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FOREWORD

One of the difficult problems in decision analysis relates to the situation, when
the decision must be undertaken by a committee. There exist several formalizations
of decision making process based on the utility function approach. This approach
is however very difficult to apply in the group decision case, since the number of
coefficients characterizing the utility function is very high and it is practically
impossible to directly identify such utility function. Therefore, reduction of dimen-
sionality of the parameter space is necessary.

In this paper a concept of convex dependence between two conflicting deci-
sion makers is presented. This concept was effectively used by the author to
develop a decomposition principle of the group utility function as well as to formu-
late the conditions necessary to perform such a decomposition. The concept was
successfully applied for a practical example.

The paper was presented by the author at IIASA and at the Symposium "Sys-
tems Analysis and Simulation’. It is one of the results of a cooperation between the
SDS and Japanese researchers in decision analysis.

Alexander B. Kurzhanski
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MOLTIOBJECTIVE DECISION MAKING

— UTILITY THEORETIC APPROACH —

Hiroyuki Tamura
Faculty of Engineering
Osaka University
2-1 Yamada~oka, Suita, Osaka 565
Japan

The purpose of this survey paper is to describe recent advances
in multiattribute utility theory and group utility theory for multi-
objective decision making. Firstly, single—attribute von Neumann—
Morgenstern wutility functions are briefly described. Secondly, for
constructing multiattribute utility functions the concept of Keeney's
utility 1independence among multiple attributes is described. Thirdly,
the concept of convex dependence is introduced as a generalized concept
of wutility independence. Fourthly, for constructing group utility
functions the concept of convex dependence among multiple decision
makers 1is introduced. Algorithm of identifying multiattribute (and/or
group) utility functions and some hypothetical examples for interpret-
ing convex dependence are included.

(Multiobjective decision making; Utility theory; Multiattribute utility

function; Group utility function; Utility independence; Convex depend-

ence)



1. INTRODUCTION

Mathematical modeling of preferences has been widely studied in
multiattribute decision analysis. Keeney and Raiffa (1976) have de-
scribed in detail the standard approach. A preference representation
function wunder risk can be constructed as a utility function, however,

it 1is practically impossible to directly identify a multiattribute

utility function. Therefore, it is necessary to develop conditions

that reduce the dimensionality of the functions that are required to
identify. These conditions restrict the form of a multiattribute util-

ity function in a decomposition theorem.

Keeney and Kirkwood (1975) have extended the multiattribute util-
ity theory for a decision maker to a group utility theory for multiple
conflicting decision makers where a group utility function 1s con
structed postulating the wutility independence properties among the

multiple decision makers.

In this paper after briefly describing a single-attribute utility
function based on von Neumann and Morgenstern's (1944) expected util-
ity hypothesis, additive, multilinear, and convex decompositions are
described for multiattribute utility functions. These decompositions
are based on additive and utility independence (Keeney and Raiffa,
1976) and convex dependence (Tamura and Nakamura, 1983) conditions, re-
spectively. The concept of convex dependence is a generalized concept
of wutility 1independence where we consider the change of decision
maker's attitude towards risk. This concept generates various decompo-
sitions which include Keeney's additive/multiplicative decompositions
as special cases. For clarifying the interpretation of this concept an

example of trading-off between environment and consumption is included



(Tamura and Nakamura, 1978).

For group decision making with multiple decision makers we de-
scribe the concept of convex dependence between two (conflicting) deci-
sion makers (Tamura and Yukimura, 1983). This concept can represent the
change of attitude of each decision maker towards the group utility de-
pending wupon the utility level of the other decision maker. For clari-
fying the interpretation of this concept a hypothetical numerical exam—

ple for siting a major airport is included.

As a possible directions for further research, value theoretic ap~
proach to riskless and/or risky preference representation is mentioned.
In this approach the concept of strength~of-preference (Fishburn, 1970

and Dyer and Sarin, 1979) plays an important role.

2. UTILITY THEORY

2.1. Expected Utility Hypothesis of von Neumann-Morgenstern and Iden—

tification of a Single-Attribute Utility Function

Let
A={a,b, ---}

be a set of alternative actions from which a decision maker must choose
one action. Suppose the choice of aeA will result in consequence Xy
with probability Py> and the choice of beA will result in consequence

X, with probability q;> and so forth. Let

X ={ X1s Xyy oo }

be a set of all possible consequences. In this case




20, ... foralli
z p.=z. qi=---=1o

Let real function u be a utility function on X. Then the expected u-

tilities of actions a, b, ... are given, respectively, by

Ea = Zi piu(xi), Eb = Iy qiu(xi), ces 1)

The assertion that the decision maker chooses an alternative ac-

tion as if he maximizes his expected utility is called the expected u-

tility hypothesis of von Neumann and Morgenstern (1944). In other words

the decision maker chooses an action according to the normative rule

arbed E >E a~be E_=E (2)

b’ b

where aj~b denotes "a is preferred to b", and a ~ b denotes "a is in-

different to b". This rule is called the expected utility rule. Util-

ity function which satisfies Eqns. (1) and (2) is uniquely obtained wi-

thin the class of positive linear transformation.

Figure 1 shows a decision tree and lotteries which explain the a-
bove mentioned situation, where la’ lb’ ... denote lotteries which the
decision maker comes across when he chooses the action a, b, ...

, re—

spectively.

DEFINITION 1. A certainty equivalent of lottery la is an amount X such

that the decision maker is indifferent between the amount X for certain

and the lottery la.
From the expected utility hypothesis we obtain

u(k) = Ea =z, piu(xi). (3)



. o

In a set X of all possible consequences, let x and x* be the
worst and the best consequences, respectively. Since utility function
is unique within the class of positive linear transformations, let us

normalize the utility function as
o
u(x’) =0, u(x*) = 1.

Let <x*, p, x%> be a lottery yielding consequences x* and x° with prob-
abilities p and (1-p), respectively. Especially when p=0.5, this lot-

tery 1is called the fifty-fifty lottery and is denoted as <x¥*, x°>. Let

X be a certainty equivalent of lottery <x*, p, x°>, that is

o
X ~ <x*, p, X >
then

u(x) = pu(x*) + (1 - pu(x®) = p.

It 1is easy to 1identify a single—-attribute wutility function of a
decision maker by asking the decision maker about the certainty equiva-

lents of some fifty-fifty lotteries (Keeney and Raiffa, 1976). Let

- <x*. %x° o - <xk
¥9.5 ~ X%, X> 5 Xy 55 v X 5y X2 Xy g5 - <XT, X5 o>
then
u(xy s) = 0.5u(x*) + 0.5u(x°%) = 0.5
= o =
u(x0.25) = O'SU(XO.S) + 0.5u(x") 0.25
u(xo.75) = 0.5u(x*) + O'SU(XO.S) = 0.75.

. o
If we plot the pairs (x, 0),(x0.25, 0.25), (XO.S’ 0.5), (x0.75, 0.75),
(x*, 1), a diagram like Fig. 2 is obtained. By some curve fitting tech~

niques, 1like least square method, a single—attribute utility function




u(x) can be identified.

Attitude of a decision maker toward risk is described as follows:

DEFINITION 2. A decision maker 1is risk averse if he prefers the ex—

pected consequence x (=13 PyXy ) of any lotteries to that lottery. 1In

this case
u(x) > Zi piu(xi)' 4)

If a decision maker is risk averse, his utility function is concave as
shown in Fig. 2. Converse is also true. A decision maker is risk neu-

tral ( prone ) if and only if his utility function is linear ( convex).

2.2. Utility Decompositions Based on Additive and Utility Independence

The following results are the essential summary of Keeney and

Raiffa (1976).

Let a specific consequence xeX be characterized by two attributes
(performance indices) Y and Z. For example, price and performance of
cars, natural environment and economy of a nation, and so forth. 1In

this case a specific consequence xeX is represented by an ordered pair

x = (y, z), yeY¥Y, ze¢eZ.

A set of all possible consequences X can be written as a rectangular
subset of a two—dimensional Euclidean space as X = YxZ. This consequ-

ence space 1s called two—attribute space. Although Y and Z could re-

present vector—attribute, both of these are regarded as single-attri-
bute spaces here. Two—attribute utility function is defined on X = ¥YxZ

as u:Y¥xZ + Re.



DEFINITION 3. Attribute Y is utility independent of attribute Z, de-

noted Y(UI)Z, if conditional preferences for 1lotteries on Y given zeZ

do not depend on the conditional level z.

Let us assume that y° and z° are the worst level of the attributes

Y and 2, respectively, and y* and z* are the best level of Y and Z, re-

spectively.

DEFINITION 4. Given an arbitrary zeZ, a normalized conditional utility

function ul(y|z) on Y is defined by

u (yl2) = [u(y,z) = u(y®,2)1/[u(y*,2) - u(y°,2)] (5a)
where it is assumed that u(y*,z) > u(yo,z).

Similarly uz(zly) on Z is also defined by

uy(zly) = [u(y,2) = uw(y,z)]/[u(y,z*) = u(y,z")] (5b)

where it is assumed that u(y,z*) > u(y,xo).

From DEFINITION 4 we obtain
u, (v°12) = u,(2°ly) = 0 uy (y*lz) = u,(z*ly) = 1
1Yy 2 ’ 1YY 2 y .
From DEFINITIONs 3 and 4 the following equations hold, if Y(UI)Z.
ul(ylz) = ul(ylzo) . for all z € 2.

In other words utility independence implies that the normalized condi-
tional wutility functions do not depend on the different conditional

levels.

THEOREM 1. Y(UI)Z, if and only if




u(y,2) = au (y]2%) + buy(zly®) + (1 = a)u (y]2°)u,(zly*)

- bul(y|z°)u2(z|y°) (6)

where u(y,z) is normalized as u(yo,zo) = 0 and u(y*,z*) =1, and a =

u(y*,z°) and b = u(y®,z*).

THEQREM 2. Attributes Y and Z are mutually utility independent, denot-

ed Y(MUI)Z, if and only if
u(y,z) = au (y[2%) + buy(z|y”) + (L1-a=b)u (y]2z°)u,(z]y®) )

where u(y,z) 1s normalized, and a and b are defined as before.

THEOREMs 1 and 2 give decomposition theorems under the utility in-

dependence assumptions. It is clear from THEOREM 2 that if the attri-
butes Y and Z are mutually utility independent, only one normalized
conditional wutility function needs to be assessed for each attribute.
Since each normalized conditional utility function is a single-attri-
bute wutility function, it can be identified by asking the decision
maker the certainty equivalents of some 50-50 lotteries as described in

the previous section.

DEFINITION 5. Attributes Y and Z are additive independent, if, for ar-

bitrarily chosen y'eY and z'eZ,

<(y,2),(y',2')> ~ <(y,2"),(y"',2z)>, forallye¥Y, ze Z.

THEOREM 3. Attributes Y and Z are additive independent, if and only if

u(y,z) = aul(y|z°) + buz(zlyo) (8)

where



a+ b=1.

Decomposition theorem 3 1is a special case of the decomposition

theorem 2 where atb = 1 in Eqn. (7). Therefore, the additive independ-

ence 1s a special case of mutual utility independence.

2.3. Utility Decompositions Based on Convex Dependence

The following results are due to Tamura and Nakamura (1983). This

section deals with the case where
ul(ylz) o ul(y|z°), for some z € Z
uz(zly) o uz(zlyo), for some y ¢ Y

that is, utility independence does not hold between the attributes Y

and Z.

DEFINITION 6. Attribute Y is nth order convex dependent on attribute

Z, denoted Y(CDn)Z, if there exist distinct zj, Zyyees, 2 €2 and real
functions Ags Ayseces A, On Z such that the normalized conditional u-

tility function ul(y|z) can be written as

v (y[z) = ELO A (2)u (ylzy), zri'=o A (2) =1 (9)

for all yeY and zeZ, where

Gij z = zj, j=0,1,..0,n

Real number, z¥z., j=0,l,...,n

A, (z) =
S

i=1,2,...,n




Gij denotes Kronecker delta and n 1is the smallest nonnegative integer

for which Eqn. (9) holds.

This definition says that if Y(CDn)Z, any normalized conditional
utility function on Y can be described as a convex combination of (ntl)
normalized conditional wutility functions with different conditional

levels where the coefficients ki(z) are not necessarily nonnegative.

Geometric illustration of DEFINITION 6 is shown in Fig. 3. Sup-
pose three arbitrary normalized conditional utility functions ul(ylzo),
ul(y|zl) and ul(y|z) are assessed on Y as shown in Fig. 3(a). If
Y(CDO)Z, all the normalized conditional utility functions are identical
as shown in Fig. 3(b). 1If Y(CDl)Z, an arbitrary normalized conditional
utility function ul(ylz) can be obtained as a convex combination of

ul(ylxo) and ul(ylzl) as shown in Fig. 3(c).

For n=0,1,... , if Y(CDn)Z, then Z is at most (m+l)th order conm
vex dependent on Y. If Y(UI)Z, then Y(CDO)Z, and Z(UI)Y or Z(CDl)Y. In
general 1if Y(CDn)Z, then Z satisfies one of the three properties,

Z(CDn-l)Y’ z(CDn)Y or Z(CDn+1)Y.

THEQOREM 4., For n = 1,2,..., Y(CDn)Z, if and only if

u(y,z) = aul(ylzo) + bu2(2|y°) + ul(ylzo)f(y*,Z)

n* n

where

- 10 -



u(y®,z% =0, u(y*,z*) =1, a = u(y*z%, b= u(y®,z*)

£(y,2) = u;(y|2) [(1=a)uy(z| y*)+a=buy (z|y°)] = au (y]2°) (11)
G(y,2) = a[(1=a)u,(z|y*y+a=bu,y (z]y*) 1{u; (yl2) = u (y]2")]

cij is a constant, and summation i = 1 to n* means i = 1,2,..., n1,%.

THEQOREM 5. For n = 1,2,..., Y(CDn)Z and Z(CDn)Y, if and only if

u(y,z) = au (ylzo) + bu (zlyo) + Zn* Zn* d, .f(y,z,)f(y.,z)
’ 1 2 1=1 “j=1 9137 1¥»240E Y 5

b ™ 4 GGz a2)
z =1 “j=1 %j y’zi Yj,z

where u(y,z) is normalized, a and b are defined as before, Eqn. (11)

holds,

H(y,z) = b[(l-b)ul(ylZ*)+b-au1(y|zo)][uz(ZIy) - u2(2|y°)] (13)

L
and dij and dij are constants.

Exact expressions for cij’ d and dij can be found in Tamura and

ij
Nakamura (1983).

We have obtained two main convex decomposition theorems which can

represent a wide range of utility functions. Moreover, when the util-
ity on the arbitrary point (yn,zn) has a particular value, that is, dij
= 0, for all i, j in Eqn. (12), we can obtain one more decomposition of
utility functions which does not depend on the point (yn,zn). This de-

composition still satisfies Y(CDn)Z and Z(CDn)Y, so we call this new

- 11 -



property reduced n-th order convex dependence and denote it by

Y(RCD_)Z.

We note that when d'ij =0, for all i, j and n = 1, Eqn. (12) re-

duces to Fishburn's (1974) bilateral decomposition

uw(y,z) = aul(ylzo) + buz(ZIyo) + f(y,z*)f(y*,z)/f(y*,2*). (14)

When n =1 and dij # 0, that is Y(CDl)Z and Z(CDl)Y, Eqn. (12) reduces

to
u(y,z) = au;(y]2°) + buy(z|y°) + £(y,z%)£(y*,2)/£(y*,2*)
+ d'G(y,z*)H(y*,2). (15)

Equation (15) is Bell's (1979) decomposition under interpolation inde-

pendence.

On two scalar attributes the difference between the conditional u-
tility functions necessary to construct the previous decomposition
models and the convex decomposition models is shown in Fig. 4. By as-
sessing utilities on the heavy shaded lines and points, we can comple-
tely specify the utility function in the cases indicated in Fig. 4. As
seen from Fig. 4, the advantage of the convex decomposition is that
only single~attribute conditional utility functions need to be assessed
even for high—~order convex dependent case. Therefore, it is relatively

easy to identify the utility functions.

Fishburn and Farquhar (1982) have established an axiomatic ap-

proach for selecting a basis of normalized conditional utility func-

tion.

- 12 -



2.4. Interpretation of Convex Dependence

For describing the interpretation of convex dependence between
two different attributes, we discuss the utility for environment and
consumption (Tamura and Nakamura, 1978). 1In this problem there exists
conflict between these two attributes, because the more we consume the
more we pollute. It will be shown that the two attributes, environment
and consumption, do not satisfy the utility independence property.
Therefore, we may want to take into account the convex dependence pro-

perty.

Let Y and Z be the attributes of environment and consumption, re-

spectively, and eeY and ceZ be the attribute levels. We restrict these
o o o

attribute 1levels in e g e < e* and cg ¢ ¢ c* where e = e means

environment 1is polluted and is in the worst 1level, e = e* means no

. (o) .
pollution exists and environment is clean, ¢ = ¢ means consumption is

in the lowest level, and ¢ = c* in the highest level.

Now we consider how a normalized conditional wutility function
ul(elc) for environment changes depending upon the consumption level c.
It 1is evident that the preference for environment changes according to
the consumption level c¢c. Comparing ul(e(c*) with ul(elco) these normal-
ized conditional utility function is drawn schematically in Fig. 5 a).
When c¢ = c*, even if the environment is deteriorated from the clean
level (e = e*), the decrease of utility is not so rapid in compensation
for high consumption, but as the environment level approaches to the
worst level, the utility for the environment decreases rapidly. When c

o

= ¢, the decrease of utility for environment is even for any environ

mental level, because the consumption level is suppressed to a low

level.

- 13 -




Next, we consider how a normalized conditional utility function

u2(c|e) for consumption changes depending upon the environmental level.

Comparing uz(c|e*) with uz(cleo) these normalized conditional utility
function is drawn schematically in Fig. 5 b). When e = e*, utility for
consumption increases according to the law of diminishing marginal u-
tility. On the other hand, when e = eo, they feel that the high com
sumption 1is a matter of course, therefore, the rate of increase of u~
tility for the unit increase of the consumption level is very small
when the consumption level is low. But the utility for consumption in-

creases according to the law of diminishing marginal utility after the

consumption level moves to higher level.

Accordingly, the trade-off between enviromment and consumption
does not satisfy the wutility independence property, and hence taking
into account the convex dependence property we could construct an ap—

propriate utility function.

3. ALGORITHM OF IDENTIFYING MULTIATTRIBUTE UTILITY FUNCTIONS

For identifying a multiattribute utility function under the convex
dependence condition (including O-th order), we need to find the order
of convex dependence. This order can be assessed as in the following

steps: Define

e

[ Aqs Ayy eoe 5 A A% ]

0 1° (16&)

w2, uyylz ), cee y ulylz), 1] (16b)
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*
u, (v 124) ul(yllzl) . ul(yllzn_l) ul(yllz )

U1y lzg) u(yylzy) vee uy(yylzg 1) vy, l2%)

(o}
N>

. . . . (l16¢c)

wlzg) u(yple) wee uylyglzg ) vy, 1)

Step 0. Normalized conditional utility functions ul(ylzo), ul(ylz*),

uz(zlyo) and U2(2|Y*) are assessed, and we draw the graph of them. If

we can regard that
uy (y12°) = u (ylz*) u (z1y%) = u, (z]y*)
1 1 ’ 2 2

then we decide that Y(CDO)Z and Z(CDO)Y, that is, Y(MUI)Z. TIf not go

to Step 1.

Step 1. n=1

Step 2. Normalized conditional utility functions ul(ylzo),ul(ylzl),...,

ul(ylzn) and ul(ylz*) are assessed, and then u_ and U, are obtained.
Step 3. Linear equation

UXx =u (17)
is solved with respect to A .

Step 4. We draw the graph of

£(y) = 3ty A (ylz)). (18)

- 15 -




Step 5. The graph of f(y) is compared with the graph of ul(ylzn). 1f
we can regard that both curves are coincident within the allowable er—

ror, we decide that Y(CDn)Z. If not, nmtl+n and then go back to Step 2.

These steps can be easily realized by using a graphic terminal of

a large computer.

Parameters a and b which appeared in THEOREMs 1 to 5 can be esti-
mated as follows: We ask the decision maker the indifference probabil-

ity p such that

(y*,zo) ~ <(y*,z*),p,(y°,z°)>. (19)
Then, we obtain

a = u(y*,z%) = pu(y*,z*) + (1 - pu(y°,z°) = p. (20)

Similarly, we ask the decision maker the indifference probability q

such that

(YO)Z*) ~ <(Y*,Z*),q,(}’o,zo)>- (21)

Then, we obtain

b=gq. (22)

After obtaining the information for the order of convex depend-
ence, normalized conditional utility functions and the scaling parame-
ters a and b, we can construct a multiattribute utility function by us-
ing a decomposition form described in THEOREMs 1 to 5. For two attri-
bute cases we could draw indifference curves for the multiattribute u-

tility function in two attribute space YxZ.

- 16 -



4. GROUP UTILITY THEORY

In the previous methods of social choice or group decision making
the preference attitude of each decision maker (individual member of
the group) has been described without taking into account the utility
level (level of satisfaction) of the other decision makers, and such
preference structures have been aggregated by some rule for group deci-
sion making. Keeney and Kirkwood's (1975) approach is also in this cat-
egory. As the result we have often come across contradicting social
decisions as seen in so-called voting paradox. As shown in Arrow's
(1963) impossibility theorem there are no procedures for obtaining a
group ordering of the various alternatives from the individual's ordi—
nal rankings of the alternatives that is consistent with five reasona-

ble criteria.

In real situation the preference attitude of each decision maker
heavily depends on the outcomes or utility levels obtained by the other
decision makers. For example a decision maker is satisfied with his low
outcome and he feels that the group ﬁtility is relatively high even if
his own utility level is low, when the other decision maker's utility
level or outcome is lower than or equal to his outcome. On the contra-
ry, the same decision maker is not satisfied with his high outcome when
the other decision maker's outcome is higher than his outcome. Hence,
the wutility independence assumption among the multiple decision makers

is not appropriate.

Essentially, in real social choice the individual's preference
which 1is based only on his benefit, should not be reflected to the so-

ciety. Instead, the individual's preference which is based on social

- 17 -




ethics or moral, should be reflected. Systematic methodologies for
such societal decision have been missing and have been desired in many
fields; economics, politics, behavioral science, operations research,

and so forth.

In this section a group utility theorylis described based on the
concept of convex dependence. The group decision making by two (conf-
licting) decision makers is considered, where we discuss a systematic
way of describing each decision maker's preference which depends on the
utility level of the other decision maker. In other words, change of
attitude of each decision maker towards the group utility is described
depending upon the utility level of the other decision maker. Group u-
tility function is then constructed by aggregating such preference of
each decision maker. The following development 1is due to Tamura and

Yukimura (1983).

DEFINITION 7. Let U1><U2 denote the wutility function space, and let
ul(xl)eUl, uz(xz)sU2 denote the wutility function of decision maker 1
(DM1) and DM2 on the multiattribute consequence spaces X1 and X2, res—

pectively, where xieXi (i = 1,2) denotes a specific consequence for

DMi. A group utility function W(xl,x2 is assumed to be described as

wluy (x),u, ()]

We shall simplify the notation as follows:

wluy,uy) = wluy (x)),0,(x,)] (23)

o :
where X, and xi* denote the worst and the best consequences of DMi,

- 18 -



respectively, and hence uio and ui* denote the utility level of DMi for
the worst and the best consequences, respectively. We will describe how

to construct w(ul,uz) in the following.

DEFINITION 8. Given an arbitrary uzeU2 a normalized conditional group

utility function (NCGUF) wl(ulluz) of DMLl on U, is defined by

1
wy Cuy luy) = [9Cuyu))=wCuy *5uy) 1/ TwCuy *,u)=w(uy u,)] (24)

o
where it 1is assumed that w(ul*,uz) > w(u1 ,u2), u = 0, u1*= 1.

Then, wl(ul|u2) is normalized as
o
w) (uy qu) =0, wl(ul*(uz) =1, for all u, € U,.

Similarly, NCGUF of DM2 wz(uzlul) can be defined by
o o
w2(u2|ul) = [w(ul,uz)-w(ul,u2 )]/[w(ul,uz*)—w(ul,u2 )] (25)

(o)

) .
where w(ul,uz*) > w(ul,u2 ), u, = 0, u2*=1. It 1is also assumed that

the group utility function w(ul,uz) is normalized so that

o
w(u1 >y ) =0, w(ul*’UZ*) = 1.

From mathematical point of view formulas of group utility func-
tions are identical with those of multiattribute utility functions. 1In
THEQOREMs 1 to 5 if we replace the symbols as shown in Table 1, we could

obtain the decomposition forms of group utility functions.

NCGUF (24) of DMl represents his subjective preference structure
for the group utility as a function of his own utility level under the

condition that the utility level of DM2 is given. NCGUFs (24) and (25)
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will play an important role for constructing a group utility function.

Convex dependence between two decision makers is defined as follows:

DEFINITION 9. Utility of DMl is said to be n-th order convex dependent

on the utility of DM2, denoted UI(CDn)UZ’ if NCGUF of DMl wl(u1|u2) can

be described as a convex combination of (m+l) NCGUFs of DML wl(ulluzi)

i=40,l,...,n with different conditional levels.

For clarifying the interpretation of convex dependence between
two (conflicting) decision makers, we deal with a decision making prob-
lem for siting a major airport, where we describe how to represent
NCGUFs of each decision maker taking into account the situation of the

other decision maker.

Let DMl be the representative of the regional inhabitants and DM2
the representative of the developer of the airport. Existence of a be-
nevolent dictator, who mediates DMl and DM2 by assessing the scaling
coefficients, is postulated. We can regard that DMl wishes to construct
the airport as far from the regional area as possible for reducing the
environmental negative effect of the airport. On the other hand, DM2
wishes to construct the airport at the closer location to city for com

venience and efficiency of the airport. Therefore, DMl and DM2 are ob-

viously conflicting.

We consider two mutually utility independent cases and one mutual-

ly first order convex dependent case and interpret each case.

Case A: Ul(MUI)U2

Suppose the certainty equivalents and the resulting NCGUFs of DMl

and DM2 are assessed as shown in Fig. 6. Convex NCGUFs in this figure
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show that both DMl and DM2 do not think that the group utility is high
unless the utility levels of their own are very high, and that each
DM's attitude towards the group utility does not depend on the utility
level of the other DM. In other words, each DM is mutually utility in-

dependent and their attitude is selfish and stubborn.
In this case the group utility function is described as

o )
w(ul,uz) = awl(ullu2 ) + bwz(uzlul )

+ (1L -a- b)wl(ul|u20)W2(u2|ulo)- (26)

Case B: Keeney-Kirkwood model

Suppose the certainty equivalents and the resulting NCGUFs of DMl
and DM2 are assessed as shown in Fig. 7. Linear NCGUFs in this figure

show that NCGUF of each DM is equal to his own utility level. In this

case each DM is again mutually utility independent and his attitude to-

wards the group utility is stubborn but not as selfish as in Case A.

. o\ _ o, _ .
In this case wl(ullu2 ) = up, w2(u2|u1 ) u, 1in Eqn. (26), and

the group utility function is described as

W(ul,uz) = auy, + bu2 +(l -a- b)uluz. 27)

Case C: Ul(CDl)UZ and UZ(CDI)UI

Suppose the certainty equivalents and the resulting NCGUFs of DML
and DM2 are assessed as shown in Fig. 8. Furthermore, suppose the
first order convex dependence between DMl and DM2 is assured. This

means that preference attitude of DMl (DM2) to the group utility varies
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depending upon the utility level of DM2 (DMl). Even when the utility
level of DM2 1is at the worst level (u2 = u2°), the attitude of DMl

towards the group utility is selfish for low u because the environ-

1!
mental impact of the airport to DMl is straightforward. But for higher

uy the attitude of DMl is changed to be more gentle.

On the other hand, when the utility level of DM2 is at the best
level (u2 = uz*), the attitude of DMl towards the group utility is al-
ways selfish. In other words, when the utility level of DM2 is high,
DM1 does not feel that group utility 1is high unless his own utility
level is very high. This can be interpreted that in the group decision
DMl 1is claiming equity by comparing his own utility level with that of

o

DM2.  When the utility level of DMl is at the worst level (u; = u; ),

the attitude of DM2 is gentle and sympathetic, but when the utility
level of DMl is at the best level (u1 = ul*), the attitude of DM2 is

changed to be slightly self-centered.

In this case the group utility function is described as Eqn. (15)

where the symbols in Eqn. (15) are replaced according as Table 1.

As shown in Case C the concept of convex dependence makes it pos-—
sible to describe 1in NCGUFs the change of attitude of each decision
maker depending upon the utility level of the other decision maker. By
using the group utility theory based on the concept of convex depend-
ence, it is possible to offer clear information of various preference
orderings for the alternatives depending wupon the various attitude of
each decision maker 1in the group and various cases for the values of

scaling coefficients assessed by a benevolent dictator.
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5. CONCLUDING REMARKS

Centering around the concept of convex dependence multiattribute
utility theory and group utility theory are briefly surveyed for multi-
objective decision making. A major advantage of the convex decomposi-~
tion is that they include many previous decompositions such as addi-
tive, multiplicative, bilateral and interpolation decompositions as
special cases. Therefore, depending upon the complexity of trade-offs
the convex decompositions could provide more flexible multiattribute

and/or group utility functions for modeling preferences of a decision

maker or multiple (conflicting) decision makers.

Since the convex decompositions need only single—attribute utility
functions even for high-order convex dependent cases, it is relatively
easy to identify the multiattribute utility functions. Graphic termi-
nals of a large-scale computer could be effectively used for this pur-

pose.

We didn't include value theoretic approach (Dyer and Sarin, 1979,
and Sarin, 1983) in this paper, however, riskless and/or risky prefer-
ence representation based on the value theoretic approach is an impor-
tant topic for further research. Under this approach it might be pos-
sible to discriminate a decision maker's strength-of-preference and the

attitude towards risk.

The approach described in this paper are based on the expected u-
tility hypothesis of von Neumann and Morgenstern (1944). Many paradox-
es (e.g. Allais and Hagen, 1979, and Kahneman and Tversky, 1979) have
been observed which violate particular axioms. For overcoming this dif-
ficulty nonlinear utility analysis (Nakamura, 1984) is being investi-

gated.
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FIGURE 1 Decision tree and lotteries.
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FIGURE 2 Single-attribute utility function.
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FIGURE 3 Relations among normalized conditional utility functions.
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Assigning utilities for heavy shaded consequences complete-
ly specifies the utility functions in the cases indicated.

(Tamura and Nakamura, 1983)
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FIGURE 8 NCGUFs for Case C.
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TABLE 1 Correspondence of symbols between multiattribute
utility theory and group utility theory.

Multiattribute utility theory

Group utility theory

Two—attribute space:
YxZ

Attribute level:
yeY, zeZ

Two—attribute utility function:
u(y,z)

Normalized conditional utility
functions: ul(y|z), uz(z|y)

Utility function space for

two DMs: leU2

Utility level of each DM:

uleUI, uzeU2

Group utility function for
two DMs: w(ul,uz)

NCGUFs:
Wl(ulluz), w2(u2|u1)
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