;21,3);¢ >b >a, (-1,-1,-1;1,2,3);
b>c>a,(-1,-1,-1;1,32);6 >a >c, (-1,1,1;2,3,1)

These six vectors admit a basis consisting of the first three vectors and the vector
(0,0,0; 1,1,1). Thus, the system has corank 2. Since this last vector is orthogonal
to the image space, the system has corank 2 with respect to the image space. This,
and the linearity of the mapping, means that the comparison mapping has a nonzero
intersection with 12 of the 48 admissible comparison regions. If the mapping were
always consistent, then the mapping would meet only 3! = 6 regions. Thus, the map-
ping still admits several "inconsistent” conclusions. (In a paper being prepared,

we characterize the election rankings admitted by a Borda count.)

Extension of Theorem 3

The last part of the proof of Theorem 3 is based on the work of Saari (1984)
which admits a wider variety of results. For example, for & alternatives, suppose
there are k —1 weight vectors W, which form, with £, a linearly independent set.
Arbitrarily choose k —1 rankings of the k alternatives. The theorem asserts that
there exist voters’ profiles so that when the same voters rank the set of k alterna-
tives, & = 3,...,N with the i!" voting vector, then the outcome is the i!® specified

ranking of the alternatives. This is true for all choicesof i =1,...,k—1 and k.

A similar extension holds for Theorem 3. For each k =3,....N, choose
* k —1 —k/2 voting vectors with the following property: (i) the voting vector is
not reverse neutral, and (ii) the set of & —k /2 vectors, defined b}" E, and the vec-
tors formed by adding each of the ¥ —1 — k /2 voting vectors to its reversal, is a
linearly independent set. For each voting vector, arbitrarily choose a ranking of
the k& alternatives. For each pair of alternatives, designate one of them. There
exist voters’ profiles so that when the it voting vector is used to rank the & al-
ternatives the outcome is the assigned ranking i =1,....k -1{/2], £ =3,...,N. For
each pair, a majority of the same voters prefer the designated alternative. The
proof of this statement is a straightforward modification of the proof of Theorem
3.
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Proof of Corollary 3.2

From Corollary 3.1, it follows that there is an open set of voters’ profiles

where the outcome in pairwise elections is the cycle
ay >a30ay >0ag,...,Qy_4 > ay,aQy > a4

Consider the reversed cycle ay <ay <ay_; <... <a, <a,. The following defines
an agenda where a; will be the winner. Let the agenda be the N terms in the re-
versed cycle that start with the alternative immediately following ay and ends with

a;. For example, ag wins with the agenda [a;,ay.ay.ap —4,....@4.@3].

The second part of this corollary is a consequence of the boundary properties
of L '1(0). The second part of this corollary is a consequence of the boundary
properties of L -1(0). The profile, where an equal number of voters have each of
the three rankings a;>a, >.. . >aya;>a3>...>ay >aq, and

az>a,>...>ay >a, >a, has the desired properties. Note that in each pair-
wise comparison the winning alternative receives either % of the vote, or all of it!

This is true for whichever agenda is used and whichever alternative wins.

The dice example

This is a straightforward computation. However, the domain point used in the
image of the comparison point should correspond to two identical weighted, but not
fair, dice. The probability that a particular face will surface is left to the end of
the computation. In other words, there are some complications in the computation

with two fair dice.
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