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ABSTRACT:

In recent years, there have been several reports on duality in vector
optimization. However, there seem to be no unified approach to dualizztiocna.
In the author’s previous paper, a geometric consideration was given to
duality in nonlinear vector optimization. In this paper, some relatiomship
among duality, stability (normality) and condition of alternative will be
reported on the basis of some geometric consideration. In addition,
Isermann’s duality in linear cases will be derived from the stated

gecmetric approach.



1. Review of Duality, Stability and Condition of Alternatives in Scalar
Optimization
Let X' be a subset of an n-dimensional Euclidean space R® and let
f:X'—>R and g:X'—>R™. Then for the following traditional scalar
objective optimization problem
(P): Minimize {f(x)| xeX'cR®, g(x)£0},
an associated dual problem is given by
(D): Maximize {d(u)l w20, é(u)=inf{L(x,u)| xeX'}}
Here the vector inequality £ is the usual one which is componentwise.
Now set X:le\{xéRn| g1 50
X(z)={xeX'| g(x){z},

w(z)=inf {f(x)| xeX’, g(x)<z}
and
epi w = {(z,y)| y2w(z), X(2)#41}.

Under some appropriate convexity condition, it is well known that the set

epi w is convex.

Definition 1.1 The duality between the problems (P) and (D) implies to

hold

inf {£(x)] xeXeR®, g(x)¢0} = max {d(u)] ud0}.

Definition 1.2 The problem (P) is said to be stable if the function

w(z) is subdifferentiable at z=0.

Note 1.1 w(z) is subdifferentiable at z=0 if and only if there exists

a nonvertical supporting hyperplane for epi W at (0,w(0)).

Theorem 1.1 The duality holds if and only if inf(P) is finite and (P)

is stablel4,




Note 1.2 If our interests for duality is in the condition under

which inf(P)=sup(D) holds, we can use the following normality conditions:

cl YG = Ych
where

G = ((z,9)] y2f(x), z2g(x), xeX'}

Yg = (yeRll (0,y)e6, 0¢R™)

Y.16

(yeRll (0,y)ec1G, O0eR™}.

Definition 1.3

The condition of alternative involving the pairs (f,X)

and (4,R}) implies that for any ae(-=,») exactly one of the following (1,),
(IT,) holds:

(Ia) 3 2¢X  such that f(x)<a

(Ir, =2 ueR] such that é(u)a.
Theorem 1.2

The duality holds if and only if the condition of
alternative involving the pairs (f,X) and (6.R$) holds?®.

2. Vector Optimization

Let X be a set of alternative in an n—-dimensional Euclidean space
R%, and 1let

f=(f1“.”fp) be a vector-valued criterion function from R?
into RP. For given two vectors y1 and y2 and a pointed cone K, the
following notations for cone—order will be used:

vl v? == s -ylex
Yl sk Y2 (===) y2 - yl e K\ {0}
v ¢g y? (== 3% -yl ¢ int K
Furthermore, the K-minimal and the K-maximal solution set of Y are
defined, respectively, by
Ming Y := {yeY | no yeY such that y <k vl
Maxg Y := {yeY | no

yeY such that y 2pyl.



Throughout this paper, for any cone K in RP we denote the positive
dual cone of K by K°, that is,

K° := {peRP| <p,q>20 for any qeK}
where <p,q> denotes the unsuwal inner products of p

and gq, i.e., T

P Q.
For a K-convex set Y,

a K-minimal solution y is said to be proper, if
there exists peint E° such that

(TR S IP IR (TR for all yeY,
Then, a general type of nonlinear vector optimization may be formulated as

follows:

(VP): D-minimize f(x) subject to xeX,

where f=(f1,.",fp) and

X := {xeX'] g(x) $q 0, X'cRrR%}.

For a while in this section, we impose the following assumptions:
(i) X' is a nonempty compact convex set,
(ii) D and Q are pointed closed convex cones with nonempty interior
respectively of RP and R™,

(iii) f is continuous and D-convex.

(iv)

g is continuous and Q-convex.

Under the assumptions, it can be readily shown that for every

zeR™,
both sets
X(z) := {xeX'| g(x) $q 2!
and
Y(z) := £[X(z)]}
= {yeRP| y=f(x), xeX’, g(x)¢q2} (2.1)

are compact, X(z) is convex and Y(z) 1is D-convex. Let us consider the

primal problem (VP) by embedding it in a family of preturbed problems with
Y(z) given by (2.1):



(VP_): D-minimize Y(z).
Clearly the primal problem (VP) is identical to the problem (VPz) with z=0.
Now define the set Z as
Z := {zeR™| X(z2) # ¢).
It is known that the set Z is convex (see, for example, Luenbetger‘).
Associated with the problem (VP), the point—to-set map defined by
W(z) := Minp Y(z)
is called a perturbation (or primal) map. It is known that
(i) for each zeZ, W(z) is a D-convex set in RP,
(ii) the map W(z) is D-monotone, namely,
vizhc w22 + D
for any zl, 22 ¢ Z such that zngzz, (iii) W(+) is a D-convex point—to-set
map (Tanino-Sawaragil?).
A vector—valued Lagrangian function for the problem (VP) is defined
on X' by
L(x,0) = f(x) + Ug(x).
Hereafter, we shall denote by 2( a family of all pxm matrices U such
that UQ < D. Such matrices are said to be positive in some literatures
(Rittert?, Corley3). Note that for given pe D°\{0} and AeQ® there

exist Ue 2 such that

In fact, for some vector e of D with <(p,er=1,
U = (hje, Age,..., Aje)
is a desired one,
The point-to—-set map &: % — # (RP) defined by
o©(U) = Ming {L(x,0)] xeX’)
is called a dual map, where P (RP) denotes the power set of RP, Using

w th
this terminology, a2 dual problem associateWmal problem (VP) can be




defined in parallel with ordinary mathematical programming as follows

(Tanino-Sawaragil?):

(VDp): D-maximize U T(U).
Ue U«
It is known that (i) for each U, &(U) is a D-convex set in RP,

(ii) ®(U) is a D-concave point—to—set map, i.e., for any Ul, 02 ¢% and any

ae[0,1]

0 (aUl+(1-0)02) ¢ @ (v1)+(1-0)®(U2) + D.

Proposition 2.1 (Tanino—-Sawaragil?) If x is a proper D-minimal
solution to Problem (VP), and if the Slater constraint qualification holds,
i.e., there exists xeX' such that g(x)(QO, then there exists a pxmmatrix
Be?%, such that

fix) e Minp {f(x)+Tg(x)] xeX'}, Og(x)=0.

Proposition 2.2 (Tanino-Sawaragil?) Under the same condition as

Proposition 2.1,

M inD(VP)C MaxD(VDT).

In the following, we shall review several results regarding geometric
duality of vector optimization different from that of Tanino-Sawaragi and

show a geometric approach to Isermann duality# in linear cases.

3. Geometric Duality of Nonlinear Vector Optimization
For given two sets AC R® and BcRP, define
A1 :=A+D
Bl = B - D-

Throughout this chapter, we assume that A is closed.




Definitiom 3.1 The condition of alternative (CAl) for vector

optimization implies that for any ueAlUB1 exactly one of the following
(I,), (IT;) holds:
(Iy) 3 aeA such that alpe

T, = beB such that b2pa.

Theorem 3.1 Suppose that MinDA#d. Then the condition of alternative
(CAl) for vector optimization holds if and only if

MinD AC MaxD B.

A proof of this theorem, which was originally given by LucS,
follows via the following lemma:

Lemma 3.1 Define the conditions D1, D2, Al and A2 as follows:

D1: Y agA, YbeB, aﬁg

D2: V aeMinpA, 3peB, a%:)

Al: Va.eAIU By, II, ==> not I,
A2: Va.eAlL) By, mnot I, ==> II,

Then, D1 is equivalent to Al, and D2 is equivalent to A2.

(proof): D1==>A1: From the condition IIa, there exists some beB
such that b%g. Suppose to the contrary that the condition I holds, i.e.,
there exists some agA such that a%g. Then we have a%?. which is
contradictive to DI1.

Al==>D1: Putting a=b, the condition II, holds. Therefore, for any beB
we have not Ib due to Al, i.e., there exists no agA such that a%#,
which is identical to DI1.

D2==>A2: The negation of Ia for any aeAlLJBl implies that for any
aeAlL}Bl there exists no aeA such that agg. It follows then from the
definition of AIUB1 that aeMinDA or aeBy. aeMinDA with D2 yields that

there exists some beB such that agb, which is also obtained in case of
D



agB; from the definition of By.
A2==>D2: For any aeMinpA, I_ (i.e., a=a) does not hold. It follows then
from the condition of A2 that there exists some beB for any aeMinpA

such that agb.

Remark 3.1 The condition D1 is well known as the weak doality. It is

easy to see that we have the strong duality from D1 and D2.

Definition 3.2 The condition of alternative (CA2) for vector

optimization implies that for any aeRP exactly one of (), (IT)) holds.

The following lemma is substantial for understanding a geometric
relationship between the condition of alternative (CA2) and the duality of

vector optimization:

Lemma 3.2 Denoting the weak D-minimum solution set of Al by w—MinDAl
and setting W(A;)=w-MinpA;\MinpA;, then under the condition of alternative
(CA2), we have the following:

(i) int Ay N\ int B; = @

(ii) A;U By =R?

(iii) W(A;)NB; = 0
(proof) If (i) is false, then there exists a point aeR™ such that both
Ia and IIa hold. Furthermore, if (ii) is false, then there exists a point
aeR® such that neither I, nor IT of the condition of alternative (CA2)

hold. Finally, if (iii) is false, there exists FeW(Al)(\Bl. Then, by

setting a=b, both I and IT  hold.

Theorem 3.2 Suppose that MinDA#d. Then, if the condition of
alternative (CA2) for vector optimization holds, then

MinD A= MaxD B.



(Proof) MinD A C Maxp B follows in the same way as in the proof of
Theorem 3.1. Next, we shall show MaxDBC:MinDA. Suppose that EeMaxDB.
From Lemma 3.2, we have 3A;=0B;. Then according to Lemma 4.2 of Nakayama?,
w—MinD Ay = w-Maxj By
Therefore, it follows from (iii) of Lemma 3.2 that
b e w-MinpA;\W(A;) = Minp A

This completes the proof.

Definition 3.3 The function f from R™ to RY is said to be
subdifferentiable at ¥ if there exists a matrix U such that

f(x) ¢ f(x) + U(x-x) for any xeRT,

Definition 3.4 The problem (VP) is said to be stable if W(z) is

subdifferentiable at O,

Theorem 3.31% Let Minp(VP)#4. Then the problem (VP) is stable if and
only if there exists solutions x to the primal problem and U to the dual

problem such that

f(x) ¢ 2(0).

Geometric duality in multiobjective optimzation have been given by
Jahns and Nakayama?® 11, There some devices for dualization were made in
such a manner that the condition of alternative (A2) for vector
optimization holds (Note Theorem 3.2 and Lemma 3.2). We shall review them
briefly. As in the previous section, the convexity assumption on f and g
will be also imposed here, but X' is not necessarily compact.

Define



G := {(z,y)eR™xRP| y;Df(x).z;Qg(x),xsXW.
Y := {yeRP| (0,y)eG, O0eR™, yeRP},

We restate the primal problem as

(VP): D-minimize {f(x)| =xeX},
where

X := {xeX'| g(x) $q 0- X'erR").

Associated with this primal problem, the dual problem formulated by
Nakayama?® is as follows:

(VDy): D-maximize Yg(gy where

YS(U) := {yeRP| f(x)+Ug(x){py, for all xeX'}.

On the other hand, the one given by Jahn$ is

(VDy): D-maximize LJ' ;YH—(A,p)
p e int D
A e Q°

where

Yo,y (= (7eRPD Guf(x)> + A,g(x)22<u,y> for all xeX').

Proposition 3.1 (weak duality)

(i) For any ye U Yg(yy and for any xeX,

Ue WU
y {p f(x).
(ii) For any ye LJ o Yﬁ’(l,p) and for any xeX
pe int D
AeD®
y lD f(x).
Proposition 3.2 {Nakayama?) Suppose that G is closed, and that

there is at least a properly efficient solution to the primal problem.

Then, under the condition of Slater’s constraint qualification,
c c
€

pe int D°
re Q°

10



Lemma 3.3 (Nakayama?) The following holds:

Ming (VP) = MinD YG'

Proposition 3.3 (strong duality)?,s Assume that G is closed, that
there exists at least a D-minimal solution to the primal problem, and that
these solutions are all proper. Then, under the condition of Slater’s

constraint qualification, the following holds:

(ii) Ming (VP) = Max; (VDJL

In some cases, one might not so much as expect that the G 1is closed.
In this situation, we can invoke to some apropriate normality condition in
order to derive the duality. In more detail, see for examle, Jahn®, Borwein
—Nieuwenhuis?, and Sawaragi-Nakayama-Tanino®f. In linear cases, fortunate-
ly, it is readily seen that the set G 1is closed. In addition, we have G
=epi W, if there exists no xeM such that (C-UA)x {;; 0 as will be seen
later. Therefore, we can derive Isermann’s dvoality* in linear cases via
the stated geometric duality. We shall discuss this in the following

section,

4. Geometric Approach to Isermann’s Duality in Linear Cases

Let D, Q and M be pointed convex polyhedral cones in RP, R™
and R®, respectively. This means, in particular, that int D® # 4.
Isermann4 has given an attractive dualization in linear cases. In the

following, we shall consider it in an extended form.

(VPy): D-minimize {Cx: =xeX} where X := {xeM: Ax 24 bl.
(VDy): D-maximize {Ub: Te Ul

where ZQ):= {UeRPX™| there exists peint D°® such that

11



UTper and ATUTp <yo CTu].
Then Isermann’s duality is given by

Theoren 4.1
(i) b ZD Cx for all (U,x)e 'Z(OxX.

(ii) Suppose that Ue U, and xeX satisfy

Then U is a D-maximal solution to the dual problem (VD) and x is a D-
minimal solution to the primal problem (VPI).

Proposition 4.1 Let f(x)=Cx, g(x)=Ax-b and X’'=M, where C and
A are rxm and mxn matrices, respectively and M is a pointed closed
convex cone in R®. Then every supporting hyperplane, HOA,p:y) (y={u, 3>
+¢\,z>, for epi W at an arbitrary point (z,y) such that yeW(z) passes
through the point (z,y)=(b,0) independently of (z,y). In addition, we
have peint D%, 1¢Q° and

cTy - ATh 20 0. (4.1)
Conversely, if pneD® and 2eQ° satisfy the relation (4.1), then the
hyperplane with the normal (A,p) passing through the point (z,y)=(b,0)
supports epi W.

(Proof): It has been shown in L91] that if the hyperplane
B(A,u:y) supports epi W, then p€D® and A€Q° Further, since every
efficient solution for linear cases is proper (See, for example, Sawaragi,
Nakayama and Taninoio), we have peint D°. Now, note that since §eW(2).
there exists ;éRp such that
cx = y

A A
b—Angz.

12




Therefore, it follows from the supporting property of the hyperplane
H(A,p:y) that for any (z,y)ecepi W
dyy> + h,zd 2 Ly + <AL
2 <, Cx + <A, b-AD, (4.2)
where the last half part of (4. 2) follows from the fact that A €Q° and
;— (b- A;)GQ. Since (b-Ax, Cx)eepi W for any xe€ M, the relation
(4.2) yields that for any xeM
p, Cx> + <A, b-Ax> 2 <u, Cx> + <A, b—AX).
Consequently, for any xé€M
<cTy-aTx, x-x> 2 0
and hence for any x-;eM
<cTp-ATx, x-x> 2 0
Thereofore,
clu - ATa 30 0. (4.3)
Seeing that the point (b,0), which corresponds to x¥0, belongs to epi W,
it follows from (4.2) and (4.3) that
<y 3> + (X, 2> = <A, b
This means that the supporting hyperplane H(A,u:y) passes through the
point (z,y)=(b,0) independently of the given supporting point (;,;).
Conversely, suppose that n€D° and Ar€Q° satisfy the relation
(4.1). Recall that for every (z,y)eepi W there exists x €M, which may
depend on (z,y), such that
y€Cx +D and =z - (b - Ax)€ Q.
It follows, therefore, that for any pGDO and AeD°
{p, y—Cx> 2 0 and <X, z-b+Ax> 2 O. (4.4)
Hence, by using the relation (4.1), we have from (4.4)

u,y> + <x,z> 2 <A,b2 (4.5)

13




for every (z,y) €epi W. The realtion (4.5) shows that the hyperplane
H(A,u:y) passing through the point (b,0) and satisfying CTu 20 ATy

supports epi W. This completes the proof.

The following lemma is an extension of the well known Stiemke's
theorem and provides a key to clarify a relationship between Isermann’s

formulation and our geometric approach.

Lemma 4.1 There exists some p € int D° such that
_nay T
(C-UA) ' 2yo © (4.6)
if and only if there exists no x€M such that

(C-TA)x <p O. (4.7)

Proof: Suppose first that there exists some p € int D° such that
(4.6) holds. If some xe&M satisfy (4.7), or equivalently,

(C-UA)x ¢ (-D)\ {0}
then since p e int D°
<u, (C-UA)x> ¢ O
which contradicts (4.6). Therefore, there is no x €M such that (4.7)

holds.

Conversely, suppose that there exists no x€M such that (4.7) holds.
This means
(C-UA)M N (-D) = {0},
from which we have
((C-UAYM)® + (-D)° = R".
Hence for an arbitrary pge€ int D°® there exists Hy € ((C-UAM)® and Hy €
(-D)° such that

g = 4 + Hy (4.8)

14



and thus

By = “Hy * Hg-
Since -p,€ D° and B € int D®, it follows from (4.8) that we have By€
((C-UA)M)° N int D°. Consequently, recalling that ((C-UA)M)® =
tul (C-UA)Tp;MOO}. the existence of yu € int D° satisfying (4.6) is

established. This completes the proof.

Proposition 4.2 For linear cases with b#0,
U {Ub} = U @ = U Y
H(x,
Ue %, veY, A€ Q° W
pe€int p°
Proof: According to Proposition 4.1 with f(x)=Cx and g(x)=Ax-b,

for peint D° and 1€Q° suoch that CTu F>=Mo ATA, we have
p, £(x)> + <A,g(x)> 2 <A,bD for all x€M.
Therefore, for U€ERP*™ such that UTp=k
<p, f(x)+0g(x)> 2 <p, Ub> for all xe M,
which implies by virtue of the well known scalarization property and
p€int D® that
f(x) + Ug(x) ‘D Ub for all x €X', (4.9)

Hence for Uéﬂo

Ub € $(U),

which leads to J (bl J ().
UeZ(O UeZ{O

Next in order to show U QU U Yo
°
Uel4 A €Q
p€int D°

)+ suppose that yeqU)

for some U € 2(0 Suppose further that UTp=k and CTp gMo ATK for some pc¢
int D° and some A€Q°. Then since from Lemma 4.1 we have (C-UA)x LD 0

for all x €M, we can guarantee the existence of an efficient solution I €M

15



for the vector valued Lagrangian L(x,U)=Cx+U(b-Ax) such that y=Cx+U(b-Ax).
Moreover, since UL(.,U) is a convex vector-valued function over M for
each U, due to the efficiency of x for L(x,U) there exists peint D°
such that

{u, Cx+U(b-Ax)> £ <u, Cx+U(b-Ax)> for all xe M, (4.10)

. _pI—-
Hence, letting A=U"q

<, y> £ <u, 3> + <X, z>  forall (z,y) € epi W. (4.11)

which implies that §EYH(1 NE This establishes the desired inclusion.

Finally, we shall show U Ygooo © U {Ub}. Suppose now that
. o oM
peint D UEY,
AeD°

;EYH(LIA) for some pe int D° and A€ Q®. Since (b,0) is a supporting
point of H(A,n) for epi W according to Proposition 4.1, we have

u,f(x)> + <A,g(x)> 2 <A,b> forall xeX’ (4.12)
and

u,y> = <A,bD (4.13)

Since b#0, recall that the relation (4.13) shows that two equations UTu=l
and Ub=y have a common solution Ue€RP*™® (Penrose ’). In other words, we
have y = Ub for some UERP*® guch that UTp=k, which leads to 7Jye

J {Ub}. This establishes the desired inclusion.

UEZ(O
Now we can obtain the Isermann duality for linear vector cases via

Propositions 3.2-3.3 and 4.2:

Theorem 4.1
For b#0,

MinD (PI) = MaxD (DI).

16
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