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This paper deals with feedback control for a linear nonstationary system 
whose objective is to reach a preassigned set in the state space while satisfying a 
certain state constraint. The state constraint to  be fulfilled cannot be predicted in 
advance being available only on the basis of observations. It is specified through 
an adaptive procedure of "guaranteed estimation" and the objective of the basic 
process is to adapt t o  this constraint. 

The problems considered in the paper are motivated by some typical applied 
processes in environmental, technological, economical studies and related topics. 

The techniques used for the solution are based on nonlinear analysis for set-  
valued maps. 
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SET-VALUED CALCULUS IN PROBLEMS OF 

ADAPTIVE CONTROL 

A .  B. Kurzhanski 

Introduction 

This paper deals with feedback control for a linear nonstationary system whose 

objective is to  reach a preassigned set in the state space while satisfying a certain s ta te  
constraint .  The state constraint to  be fulfilled cannot be predicted in advance being 

governed by a second "uncertain" system, with its state space variable unknown and 

available only on the basis of observations. It is assumed that  there is no statistical da ta  

for the uncertain parameters of the second system the only information on these being the 

knowledge of some constraints on their admissible values. Therefore the state constraint 

to  be satisfied by the basic system may be specified only through an adaptive procedure of 

"guaranteed estimation" and the objective of the basic process is to  adapt t o  this con- 
s t ra int .  

The problems considered in the paper are motivated by some typical applied 

processes in environmental, technological, economical studies and related topics. 

The techniques used for the solution are based on nonlinear analysis for set-valued 
maps .  They also serve to  illustrate the relevance of set-valued calculus to  

problems of control in devising solutions for the "guaranteed filtering and extrapola- 

tion" problems 

constructing set-valued feedback control strategies, 

duality theory for systems with set-valued state space variables, 

approximation techniques for control problems with set-valuedsolutions, etc. 

The research in the field of control and estimation for uncertain systems (in a deter- 

ministic setting), in differential games and also in set-valued calculus, that  motivated this 

paper, is mostly due t o  the publications of [l-101. 

1. The Uncertain System 

Consider a system modelled by a linear-convex differential inclusion 

Q E + P ( t )  

t E T = { t : t o < t < t l ) ,  



where q E Rn , A ( t )  is a continuous matrix function ( A  : T +Rn m,  , P ( t )  is a 
continuous multivalued map from T into the set conv Rn of convex compact subsets of 
Rn. (Here Rn will stand for the n-dimensional vector space and Rm for the space 

of m X n - matrices.) 

The function P ( t )  reflects the uncertainty i n  the specification of the system inputs. 

The initial state ( ( t o )  = q(O) is also taken to  be unknown in advance. Namely, 

q(o)  E ~ ( 0 )  (1.2) 

with the set Q(O) E conv Rn being given. 

An isolated trajectory of (1.1) generated by point q ( T )  = q[r] will be further denoted 

as q[ t ]  = q(t , r  , g ( T ) ) ,  while the set of all solutions to  (1.1) that  start  a t  g ( T )  will be 

denoted as Q( t  , r  , q ( T ) ) .  

We also assume 

The sets Q ( t  , to  , q(O)) ,Q(t , to , ~ ( ' 1 )  are therefore the attainability domains 

for (1.1) (from q(to) = q(O) and Q ( O )  respectively). 

It is known that  the multivalued function 

satisfies the "funnel equation", [ll] 

where 

h(Q' , Q") = max{h+(Q' , Q") , h-(Q" , Q ' ) )  , 

h+(Qf  , Q") = rnaxrnin { I (  p - q 1 1  I p E Q ' ,  E Q " )  , 
P 4' 

h + ( ~ '  , Q") = h-(Q" , Q')  

is the Hausdorfldistance between Q' E conv Rn , Q" E conv Rn [12]. 

Let us now assume that  there is some additional information on the system (1.1), 

(1.2). Namely, this information arrives through an equation of observations 

where y E Rm , G ( t )  is continuous ( G  : Rn + Rm) and the set-valued function 

R ( t )  from T into conv Rm reflects the presence of "noise" in the observations. The reali- 
zation y,(a) = y ( r  + 0)  , to - T 5 0 5 0, of the observation y being given, it is possible 

to construct an  "informational domain" Q, (o , to , Q ( O )  I y,(o)) of all trajectories con- 

sistent with (1.1)-(1.3) and with the given realization y,(.). The cross-section 

Q (r  , to  , ~ ( ' 1 )  of this set is the .generalized state" of the "total" system (1.1), (1.2), 



(1.4), (for convenience we further omit an explicit indication of y,(o) taking i t  to  be 
fixed). 

Clearly, for r' < r" we have Q(rt '  , to , ~ ( ' 1 )  = Q(r" , r' , Q (r' , to , ~ ( ' 1 ) )  
The map Q(r" , to , ~ ( ' 1 )  = Q [ ]  thus satisfies a semigroup property and defines a gen- 
eralized dynamic system. The function Q [r]  also satisfies a more complicated version of 
the funnel equation (1.3), [3]. 

lim 0-' h(Q[r  + o] , ( E  + A ( r ) o )  Q [ r ]  + P ( r ) o ) )  n Y [ r  + o] )  = 0 
6 - 4 0  

Qltol = Q ( O )  (1.5) 

where 

YI.1 = ( 9  : G(7)  9  E ~ ( 7 )  - R ( 7 ) )  

is taken t o  be such that  its support function 

is continuously differentiable in 1 and r. The latter property is true if p(l ( Y (r] ) and 
y(r)  are continuously differentiable in the respective variables. This in turn is ensured if 

the measurement y ( t )  is generated due to  equation 

by continuously differentiable functions ( ( t )  and G ( t ) .  

Consider the inclusion 

whose attainability domain is 

Lemma 1.1 [13,14] The follou~ng relation is true 

where the intersection is taken at a11 continuous matriz-valued functions L ( t )  with values 
L  E Rn m. 

The last Lemma allows to  decouple the calculation of Q [ t ]  into the calculation of 
sets Q L [ t ]  governed by "ordinary" differential inclusions of type (1.7). 

According to [ll] each of the multivalued functions QL [ t ]  satisfies a respective fun- 

nel equation 



Hence from (1.8) it follows that the solution to (2.5) may be decoupled into the solu- 
tions of equations (1.9).  The latter relations allow for a respective difference scheme. 

2. An Inverse Problem 

Assume that  a square-integrable function y (o 1 7 )  = y ( t l  + o),  7 - t  <-- u < 0 t 1 

and a set N  E conv Rn are given. Denote W ( r  , t l  , N )  to be the variety of all points 

w  E Rn for each of which there exists a solution q ( t  , 7 ,  w )  that  satisfies (1.1),  (1.4) for 

t  E [ 7 ,  t l ] , and  q ( t l ,  7 ,  w )  E N .  

We observe that  W ( 7 ,  t l  , N )  is of the same nature as Q ( t  , to  , ~ ( ' 1 )  except that 

it should be treated in backward time. 

Hence, we will have to  deal with the solutions to  the inclusions 

with isolated trajectories q ( t  , t l  , q ( l ) )  that satisfy the restriction 

Following Lemma 1.1, we have a similar 

Lemma 2.1. The following equality is  true 

the intersection being taken over all continuous matrix-valued functions L ( t )  with 
L E R * ~ ~  , and W L ( t  , t l  , N )  is  the assembly of all solutions to  the inclusion 

Lemma 2.2 Each of the realizations W L  ( t  , t l  , N )  = W L [ t ]  may  be achieved as a 
solution t o  the funnel equation 



The uncertain system and inverse problem of the above will play an essential part in 
the formulation and the solution of the adaptive control problem discussed in this paper. 

3. The Adaptive Control Problem 

Consider a control process governed by the equation 

- -  d p  - C ( t ) p  + u , t  E T 
dt 

where p E Rn , C ( t )  is a continuous matrix function ( C  : Rn --+ Rn)  and u is res- 

tricted by the inclusion 

u E V ( t )  

where V ( t )  is a continuous multivalued map from T into conv R .  

The basic problem considered in this paper is to devise a feedback control law that  
would allow the system to  adapt to  an uncertain state constraint. 

Assume that  an uncertain system (1.1), (1.2), (1.4) is given and a state constraint is 
defined by a continuous multivalued map 

K ( t )  ( K  : T --, conv Rn) 

The objective of the control process for system (3.1) will be to  satisfy the constraint 

~ ( t )  + q ( t )  E K ( t )  , v t  E T , (3.2) 

and also a terminal inclusion 

p ( t l )  E M , M E conv R n  

The ~ r i n c i ~ a l  difficulty is here caused by the fact that vector q ( t )  of (3.2) is unknown and 

that  the information on its values is confined to  the inclusion 

e ( t )  E Q ( t  , to , Q ( O ) )  

Therefore the total state constraint on p a t  instant t  will actually be 

~ ( t )  + Q ( t  , to , Q(')) E K ( t )  

where the realization 

Q [ t ]  = Q(t  , to , Q ( O ) )  

cannot be predicted in advance, being governed by the uncertainty 

wt ( 0 )  = {q ( to )  , r ,  (4  7 ut ( 4 )  



Here the notation ft (0) stands for 

ft (a) = f ( t  + a) , to - t  I a L t  . 

In order to  pose the adaptive control problem it is necessary t o  introduce the notion 

of the state (the position) of the overall system (3.1)-(3.3). 

The position of the system (3.1)-(3.3) will be defined as the triplet 

Hence the solution to  the problem will be sought for in the class of multivalued stra- 
tegies 

with U E con" Rn and with the dependence of U upon t  , p , yt(.) being such that  the 

joint system 

P E C ( ~ ) P  + U ( t  , P 7 y t ( . ) )  (3.5) 

9 E A ( t ) q  + P ( t )  (3.6)  

Y - G9 E R ( t )  (3.7) 

has a solution for any 

~ ( t , )  = E Rn , q ( t o )  = E Rn, 

For the solution to  (3.5)-(3.7) t o  exist, in the sense that  (3.5) - (3.7) are satisfied for 
almost all t  E [ t o  , t l ]  , it suffices that  U ( t  , p , y t ( . ) )  is a convex compact valued map, 

measurable in t  and upper semicontinuous in { p  , y t ( . ) }  E R n  x IL2 ( t o  , t ) ,  and that  

P ( t )  , R ( t )  are of convex compact values and measurable in t ,  [8]. A strategy 
U ( t  , p , y t ( m ) )  tha t  ensures the existence of a solution to  (3.5) - (3.7) will be further 

referred to  as an admissible strategy. 

The Basic Problem 

With mapping K ( t )  and set M being given, specify a feedback control strategy 

that would ensure the inclusions (9.2),  (9.9) whatever is the realization q ( t )  of the system 
(5.6), with ( ( t o )  E Q ( O )  and set Q ( O )  given. 

11 
For t  + A t  the element ~ ~ ( 0 )  to  be compared with yt + At(.) should be modified t o  yt (0) which 
will be defined for [ t o  , t  + A t ]  and such that  



Thus the control problem is to adapt the process p( t )  to  the uncertain state con- 
straint: 

where Q ( t  , to , ~ ( ' 1 )  is achieved through a guaranteed es t imat ion process for the system 

(3.6), (3.7) and K Q stands for the geometrical (Minkowski) difference of sets K , Q 
( K A Q = { p : p +  Q C K ) )  

The informat ion on the basic s y s t e m  (3.1) is complete since the exact value of the 

vector p is assumed to  be available. 

We shall now proceed with the formal solution schemes for constructing the desired 

strategy 

4. The Extrapolation Problem 

Assume that  a t  instant T a realization y:(e) is given and therefore, a set 

Q*[T] = Q ( t  , to , Q(') I y; (e ) )  is available. (From now on we will s tart  to  vary y,(e) 

and will therefore include y,(e) into the respective notations, substituting 

Q ( T  , to , Q ( O ) )  for Q ( t  , to , Q ( O )  1 Y,(.)) . 
Suppose that  the realization y:(e) may be prolongated onto the interval ( T  , t l ]  in 

the form of a possible future measurement y;(e) generated by a triplet 

where our further notation will be taken in the form 

+:(a) = +(t + a )  , o < u < t l  - t , so that  the upper zero index would assign the 

respective element +:(e) to  the interval ( t  , t l ] .  For a multivalued map @ ( t )  the nota- 

tion is similar @:(a) = @ ( t  + a )  , 0 < a < t l  - t . 

The specific triplet w: * ( e )  should satisfy the inclusions 

A triplet of this kind will be further referred to as an admissible tr iplet ,  i.e. 

where 

nF(e) = Q [T]  x PF(e) x RF(e) 

and as indicated above 

P,"(@) = {uF(@) : ~ ( t )  E P ( t )  , T < t < t l )  

R3.1 = {t,O(e) : [ ( t )  E R(t) , T < t < t l )  



Now obviously it will be possible to  devise a related prolongation for the set-valued 
function Q*[ t ]  from [to , r] onto the interval ( 7 ,  t l ]  in the form of a realization 

According to  [7] and to  the statements of 5 1 of this paper, the multivalued map 
Q*[.] may be specified through the system 

9  E ( A  ( t )  - L ( t )  G ( t ) )  q  + P ( t )  + L ( t )  ( y *  - R ( t ) )  

Q* = A ( t )  q* + v*(t)  

Y* = G ( t )  q* + €*( t )  , 

9*(7) = 9: , q(7) = QT 

or, in equivalent form, through the system 

i* E ( A  ( t )  - L ( t )  G ( t )  z* + ( P ( t )  - v* ( t ) )  - L ( t ) ( R ( t )  - ( ' ( t ) )  (4.2) 

z*(7) = !IT - 9: 

where 

Denote Z ~ ( O  , T , Z*[r])  t o  be the set of all solutions to (4.2) that  s tar t  from Z*[T] 
a t  instant r. 

What follows from [13,14] is 

L e m m a  4.1.  T h e  prolongation QFt[.] generated by w; *(.) m a y  be given by the  rela- 

t i o n  

over all constant  ma t r i ces  L  E Rm ". 

It is not difficult t o  observe that  the following relation is true 

L e m m a  4.2.  T h e  u n i o n  of all possible cross sec t ions  Q* [ t l ]  of the  prolongation 

Q," *[el of Q*[r] (over all tr iplets  w:(.) that  satisfy (4.111, i s  a convez  compact  set  - the 
attainability domain  Q ( t l  , r  , Q*[r])  at  t i m e  t  for the inc lus ion (1.11, starting f rom 

{ r  , Q*[r] ) .  N a m e l y  

The schemes of the above allow to construct a solution procedure for the basic prob- 

l e m .  



5. The Solution Scheme 

Suppose that  the position (the "state") of the overall system is given as 

or in equivalent form as 

( 7 ,  P , Qlr ] )  

where 

A possible prolongation for Q [ r ]  onto ( 7 ,  t l ]  is the multivalued function Q,O*[e] 
generated due to  a possible "future" measurement y: * (a) (which is uniquely defined by a 

triplet 

Returning to  an  inverse problem of the type described in 5 2, (except that  system 
(2.1) is changed to  (4.1) and sets N , Y ( t )  to  M and K ( t )  Q * [ T ] ,  respectively), we 

observe that  the set 

consists of states { r  , p )  such that  for each of these there exists and "open-loop" control 
u ( t )  that  steers { r  , p )  into M under the constraints 

In view of Lemma 2.1 we come to 

Lemma 5.1. The set W ( T  , t l  M , Q [ r ]  I w,O *(*)) may be described as 

the intersection being taken over all continuous ( n  x n ) -  rnatriz-valued functions L ( t )  
defined for [ r  , t l ] .  

Here WL[r]  = W ( r ,  t l  , M , Q[r ]  1 w:* (* ) )  = W ( r ,  t l  , M , I w,O*(*)) 

is  the solution set to  the sys tem 



or to  the funnel equation 

lim a-l h+ ( W [ t  - a ]  - L Q [ t ] a  , ( E  - a ( C ( t )  - L  ( t ) )  W [ t ]  - L K ( t ) a  - V(3)p)) = 0 
0 - 0  

The next step is to  construct a set W ( T  , t l  , M , e )  of such states { T  , p )  that  for 
every possible prolongation Q * [ t ]  (generated by w; * ( a ) )  there exists an "open-loop" con- 

trol u ( t )  that  steers { T  , p )  into M under the constraints (5.1). 

L e m m a  5.2. The  se t  W ( T  , t l  , M ,e ) m a y  be described as  

over  all admissible t r ip le ts  w,O * ( a )  E R,O(e) 

The graph of each of the multivalued maps W:*[e]  over the interval [ T ,  t l ]  is 

closed, with convex cross-sections W * [ t ]  = W ( t  , t l  , M , l ( w,O*(e)) , 171. Therefore 

we come t o  

L e m m a  5.5. T h e  graph of the multivalued m a p  W,[e] i s  a closed se t  wi th  convex 

cross-sec t ions  W [ t ]  = W ( t  , t  , M , l ) , t  E [ T  , t l ] .  

With WIT] given, the regular ez tremal  strategy that  follows the scheme of [1,3] is 

constructed through the relation 

where 

is the Euclidean distance from p  to  W [ T ]  , and df(1)  is the subd i ' e ren t ia l  of the function 

f a t  point 1. 

For the function $ ( p )  = d  ( p  , W )  , the subdifferential 

a * ( P I  = a d ( p  , W )  

consists of a single point w* = arg min { I  ( p - w I I I w E W [ T ] )  , 
The regular e z t r emal  s t ra tegy  of (5.4) yields the solution to  the basic problem under 

some addit ional assumpt ions .  

Consider the support function 

P(l I W ( T ,  t l  , M , l 1 w,O*(e))) 

and further on, the function 



Lemma 5.4. The function j(1 ( T , t l  , M , e )  is a closed positively homogeneous 
function. 

Assumption 5.1. Whatever the realization Q [ T ] ,  the following relation is  true 

where {**(I 1 T , t l  , M , e )  is  the second conjugate to j(1 ( T , t l  , M , e )  i n  the variable 

1 .  

The second conjugate ([IS]) to  a function ] ( I )  is defined as ( I * ) * ( / )  where 

I * ( P )  = S ~ P { ( P  1 )  - I ( / )  I 1 E R") 
In other words, Assumption 5.1 requires that  j(1 1 T , t l  , M , e )  would be convex 

and lower semi-continuous in 1 .  

This yields 

Hence, under Assumption 5.1, the support function p(l I W  ( T  , t  , M , e ) )  of the 

intersection of sets W ( T  , t l  , M , e )  ( w,O * ( e ) )  (over w,O * ( e )  E n,0(e) ) should coincide 

with 

This is a requirement which does not hold in the general case where the support 
function of the intersection of sets requires an infimal convolution of the respective sup- 
ports rather than their infimum, (151. 

Lemma 5.5. Under Assumption 5.1., the multivalued map W y [ e ]  has a closed graph 

with convez compact cross-sections W [ t ]  = W ( t  , t l  , M , e ) .  

Lemma 5.6. Under Assumption 5.1. ,  the strategy U ( T  , p , y , (@))  of (5.4) is an 

admissible strategy. 

Theorem 5.2. Suppose the vector p0 = p ( t o )  and the set Q ( t O )  = Q ( O )  are such that 

Assumption 5.1 i s  true and that 

Then the respective strategy U ( t  , p  , y t ( e ) )  of (5.4) will ensure the restrictions 

(3.2), (3.3) whatever are the solutions to the inclusions (3.5)-(3.7). 

The regular case described here does not cover all the possible situations that  may 
arise in the basic problem. We will therefore give a short description of two other 
"extremal" cases for the solution. 



6. The "Blunt" Solution 

Consider the attainability domain Q ( t  , to , ~ ( ' 1 )  for system (1.1) in the absence of 

any state constraints. 

Assumption 6 . 1 .  T h e  set S ( t )  = K ( t )  Q ( t  , to , ~ ( ' 1 )  f @ for any t  E [ t o  , t  
Denote W b [ t ]  = W b ( r  , t l  , M )  t o  be the solution of an inverse problem of the type 

given in 3 2 - the set of all states p, = p(r)  of system (3.1) such tha t  for each of these 

there exists an open-loop control u ( t )  ( u : ( e )  E V:(e)) that  ensures the inclusions 

Denote the "blunt" strategy t o  be 

L e m m a  6 .1 .  T h e  strategy U b ( t  , p)  ensures the solution to  the inclusion 

0 for any in i t i a l  state p ( t O )  = p  . 

The solution is here understood in the sense of Caratheodory [9]. 

Theorem 6 . 1 .  Under  Assumption 6 . 1  suppose p ( t O )  E W ( t O  , t l  , M). T h e n  the 

strategy U b ( t  , p )  of (6 .2 )  ensures that  any solution p( t  , to , pO) to the diflerential inclu-  

sion (6 .9 )  would satisfy the restrictions (6 .1 ) .  

The "blunt" solution does not require any on-line measurements for the uncertain 

system (1.1) .  It implements an "open-loop" feedback solution under a given state con- 
straint and it may work only if the sets S ( t )  are nonvoid, which is a rather strong restric- 
tion on the parameters of the problem. 

7. The General Approach 

The general approach leads to  a complicated scheme that  follows the constructions 
of (21, [3] and [7]. 

Suppose a set Q ( r )  is given and 

are the possible realizations of the informational sets (due to  possible "future" measure- 
ments). 



The sequence of operations is as follows. Divide the interval [T  , t l ]  into s subinter- 

v als 

7 -  t o ,  t1  ?..., tS  = t l ,  

For the interval ( tS  , t l ]  find the set 

wS(ts-' , t1  , M , Q[tS-'1 1 w;Tl(.)) . 

Take 

w,(tS-I , t l  , M )  = n {n wS(tS--' , t l  , M , ~ [ t ~ - - ' ]  I w;il(.)) I 

I w,".ll(.)) E n;-l(.)} 1 Q[tS-'1 = Q(tS-' , to , Q ( O )  1 y:(.)) : w;-I(.) E at.-I(*)} 

Repeat this procedure for ( tS-2 , tS-'1, taking wS( t s - l  , t l  , M )  instead of M. 

In a similar way continue to  repeat this procedure for (ts-3 , ts-2] taking 

~ , ( t ' - ~  , tS-I , w S ( t s - l  , t l  , M) instead of M and so on, finally arriving a t  

w ~ ( ~ ,  tl  9 M )  = W S ( T ,  t1 , ws ( t l  , t 2 ,  ...wS(ts-I , t l  , M ) )  ...) 

Under rather conventional conditions with s - oo , c, - 0, the set 

W,(T , t l  , M )  will converge 

in the Hausdorff metric, and the set-valued function W = W ( T ,  t l  , M )  may then serve 

as a basis for a strategy similar to  U ( t  , p , yt(.)). The detailed treatment of this situa- 

tion will be the subject of another paper. 

A final remark is that  the numerical implementation of this scheme requires an  

appropriate approzimation theory for set-valued maps. Therefore an approximative scheme 

that  traces the basic solutions in terms of ellipsoidal valued functions seems to  be a 

relevant subject for investigation. 
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