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1. INTRODUCTION 

In recent  years  t h e r e  has  been a tremendous increase in analyses of temporal (or  

over  time) data on individuals t o  study demographic events, such as births,  marriages, 

residential changes, and deaths. Since many phenomena studied by demographers in- 

volve discrete  changes in life conditions tha t  can (in principle) occur  at any moment in 

time, i t  i s  not surprising tha t  attention has been drawn especially t o  modeling these 

phenomena as finite-state, continuous-time stochastic processes and then t o  estimating 

these models from event (or  life) histories, which record  the  da te  of every change of 

state of individuals in some time period (for example, t h e  dates  of birth of all children 

ever  born t o  women in some sample). 

The popularity of this  form of demographic analysis has  been greatly enhanced by 

two factors.  First ,  event history data  pertaining t o  a wide range of demographic 

phenomena are becoming widely available. One of t he  most notable examples of such 

data  are the  fertility histories collected from samples of women in 44 countries during 

the  last  decade [ 11. But t h e r e  also exist  data on marital histories, migration his- 

tories,  job histories, and health histories. Second, new statistical methods designed 

particularly f o r  event history analysis have been developed and incorporated into 

various computer software packages [2,3,4]. 

To da te  t h e  methods tha t  have been developed f o r  event history analysis have 

focused mainly on attempts t o  relate the  observed event histories t o  measured covari- 

ates thought t o  explain (or  at least t o  predict) t he  occurrence and timing of demo- 

graphic events in a person's life. These developments a r e  all t o  t he  good. Y e t  fu r ther  

developments are needed. In par t icular ,  most of t he  statistical tools tha t  have previ- 

ously been developed fo r  event history analysis have ignored one universal problem-- 
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namely, t he  life histories tha t  w e  observe a r e  influenced not only by the  covariates 

tha t  w e  measure but also by many things tha t  w e  do not measure. That is, individuals 

are not only heterogeneous in ways w e  observe (i.e., measured covariates),  but also in 

ways tha t  w e  do not observe (i.e.. random "nuisance" factors).  These unobserved fac- 

t o r s  o r  disturbances influence a person's life history, and w e  a r e  likely t o  draw e r -  

roneous conclusions if w e  ignore them. 

A related argument in t he  favor  of treatment of the  unobserved heterogeneity is 

as follows. There are already resul ts  from many demographic, economic, sociological, 

and medical studies available in compact form (i.e., as models, descriptions, and o ther  

forms of knowleage). Since the  studies have different goals, t he  variables o r  

processes t ha t  were the  focal point in one study may be  nuisance variables o r  

processes in o the r  research .  In theory one can combine data  from several  studies and 

develop a unified approach t o  analyzing the  combined data.  However, even if a huge 

data  bank were crea ted  (which is unrealistic), some important causal variables o r  

processes are still unlikely t o  be  measured. 

In this paper  w e  descr ibe some statistical tools f o r  event history analysis when 

the re  is unobserved heterogeneity of par t icular  types as w e l l  as measured covariates. 

For expository purposes w e  also discuss several  potential applications of these statist-  

ical methods. Actual application of these methods t o  demographic data  remains as a 

goal f o r  future work. 

2. PRELIMINARIES 

Let C t ,  t r 0 denote a finite-state stochastic process t ha t  makes a finite number of 

jumps f o r  any 0 S t < -. This process  can also be  represented in terms of a sequence 

of random times at which jumps occur ,  Tn, and random variables, Yn, where Yn = CT,. 

(We assume tha t  the  t ra jec tor ies  of C t  are right-continuous.) This process may be con- 

sidered as a part icular  form of a multivariate point process  as described in [5]. The 

realization of the  process  Ct  f o r  the  i - th  individual on time interval [O,t] is just t he  

event history f o r  individual i from time 0 t o  time t . W e  will denote i t  by t o ( : ) .  
The simplest case of such a process  is the discrete  time Markov chain. If 

p j k ,  j ,k = l,$ are the  unknown transition probabilities of change from state j t o  state 

k ,  then the  maximum likelihood ra t io  approach leads t o  the  following formula f o r  the  

estimator of & (t ) using information about transitions (time is discrete) 



where njk ( t  ) is  t he  number of an  individual's transitions from j t o  k on the  set of times 

IO,l, ..., t  j and n j ( t )  is  t he  number of times when the  individual occupies t he  state j on 

the  set 10.1 ,..., t  1. 

If t he  available information about population movement consists of t he  transition 

records  f o r  I independent identical individuals, then the  estimator Fjk ( t  ) has the  form 

where the index i is related t o  t h e  i - th  particular individual. Notice tha t  

where sj  ( u )  i s  the  number of the  individuals who occupy state j at time u . 

More realistic than a discrete-time model is a continuous-time model, represented 

by a finite-state continuous-time Markov process. Denoting the  unknown constant tran- 

sition intensities by rjk , j ,k = 1,. . . .@, one can easily obtain the  maximum likelihood es- 

timators ( t  ) when sample paths of individuals are observed: 

where njk ( t  ) i s  defined as above and r j  ( t  ) is  t he  time spent  in state j during time in- 

terval  [0, t  ]. 

In reality the situation is even more complicated. Transition intensities usually 

change over  time and are subject t o  various impacts. Some of the  influential variables 

are observed o r  measured; o thers  a r e  not. All of these circumstances lead t o  t he  fol- 

lowing general statement of the  problem. 

3. STATEMENT OF THE PROBLm 

Assume tha t  the  random variable z ,  random process  t t ,  and an  additional random 

variable x are given on probability space ( O , H , P ) .  We assume tha t  variable x and ran- 

dom process  tt a r e  observed and tha t  random variable z i s  unobserved. W e  also as- 

sume tha t  the  joint probability distribution of t t  and z depends on the  vector  of meas- 

ured variables x. A s  before,  t t  denotes a finite-state continuous-time process  tha t  



makes a finite number of jumps f o r  any 0 5 t  < a. 

W e  le t  q denote t h e  value of t he  observed vector  f o r  individual i .  Finally. w e  as- 

sume that  a vec tor  of unknown parameters  a, which are the  same f o r  all  individuals in 

t he  population, indicate how t h e  observed x influences t h e  joint probability distribu- 

tion of z and t t .  When z ,  a ,  and x are known, t h e  evolution of t h e  process  t t  can b e  

described by t h e  transit ion intensities rjk ( t  , z  , a , x ) ,  j ,k = 1, ... ,* where I) is  t h e  size of 

t he  state space  f o r  t h e  process  t t .  

The goal is  t o  estimate t h e  unknown parameters  a using data  on t h e  event histories 

f o r  I individuals, ), i = 1,.  . . , I .  

4. STRATEGY 

One of t h e  most popular ways of estimating parameters  in a model i s  t h e  method of 

maximum likelihood. The functional form of t h e  likelihood ra t io  f o r  a multivariate 

point process  is  well known [5]. More traditional in sociological applications i s  t h e  no- 

tion of t h e  likelihood function. Denoting this  function f o r  individual i by Li ( t o t )  and 

omitting index i from tot f o r  simplicity, w e  have: 

- (u. ,z ,a,z )du 

Lt (tot = n r4G4G(Tn ~ . ~ . ~ ~ x ) e  
T,r t  

where Tn , n = 1.2, ..., denotes t h e  times of jumps in t he  history [ O t  (i.e., t h e  times when 

events occurred) ,  and Tn 4 denotes an  instant before  t h e  n t h  jump. This form of t h e  

likelihood cannot be  used direct ly  because i t  depends on the  unobserved variables z ,  

as well as on t h e  measured variables x. I t  is  necessary, therefore ,  t o  find a way of 

representing the  probabilistic character is t ics  of t h e  process  tt t ha t  does not depend 

on z .  The following theorem, which can b e  proved using t h e  resul ts  f o r  predictable 

compensators in martingale theory [6 ] ,  implies tha t  such a form exists. 

Theorem The process  t t  m a y  be represented in terms  of the  i n i t i a l  d i s t r i b u -  

t i o n  p j  (0) = p Ito = j 1, j = 1, . . . , I ) ,  a n d  t r a n s i t i o n  i n t e n s i t i e s  rjk ( t  , a ,x ) ,  

j ,k = 1 , . . . , I ) ,  t h a t  h a v e  the  form 

w h e r e  E denotes  the  opera tor  of mathemat ical  expectat ion w i t h  respect  to z a n d  [o t  

denotes  the  h i s t o r y  of the  process  from t ime 0. 



Equation (1) means that  the functional form of fjk (t  ,a, x) depends on the initial 

distribution of the unobserved random variable z and the functional form of 

r (t .z ,a, x). Below we consider several special cases. 
jk 

Special Case L z is discrete and time invariant fo r  every individual i . 
It  is sometimes reasonable t o  assume that  the random variable z has a finite 

number of values M ,  Izm 1, m = 1,. . . ,M ,  with known a p r i o r i  probabilities in the popula- 

tion, q1,q2,. . . ,qm . In this instance equation (1) simplifies to  

where .rr,(t , a ,x )  is the conditional probability that  z = zm given ( o t ,  x and satisfies 

the system of nonlinear stochastic equations 

Although this system of nonlinear equations can be  solved analytically, in general 

the solution will appear very complicated. 

To clarify this approach, we apply it  to  a concrete problem-a youth's entry into 

the  labor force fo r  the  f irs t  time. Since we concentrate on the  f irs t  event in a 

person's work history (i.e., the f irs t  job) and do not consider what kind of job the 

youth obtains, our application is a particularly simple case. 

We assume that  there  a r e  measurements on many personal attributes of a youth 

related t o  the  speed with which he o r  she enters  the  labor force, fo r  example, gender, 

parents' educational levels and income, ethnicity, and grades in school. Moreover, w e  

assume that  prior  research and theory gives us confidence that  the  relationship 

between the  r a t e  of entering the  f irs t  job 'and these attributes x is a s  follows: 

where p(t , a ,x )  has a known form, but z is  unobserved fo r  every individual. In this hy- 

pothetical application, z might describe, fo r  example, a youth's relative opportunities 

to  work in a particular geographical place, which depends on the place's industrial 



s t ruc ture ,  unemployment rate and the  extent  of opportunities for educational advance- 

ment. Although these  place-specific variables certainly affect the  rate at which 

youths e n t e r  jobs, in many studies these variables are not measured. W e  a lso may not 

even know where youths in t h e  sample live.' However, t h e  data  analyst often knows t h a t  

respondents were selected from M different geographical regions in proportions 
M 
'n ql,  ...,qM, with qm = 1. One might assume tha t  t h e  many unobserved character is-  

m =1 

t ics  of region m affecting a youth's rate of finding a first job r a i s e  or lower p( t  , a , x )  

by some unknown multiplicative factor z,. 

For this  example equation (2) becomes 

where fo r  convenience w e  also assume tha t  

This last  assumption actually just normalizes t h e  2's. W e  can also write equation (3) 

fo r  this  special  case. I t  is  

M 
Since x nm (t  , a , x )  = 1, this  system of equations can be  solved explicitly. The resu l t  

m =I 

(see [7 ] ) is 

'1n the U.S., for example, detailed information on place of residence i s  of ten withheld t o  protect 
the ident i ty  of respondents t o  a survey .  



where H(t ,a,  x)  = j p ( u  .a,  x ) d u  . Notice that  equation ( 8 )  is  just a generalization of 
0 

the  usual logistic equation. Together with formula (5) f o r  K ( t  , a , x ) ,  this  equation lets 

a 
one write expressions f o r  g ( t  ,a,  x) = Pr [ T  r t  I a, x] and F ( t  ,a, x )  = -Pr  ( T  5 t  I a , x )  

8t 

that  can be used t o  write a likelihood function 

where the b a r  over  L denotes the  likelihood f o r  t he  sample of I individuals with the  

transition rates given by function K ( u , a , x ) .  This likelihood function can then be max- 

imized with respec t  t o  a.  

Assume tha t  h ( t  ,z . a , x  ) can be represented in a multiplicative form 

h ( t  ,z , a , x )  = X(t )e a* t a p  

where a. and al are unknown constants. This implies 

where 

One can see  tha t  t he  presence of unobservables in a traditional Cox regression scheme 

181 c rea t e s  a dependence of t he  underlying hazard r a t e  [which equals h ( t ) r ( t  ,aO,al)]  

on unknown parameters.  

Special Case IL z is  discrete  but can jump from time t o  time. 

Sometimes z has  a finite number of values M ,  izm 1, m = 1, ... ,M, with known proba- 

bilities in the  population at time 0 (as in Case I), but an  individual's value of z may jump 

from one value t o  another  according t o  a finite-state jump process described by the  

transition intensities 

In this case equation (2) still holds; however, equation (3) does not. Instead, 

T, ( t  , a , x )  a r e  t he  solutibns of t he  more complex system of nonlinear equations: 



- j [ r k k ( u . z m n a * x )  - ' tutu ( u , ~ , x ) I ~ , ( u  . ~ , x ) c ~ u  
0 

f o r  m = 1 , .  . . ,M. Unfortunately t he  exac t  analytical solution of this system of equations 

is  unknown. However, in principle, knowledge of t h e  form of t h e  equations permits 

them t o  be  solved numerically. 

A slight generalization of ou r  ea r l i e r  example i l lustrates this case. Suppose t ha t  

w e  again are studying en t ry  into t he  labor  force  by youths and observe personal a t t r i -  

butes x  of each youth in a sample but do  not know in which region a youth is  living. Be- 

fo re  w e  assumed tha t  a youth's region cannot change, which is a reasonable approxima- 

tion if t he  length of o u r  observation period is  short .  However, youths are often t he  

most geographically mobile segment of a society. If t he  observation period is  not 

shor t ,  i t  would be  reasonable t o  assume tha t  youths migrate from one region t o  anoth- 

er. In this situation z ,  is  not fixed f o r  a given youth but can change in discrete  jumps. 

This situation provides an  example of Special Case 11. 

I t  i s  both customary and usually fairly plausible t o  assume tha t  t he  histories of in- 

dividuals in a sample are statistically independent. Denoting an  individual's history by 

Li ( [ i t ) )  and taking into account t h e  resul t  of t h e  theorem given in ( I ) ,  w e  have 

where ~ f ,  are t h e  jump times of t h e  histories co(:). Then, t h e  likelihood f o r  a sample of 

I individuals has  t h e  form 

To maximize this  function, t h e  functional form of r jk  ( t  ,i , a , x )  should be  specified. 

The presence of r r , ( t ) ,  m = 1.  ... M ,  given by (10)  in t h e  formula f o r  r j k ( t  , a , x )  

predetermines t o  some extent  t h e  functional form of r jk  ( t  , a , x ) .  Note t ha t  t he  hazard 
- 
~ ( t  , a , x )  does not f ac to r  into a product of time-dependent and covariate-dependent 

par ts .  Moreover, t h e  unknown parameters  have become inextricably intertwined with 

t he  dynamics of t h e  proportions rr, ( t  ), m = 1,  ..., M .  This means t ha t  t he  traditional 

Cox model [8]  is not applicable. Maximization of t he  likelihood must occur  under  con- 



straints ( lo) ,  which need t o  be specified for  every individual in the  sample. 

5. CONCLUSION 

Note that this approach can be developed also for  the  case with discontinuous cu- 

mulative transition rates.  In addition, i t  is sometimes more realistic t o  assume that 

there  is an observed random process Xt instead of a random vector of variables x. In 

this case the process Xt is also a par t  of the  individual's history. Its trajectories can 

be continuous o r  piecewise continuous [9]. 
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