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Foreword 

Suppose that we are given a finite set E, a family of feasible subsets of E and an in- 

teger cost associated with each element in E. The author considers the problem of finding 

a feasible subset such that  the variance among the costs of elements in the subset is 

minimized. The author shows that  if one can solve the corresponding minimum cost 

problem in polynomial time, it is possible to construct a fully polynomial time approxima- 

tion scheme for the above minimum variance problem. 
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1. Introduction 

A recent paper by Martello et  a]. [19] considered the following problem which they 

call a "balanced optimization problem". Suppose that  we are given a finite set 

E = {1,2, ...,I El) ,  a family F of "feasible subsets" of E and an integer cost c ,  associated 

with every j E E. The balanced optimization problem is then described as follows: 

BALANCE :minimize d(S) z max{c, - cj,I j , j '  E S )  . 
SE F ( 1 )  

In other words, this problem tries t o  make the difference in value between the largest and 

smallest costs used as small as  possible. [19] showed tha t  if we can efficiently answer the 

feasibility question then we can efficiently solve Problem BALANCE. [19] also gave real- 

life examples in which balanced optimizations arise. 

We may alternatively consider the variance for another measure of the balance 

among costs used. The  variance among costs in S(E F )  is defined by 

The m i n i m u m  variance problem is then described as follows: 

P : minimize oar (S) . 
SE F (3) 

We consider in what follows the class of P satisfying the following three assumptions. 

( A l )  I s I  = p for all s E F (4) 



holds and tha t  p depends only on IEl. We assume tha t  p is a positive integer with p > 2, 

since the case of p = 1 is trivial. 

(A2) F is given in concise form, i.e., all feasible subsets are not listed in advance but  

they are described through an oracle which says, within polynomial time in IEl, whether 

any given subset of E contains an S E F or not,  and the input length needed for specify- 

ing this oracle is polynomial in IE(. We call this oracle the feasibility oracle and the time 

required t o  call the oracle (i.e., t o  test the feasibility of a given subset of E )  is denoted by 

f(IEI). 

(A3) For any given subset E' of E and any given real numbers ci  , j E E',  we can 

produce S' E F with S' 5 E' in polynomial time in 14 such tha t  S' is optimal t o  the fol- 

lowing minimum-cost problem. 

minimize { C cil S E F ,  S 5 E') . 
j€ S 

If there is no S E F with S 5 E', i t  returns the answer tha t  there is no feasible subset in 

E ' .  Since this test is done through the feasibility oracle, the time required t o  solve (5) ,  

which is denoted by r(lEl), satisfies r(lE1) > f(1El). 

The aim of this paper is t o  propose a fully polynomial time approximation scheme 

(FPAS) for the above minimum variance problem P under the above three assumptions. 

Especially, if F is the set of spanning trees in an undirected graph G = ( V , E )  (such F 

clearly satisfies (A1)-(A3)), we shall show tha t  there exists an O ( l E ( J m - r ( l q ,  IEI)) algo- 

rithm for the minimum variance problem, where r ( lq ,  (El) is the time t o  solve the 

minimum cost spanning tree problem. 

The  techniques we use to  develop an FPAS for P satisfying (A1)-(A3) are the 

parametric characterization for the quasiconcave program developed by Sniedovich 121, 

22) and Katoh and lbaraki 1161, and the scaling technique which has been used to develop 

a fully polynomial time approximation scheme for the knapsack problems (see Lawler 1181 

for example), polynomial time algorithms for minimum cost circulation problems (see [8, 

231 for example) and possibly others. 

The  parametric characterization of P states tha t  an optimal solution of the 

parametric problem P(X) defined below provides an optimal solution of P, if an appropri- 

a te  X is chosen. 

where X is a nonnegative parameter. Thus, solving P is reduced t o  finding a X = X * with 



which an optimal solution to P(X*) is also optimal to  P .  Such characterization can be 

obtained by specializing the results obtained by Sniedovich [21, 221 and Katoh and 

Ibaraki [16] to our case. Similar characterization has also been reported (e.g., Kataoka 

[14], Ishii et al. [ l l ] ,  Ichimori et al. [lo], and Katoh and Ibaraki 1151 discuss some types of 

stochastic programs, Kawai and Katoh [17] discusses a type of markovian decision process 

and Dinkelbach [2] and Jagannathan [13] discuss the fractional program). 

This characterization, however, does not tell how to  find such X *. The straightfor- 

ward approach for finding A* is to  compute optimal solutions of P(X) over the entire 

range of A. However, the number of such solutions is not polynomially bounded in most 

cases, e.g., see Carstensen [ I ] .  One of exceptions is that F is the set of spanning trees in 

an undirected graph. For this case, based on the parametric characterization, a polyno- 

mial time algorithm is directly derived, which will be treated in Section 3. 

On the other hand, for example, if F is one of the sets of matchings in a bipartite 

graph, perfect matchings in an undirected graph or spanning trees in a directed graph, F 

satisfies (A1)-(A3) and the corresponding P(X) can be solved in polynomial time, but the 

number of optimal solutions of P(X) over the entire range of X is not known to  be polyno- 

mially bounded. 

Therefore, in general, polynomial time algorithms for P seem to  be difficult to  

develop, and we then focus on approximation schemes in this paper. A solution is said to  

be an €-approximate solution if its relative error is bounded above by c .  An approximate 

scheme is an algorithm containing 6 > 0 as an parameter such that ,  for any given 6, it can 

provide an 6-approximate solution. If it runs in polynomial in both input size and 116, 

the scheme is called a fully polynomial time approzimation (FPAS) [6, 201. 

An FPAS for P based on the parametric characterization is obtained by scaling the 

costs c,. In other words, we use the costs [cjI2t] instead of c, for an appropriately chosen 

positive integer t and computes optimal solutions of P(X) over the entire range of A ,  

where [a] denotes the largest integer not greater than a. Then it is shown that  an 6- 

approximate solution is found among those obtained solutions as the one minimizing 

var(S). We apply the Eisner and Severence method [4] t o  solve P(X) with scaled costs 

over the entire range of A. With some modifications of their method, the required time is 

shown to be polynomial in IEl and 116 under assumptions (A1)-(A3). 

An FPAS for the similar problems has been proposed by Katoh and Ibaraki 1161. 

Though their method is also based on the parametric characterization, it does not employ 

the scaling technique. In addition, [16] characterizes the class of problems for which their 

method becomes FPAS. However, our problem P does not belong to this class (especially 



the condition (A5) given in Section 5 of 1161 does not hold for P). 

The paper is organized as follows. Section 2 gives the relationship between P and 

P(X). Based on the relationship, Section 3 develops a polynomial time algorithm for the 

minimum variance spanning tree problem. Section 4 gives the properties necessary to  

develop an FPAS for P satisfying (Al)--(A3). Section 5 explains the outline of the 

FPAS. Section 6 describes the FPAS and analyzes the running time. 



2. Relationship between P and P ( X )  

Let S t  and S(X)  be optimal to P and P ( X )  respectively. Katoh and Ibaraki [16] and 

Sniedovich [21, 221 considered the following problem Q: 

Q : minimize h( f1 (z ) , f2 (z ) )  , 
zEX 

where z denotes an n-dimensional decision vector and X denotes a feasible region. 

fi,i = 1,2, are real-valued functions and h(u l , u2 )  is quasiconcave over an appropriate re- 

gion and differentiable in ui, i  = 1,2. They proved the following lemma. 

Lemma 2.1 [16, 21, 221 Let z t  be optimal to Q and let ut i  = f i ( z t ) , i  = 1,2. 

Define X # by 

Then any optimal solution to the following parametric problem Q(X)  with X = At is op- 

timal to Q .  

Q(X)  : minimize f l ( z )  + Xf2(z)  . 
ZE X 

The following lemma is obtained by specializing Lemma 2.1 to problem P. 

Lemma 2.2 Let X * be defined by 

Then S(X * )  is optimal to P .  

Proof. First note that  for any S E F ,  

Associate 0 -  1 characteristic vector z ( S )  = ( z l ( S ) ,  ..., zIq(S))  with each S E F (i.e., 

z,(S) = 1 if j E S and z,(S) = 0 otherwise) and let X be the set of all such z (S ) .  Let 



and 

Then it is easy to see that  for each S 

Therefore P can be rewritten into 

Since h(u1,u2) is quasiconcave, it turns out that  P is a special case of Q. As a result, by 

dh(ul,u2)/c3ul = l / p  and c3h(ul,u2)/c3u2 = -2u2/p2, the lemma follows from Lemma 2.1. 

This lemma states that  P(A) is not known unless P is solved. A straightforward to 

resolve this dilemma is to  solve P(A) for all A; the one with the minimum var(S) is an op- 

timal solution of P. This type of approach can sometimes provide polynomial time algo- 

rithms. One of such cases is that  F is a set of spanning trees in an undirected graph, 

which will be treated in the next section. In general, however, the number of solutions 

generated over the entire range of A is not polynomially bounded, and it is difficult to  

develop polynomial time algorithms by this approach. However, as will be seen in Sec- 

tions 5 and 6, this approach is useful if we apply the scaling technique to  costs c,.  

It is well known in the theory of parametric programming (see for example 11, 7, 9,  

101) that  z(A) (the objective value of P(A)) is a piecewise linear concave function as illus- 

trated in Fig. 1, with a finite number of joint points A(1),A(21,...,A(N) with 

0 < < A(2)<...< A(N). Here N denotes the number of total joint points, and let 

A(,,) = 0 and A ( N + l )  = oo by convention. In what follows, for two real numbers a,b with 

a 5 b ,  (a,b) and [a,b] stand for the open interval {zla < z < b)  and the closed interval 

{zla < z 5 b)  respectively. The following two lemmas are also known in the parametric 

combinatorial programming. 

Lemma 2.3 [9, 101 For any A'  E (A(k-l), A(kl), k = 1, ..., N + l ,  S(A') is optimal to  

P(A) for all A E [ A ( k - l ) , A ( t ) ]  . 

Let for k = 1, ..., N+1 



0 +l 1 42, 4 3 )  

Figure 1. Illustration of z(X) 

Lemma 2.4 [9, 101 (i) For any two S,S' E Fsk with 1 < k < N+l ,  

Ccf = C C: and Cc, = C c, 
j€S j€S' j€S j€S' 

hold. 

(ii) For any S E F sk-l and any S' E Fsk with 2 5 k 5 N+ 1, 

holds. 

Lemmas 2.3 and 2.4 (i) imply that  in order to  determine z(X) for all X > 0, it is 

sufficient to  compute S(X') for an arbitrary A' E (X(k-l),X(k)) for each k = 1,2, ..., N+l.  

We shall use the notation Ssk to  stand for any S E Fsk. 

Eisner and Severence 141 proposed an algorithm that  determines z(X) for all X > 0 

and Ssk, k = 1, ..., N + l  for a large class of combinatorial parametric problems including 

P(X) as a special case. They showed that  the running time of their algorithm is propor- 

tional to (the number of joint points) x (the time required t o  solve P(X) for a given A) .  

Since P(X) for a given X can be solved in O(r(Ihl))time by assumption (A3), we have the 

following lemma. 



Lemma 2.5 The Eisner and Severence method determines % ( A )  for all X > 0 and 

computes S*k, k = 1,  ..., N + l  in O(N.r(IE1))  time. 



3. A Minimum Variance Spanning Tree Problem 

We shall concentrate on the case in which F is a set of all spanning trees in an un- 

directed graph G = ( V , E ) ,  where V is a set of vertices and E is a set of edges. We call 

problem P with such F the m i n i m u m  variance spanning tree problem. The following 

upper bound on N is known by Cusfield [9]. 

Lemma 3.1 [9] 

Therefore, combining Lemmas 2.2, 2.5 and 3.1, we have the following theorem. 

Theorem 3.1 Let r(lE1, Iq) denote the time required to  solve the minimum-cost 

spanning tree problem. Then the minimum variance spanning tree problem can be solved 

in o ( l ~ I d V ~ ( l ~ l ,  I q ) )  time. 

Since the best known algorithm for the minimum-cost spanning tree problern re- 

quires O(IEIP(IEI, I q ) )  time, which was given by Fredman and Tarjan [5], where 

P(IEI,Jv) is a very slowly growing function. 

Corollary 3.1 The  minimurn variance spanning tree problem can be solved in 

o( lEI2~mP(1EI ,  I vl)) time. 



4. Basic Properties Necessary for Developing FPAS for P 

We shall first give several results which are necessary to  construct a fully polynomial 

time approximation scheme for P .  Let 

be the sorted list of different values in { c l , c 2 ,  ..., c I E l ) .  Then we have the following lemma. 

Lemma 4.1 

Proof. By Lemma 2.4 (ii) and the integrality of cj ,  

holds. Since p - v l  5 C cj and C cj < p - vm hold by ( I I ) ,  the lemma follows. 
~ E S * ~  j E S t , + ,  

Lemma 4.2 An optimal solution of P  can be obtained in O(p . ( v ,  - v l )  . r (IEl)) 

time. 

Proof. Let A* defined in (8) belong t o  [ X ( k - I ) , X ( k ) ]  for some k with 1 5 k 5 N t l .  

Then S*k is optimal t o  P(X *) by definition of S*k and is also optimal t o  P  by Lemma 2.2. 

Therefore the lemma follows from Lemmas 2.5 and 4.1. 

Notice tha t  ( v ,  - v l )  is not polynomial in input size. However, this result is useful 

t o  obtain an FPAS for P  as will be seen in the  next section. 

Lemma 4.3 [19] Problem BALANCE can be solved in O(m . f(IE1)) time. 

Now we shall s ta te  the relationship between the objective values of BALANCE and 

P .  Let So be optimal t o  BALANCE. 

Lemma 4.4 For any S E F, we have 

Proof. For the sake of simplicity, assume S  = {1,2, . . . , p )  with cl 5 c 2 < - . - 5  c p .  

Then d ( S )  = cp - cl follows. It  is easy to  see tha t  

holds. By )c j  - c,l 5 cp - c l ( =  d ( S ) )  with 1  5 i, j 5 p, the second inequality of ( 14 )  im- 



mediately follows. By the well known inequality q'& a: > (9 a j ) 2  lor nonnegative 
j= 1 ] = 1  

numbers al ,a2 , .  . ., aq, 

holds. Since 

the first inequality of ( 1 4 )  follows from (15 )  and ( 1 6 ) .  

Lemma 4.5 

holds. 

Proof. Since d ( S 0 )  5 d ( S * )  holds by the optirnality of S o ,  the first inequality of 

( 17 )  follows from the first inequality of ( 14 ) .  Since var (S * )  5 vur (So)  holds by the op- 

tirnality of S * ,  the second inequality of ( 17 )  follows from the second inequality of (14).  

0 



5. The Outline of FPAS for P 

First note that  if d(So)  = 0, it is obvious that var(So) = 0 and hence S o  is optimal to 

P. By assumption (A3) and Lemma 4.3, So  can be found in polynomial time. As a result, 

P can be solved in polynomial time if d(S0) = 0. Therefore assume d(S0) > 0 in the fol- 

lowing discussion. 

An FPAS for P is constructed by applying the so-called "scaling technique". In oth- 

er words, we replace the costs c, for all j by 

where t is determined by 

Let p denote problem P with costs cj replaced by F, for all j. The number t is chosen so 

that (i) an optimal solution of p is an E-approximate solution for P and (ii) the time re- 

quired to solve p is polynomial in JE( and 1 / ~ .  We first prove the first claim. 

Lemma 5.1 Let g *  be optimal to p. Then we have 

var($*) - var(S*) 
var ( S  *) 5 f 

Proof. Let S' be optimal to BALANCE with the scaled costs F,, and let d(S,E) 

denote the objective value of BALANCE with the scaled costs 5. Define a, by 

where a, satisfies 0 5 a j  < 2'. For the sake of simplicity, we use the notation CYV for a 
S 

set of real numbers rij, i , j  E S to stand for 

Then by (15) 



By la, - a,! 5 2', i t  follows tha t  

By the well-known inequality (5 a,)' < (9 a: for nonnegative numbers a l , a2 ,  ..., as, we 
j=1 j= 1 

have 

5 -,,/w. c(e - fj)2 
(by the optimality of S"") . (24) 

S" 

By If, - fjI < d(S',F) for i , j  E S', we have 

C(f, - fj)2 5 Rf!fclQ {d(S",f)}2 . 
so 2 (25) 

Then we have 

El:, - t.l< m. ~ ( s ' , E )  
3 -  2 (by (24) and (25)) S*  

. d(So,f)  
< 2  (by the optimality of S") 

i m ( d ( ~ " )  + 2') (by (21)) 
2.2' 

- - p(p-l). d(S") + P ( P - ~ )  
2 2'+1 

Next let us consider the te rm C ( F ,  - F,)'. We have 
S* 

C ( F ,  - F,)' 5 C ( F ,  - f,)' (by the optimality of 5' t o  p) 
S S t  



1 + - C(ai - a,) 2 
221 St 

(The last inequality is derived by la, - ajl < 2' .) 

Again by using the inequality (5 a,)2 5 qfi a! for nonnegative numbers ol,a2, ..., aq, we 
j= 1 j= 1 

have 

5 P(P2-1) . - ) Z  (by the optirnality of S*)  
S ' 

3 

< - d(S0) (by Jc, - cjl 5 d(SO)  for i , j  E So)  
- 2 

By (23), (26), (27)and (28), i t  follows tha t  

war($*) 5 var(S*) + - 
2 i+1(p -1 ) .d (~o )  22'+1(p-1) 

P P 

By (17) and (29), it follows tha t  

war(,!?*) - v a r ( ~ * )  2 { 2 ' + 1 ( p - l ) . d ( ~ o ) + 2 2 1 + ~ ( p - 1 ) ~  
war ( S  *) 5 

2 ( ~ - 1 ) { d ( s " ) ) ~  

Since i t  holds by (19) t ha t  



(20) follows from (30). 

Now we shall show that  we can solve P" is polynomial in [El and 116. Let 

Cl < Cf<. . .<Cii be the sorted list of different values of 5 , j  = 1, ...,I El. By Lemma 4.2, if 

we apply the Eisner and Severence method to solve P" by solving P"(A) over the entire 

range of A, it requires 

time. The term Cm - Cl is estimated as follows. 

P (  J ~ 2 + 4 f + ~ ) ( " m - " l )  + 1. (by 2tS1 > 26.d(So) 
5 from (19)) 

6 .  d(S") p(  Jp2+46-tp) 

However, (urn - vl) is not in general bounded above by 

for a certain function g(lEl, 116)  which is polynomial in (El and I / € .  This implies that  the 

direct application of the Eisner and Severence method to solve P" as in Lemma 4.2 does 

not lead to a fully polynomial time approximation scheme for P. 

This difficulty is overcome as follows. We construct A ( <  IEl) subproblems 

P1,P"2,...,afi of P" so that  

(i) for some 1 with I < 1 < d,  an optimal solution of P"/ is optimal to  P" and 

(ii) Each pI,1 = 1, . . . ,A, can be solved in polynomial time in JEl and 1 / c  

To  define P",, let, for any l,u satisfying I < 1 5 u < d, 

For each 1 with 1 < 1 < d ,  define ul by 

PI is defined as follows. 

where var(S,c') is equal to var(S) with c j  replaced by 9 for all j .  Note that if ul does not 

exist for some 1, PI is not defined. 



Lemma 5.2 There exists 1 with 1  5 1 < 4 such that  

holds for any optimal solution S"' to P. 

Proof. Assume that  the lemma does not hold. Let 2' denote any optimal solution 

to P.  Let 

c"*,,, = ma-x F .  and c",in = min c". . 
j ~ s *  I ~ E S *  I 

Then 

is satisfied. By the first inequality of (14 ) ,  

2(P-1) { ~ ( S # , F ) } ~  j v a r ( S * , ~ )  
P 3  

holds. Then it follows that  

var (S* , t )  < e { d ( ? , t ) 1 2  (by the second inequality of ( 1 7 ) )  
2 P 

p - 1  4  < --- . - { d  ( S * , f ) l 2  (by ( 3 8 ) )  
2 P  p2 

- - 2(p-I). { ~ ( s * , F ) } ~  j var (S* , t )  (by ( 3 9 ) )  . 
P 

(40)  

This is a contradiction. On the other hand, if d($*,t)  < 2 -  d(?, t) ,  let 1 satisfy 
2 

- # 
vl = c m i n .  Then c"*,,, < v,, clearly holds by definition of ul. Therefore (37)  fol- 

lows. 

We shall show that  each PI can be solved in polynomial time in IEl and 1 1 6 .  Consid- 

er the following parametric problem Fl(X)  associated with each PI. 

Pl(X) : i ( X )  minimize { x E: - A x FjI  S E F ,  S C_ E( l ,u l ) )  . 
j€  S j€  S 

(41)  

By assumption ( A 3 ) ,  for a given X,PI(X) can be solved in polynomial time. By applying 

Lemma 4.2 to  PI,  it follows that  Pl can be solved in 



time. By p < (El, it is sufficient t o  show tha t  Ql - GI is polynomial in IEl and 116. By 

(35),  we have 

CUl - q < - d(?,F) . 
2 (43) 

By the optimality of ? t o  BALANCE with scaled costs E,, 

d ( 9 , F )  < d(SO,F) (44) 

holds. Letting 

c , ~  = max{c,(j E So) and cj2 = min{cAj E So) , 

we have 

d(SO,"" = F,, - Ej2 

Note tha t  

holds by (19) and tha t  for any 6 > 0, 

6 1  for 6 2 1 1 4  
for 0 < 6 < 114 

holds. Letting 6 = 6/p2, i t  follows from (46) and (47) t ha t  

Therefore by (45),  

6 . d(S0) 2' > 
p2( J1 +46/P2+ 1) 

' ' 

for 6 2 4p2 
6P 

6 - d ( S o )  
for 0 < 6 5 4p2 . 

p 2 ( 4 + 1 )  



follows. The following lemma is an immediate consequence of (42),  (43),  (44) and (49) .  

Lemma 5.3 Problem PI can be solved in 0((p3/d;  + p2)r((EJ)) time if E > 4p2 and 

in 0((p4/c + p2)r(lEl)) time otherwise. 



6. The Description of FPAS for P 

We shall describe FPAS for P and then analyze its running time. 

Procedure MVP 

Input: The ground set E ,  a family of feasible subsets (which are implicitly given 

through an oracle explained in (A2)), a positive integer p of (4), integer costs c,, j E E, 

and a positive number r. 

Output: An r-approximate solution for P. 

Step 1. Solve problem BALANCE and let d(So) be the optimal objective value. If 

d(So) = 0, output So as an optimal solution of P and halt. Else compute t by (19) and $ 

for all j by (18). 

Step 2. Compute C1,C2,...,Crii with Cl < C2< . . < C+, which are distinct numbers 

of Fj, j E E .  Solve problem BALANCE with scaled costs Fj and let S' be its optimal solu- 

tion. 

Step 3. For each 1 = 1,2 ,..., 6, do the following. 

(i) Compute ul by (35), if ul exists, and the set E(l,ul) by (34). If ul does not exist, 

return to the beginning of Step 3. 

(ii) Solve pl(A) of (41) for all A E 1261, 2Gu,] by applying the Eisner and Severence 

method. 

(iii) Among solutions obtained in (ii), let S""1 be the one minimizing var(S,c") (i.e., 

g*/ is optimal to  PI). 

Step 4. Find g*/t such that  

g*,# = min {var(g*l,F)I. 1 < 1 < fi, ul exists) . 

Output $*,t as an r- approximate solution to P. 

Theorem 6.1. Procedure MVP is an FPAS for the minimum variance problem P. 

Its running time is 

0(log2r + l ~ g ~ ( l ~ ~ I  + Ivml) + IEI2 + ~ ~ l ~ l r ( l E l )  + p41~Il';+ P~IEI~(IEI)/'') if r 2 4p2 , 
0(1og2r + 1og2(Iv11 + v,l) + (El2 + P21~l.(1E1) + P51EI/r + P31~I7(lEI)/r) otherwise . 

Proof. The correctness of MVP follows from the following four facts. 

Fact  1. If d(So) = 0, So is optimal to  P. 



Fact 2. An optimal solution t o  p is an €-approximate solution of P by Lemma 5.1 

Fact 9. An optimal solution to  PI for some 1 with 1 < I 5 rfi is optimal t o  p by Lemma 

5.2. 

Fact 4. An optimal solution to  PI can be found as an optimal solution q ( 1 )  t o  p[(X") for 

some X. Since such X satisfies 1 = 2 C Fj/p by Lemma 2.2, 
JE 3, (i) 

follows by GI < 5 < o",, for all j E E(l,ul).  

The  running time is analyzed as follows. Step 1 is first analyzed. Solving BAL- 

ANCE requires O(m. f(IE1)) time by Lemma 4.3. By m < IEl and f(IE1) 5 r(lE1) by as- 

sumption (A3), O(m. f(IE1)) = O(IEI.r(IE1)) follows. The  time required t o  compute t of 

(19) is estimated a s  follows. First note that  

2 d 6 -  1 for 6 2 114 

for 0 < 6 < 114 , 

and 

for c 2 4P2 

f o r 0 < € < 4 ~ ~  . 

Computing t is done by first setting s = 1 and increasing t by one every time 

is satisfied. Let st be the first s for which (51) is not satisfied. Then t = st holds by 

definition of t .  This  computation requires O(t) times of comparisons of (51). By (19) and 

(50), we have 



Computing 5 for all j E E requires O(IE1) time. Solving BALANCE with scaled costs in 

Step 2 requires O ( 4  - f(IEJ))(=O(IE(- f(IEJ)) = O(IEI.r(I4))) time. 

Step 3 (i) requires O(IE1) time for each I .  By Lemma 5.3, Step 3 (ii) requires 

0 ( ( p 3 / 4  + P2) ~ ( 1 4 ) )  time if r > 4p2 and 0((p4/r + p2).  ?(]El)) time otherwise. By the 

discussion prior to  Lemma 4.2, the number of optimal solutions for PI(X) for X E [2G1, 2Gu,] 

is 

p ' (CU, - 6,) = 
otherwise . 

Since the evaluation of var(S, t )  for S E F requires O(p) time, Step 3 (iii) requires 

0(p4/&) if 4 6  > 4p2 

0(p5/r) otherwise . 

Since the loop of Step 3(i),  (ii) and (iii) is repeated O(4)  times and 4 < )El holds, the 

time required for Step 3 is 

O ( I E ~ ~  + p21E1 (1~1) + p41E(/ 4 + p 3 1 ~ l r ( ( ~ ~ ) / d ; )  if r > 4~~ 

o(m2 + p2P1 mu + P5l~1/f + p4lE1~(IEI)/f) otherwise 

Step 4 requires O(4)  = O(IE1) time. It follows from the above discussion that  Procedure 

MVP requires 

0(10g2f + log2((ull + Iuml) + IE12 + p21El r(lEl) + p41~(/';+ p31~lr(IEl)/';) if r t 4p2 

O(10g2f + log2(lvll + b,I) + PI2 + p2Iq ~ ( 1 ~ 1 )  + p51E1/f + P41~1r(IEI)/f) otherwise 

This is clearly polynomial in input length and 1/r. 



7. Conclusion 

We first showed the relationship between the minimum variance problem P and the 

parametric problem P(X). Based on this relation, we showed that  the minimum variance 

spanning tree problem can be solved in polynomial time. We mention here that  the result 

can be directly generalized to  the case where F is a set of bases in a matroid, assuming 

that  (A2) is satisfied. In this case, ( A l )  follows from definition of a base in a matroid and 

(A3) follows from (A2) since the minimum-cost base problem can be solved by the greedy 

algorithm. Also notice that  the number of joint points of the parametric minimum-cost 

base problem is O(IElv'p) (the proof is done in the same manner as in (91). 

Secondly, we developed a fully polynomial time approximation scheme for P satisfy- 

ing assumptions (A1)-(A3). However the complexity issue for P has not been settled 

down. It is not known yet whether problem P is NP-complete or not under assumptions 

of (A1)-(A3). This is left for future research. 
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