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CENTRAL LIMIT THEORY FOR MULTNALUED MAPPINGS 

Alan J .  King 

1. Introduction 

In an earlier paper [I.] we gave conditions tha t  described the asymptotic behaviour of selections from 

a sequence of random sets in a bite-dimensional Euclidean space X that  were single-valued almost 

surely. The results of the  present paper reveal tha t  these conclusions may be derived from a much more 

general asymptotic result for truly multivalued mappings. The basic approach is the same, however: 

we consider the convergence in distribution of the sequence of "difference quotient.sn and apply some 

basic results from the theory of convergence of probability measures. The principle difference is in the 

choice of distribution. In [I] we analyzed the distribution induced directly on the image space X of 

the multivalued mapping - this was possible because of the single-valuedness a.s. assumption. In this 

paper, we follow Salinetti and Wets [a] in analyzing the distributions induced by the multifunction 

regarded as a measurable function (random closed set) into the space of closed subsets of X ,  equipped 

with the compact, metrizable topology of Kuratowski set convergence. 

We study sequences of random closed sets tha t  have a special form, namely 

where {s,) is a sequence of random variables in a separable Fre'chet space Z with known (or knowable) 

asymptotic behaviour, and  F : Z =t X is a closed-valued measurable multifunction. In many appli- 

cations, as shown by the examples given below, the random closed sets of interest may be described 

by isolating the stochasticity in an object tha t  can be understood as a random variable s, and then 

describing the random closed set  as a multivalued but deterministic mapping of this random variable. 

For systems with this property the asymptotic analysis falls naturally into two pieces: understanding 

the asymptotic behaviour of the sequence {s,) and describing local properties of the multifunction 

F. When the sequence of random variables {s,) satisfies an asymptotic formula 
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for some sequence of positive numbers (7,) decreasing to  0, we prove in the main result of the paper 

that an analogous formula holds for the random closed sets 

where Fi, ,  is a "derivativew of F localized a t  a given point z E F ( 2 ) .  (The symbol D under the arrow 

denotes convergence in distribution.) 

The m c i a l  condition turns out t o  be "semi-differentiabili~~, a concept introduced recently by 

Rockafellar [S] in his exploration of differentiability concepts for multifunctions. This theory is in its 

infancy. Nevertheless explicit computations are already possible in some situations. These strong con- 

nections between the central limit theory and the theory of pseudo-differentiabiliQ for multifunctions 

are a hopeful sign tha t  we are on the threshold of some really useful results concerning the influence 

of da ta  and statistical approximations in mathematical programming. 

A few examples will help t o  motivate the formulation of the fundamental problem treated in this 

paper. In what follows {oh, k = 1,2 , .  . .) is a collection of independent and ident,ically distributed 

random variables on IRd. 

Example 1.1. The set of feasible solutions t o  a system of smooth constraint's depending smoothly 

on a parameter z E Wd may be modelled as a multifunction F : Wd z Wn, by 

where the functions j, : R n  -. W are jointly C1. Suppose that  z could be known only through taking 

a finite sample born the collection {ck) and forming the sample mean, as might be the case if our 

knowledge of z came b o m  Lhoisyw measurements. For each Einite sample of size v = 1,2 , .  . . we can 

form the estimated feasible set F ( t  0,). If the sequence {ok) is well behaved then the sequence 

of sample means is asymptotically normal, i.e. the sample means sa t i sb  (1.1) with ru = JL and the 

limit distribution 2 turns out t o  be normal, or Gaussian. Under reasonable regularity conditions we 

can study the a s ~ m p t o t i c  behaviour (1.2) of the  sequence of estimat,ed feasibility sets. This will be 

developed further as Example 2.6. 

Example 1.2. We can further ask about optimal solutions t o  a mathematical programming problem 

t h a t  depends on an estimated parameter. The Kuhn-Tucker conditions can be studied as an extension 

of the previous example. However, the conditions required t o  guarantee semi-differentiabiliQ are fairly 

strong and we defer our study of asymptotic behaviour until these are better understood. In Shapiro 

[0] there are some partial results in this direction. 

Example 1.3. This example comes born stochastic optimization. Let us suppose we wish t o  solve 

the problem 

minimize E j ( z , o l )  over all 3 E C, 



but we can only form approximations t.o the integral by obtaining samples {sk). For each sample of 

size v we obtain a random solution set 

1 
Ju = {r 1 r nrinirnizer - x j(r,mr) over all r E C )  

v 
C= 1 

R e  can fit the pattern of the first two examples by observing that  the function 

is an estimate of the true objrctive and if J is the solution multifunction 

J ( g )  = {z 1 z minimizes g (z )  over z E C) , 

then writing B, ( 0 )  = C:=I j ( . ,nk) it follows tha t  

The pattern is completed if we can establish that the sequence of "sample means" {r,(.)) is asymp- 

totically normal in some suitably generalized sense; cf. King [4] for a treatment of the linear-quadratic 

case. This is the principle reason why we present our result,s for multivalued mappings d e h e d  in a 

general metric space Z. This problem was Erst considered in the setting of maximum likelihood esti- 

mation; cf. Huber (71, Aitchison and Silvey (10). For other recent work in the stochastic optimization 

literature see DupatovQ and Wets 181. The asymptotic analysis of {J,) based on the fundamentally 

new results of the present paper will appear shortly. 

The reader of this paper is expected t o  be acquainted with the fundamentals of Kuratowrski 

convergence of closed sets and weak'-convergence of probability measures; see, for example, Salinetti 

and Wets 1111 and B.dIiigsley 161, respectively. A sequence of subsets {A,) of a locally compact 

topological space converges to  a subset A in the Kuratowski sense if 

A = l imsupA,  = liminf A,, 

where 
bid A, = {a I a = lima, where a, E A, for all but 6nitely many v )  

b s u p  A, = {a I a = lima, where a, E A, for infhitely many v). 

A sequence of probability measures {p,) on a complete separable metric space Z weak2-converges t o  

for all bounded continuous functions j : Z -, R. 

The main result is developed in Section 2. The rest of the paper is devoted to  applying the 

main result to  the asymptotic analysis of selections xu E F(s,) when F is h o s t  surely single-valued 

(Sections 3 and 4 ) ,  and Hadamard differentiable functions when F is actually a function (Section 5). 



I. C e n t r a l  L i m i t  T h e o r e m  f o r  M u l t l v a l u e d  M a p p l n g o  

b e  present our mqjor result in this section. Let X be a h i t e  dimensional linear space equipped with 

a norm 11 . 1). A multi\.alued map F : 0 3 X defined on a probability space ( n , A , p )  whose values 

are closed subsets of X is said to  be a closrd-valurd mraaurablr multifunction if for all closed subsets 

C C X ,  the inverse image 

F - I  (c) := { W  I F ( w )  n c # 0) 

belongs t o  A .  (In parallel with the measurable function/random variable dualism, when the proba- 

bility space 0 is unspecified we shall call such a mapping a random cJoscd set and use the boldface 

notation O F " . )  Following Salinetti and R'ets [I], we observe t h a t  the  mapping F may be identified 

with a Borel measurable function p : 0 -, 3 ( S )  from fl into the hyperspace 3(X) of all closed subsets 

of X equipped with the topology consistent with (Kuratowski) convergence of sets. This space 3 ( X )  

so topologized is in particular compact, separable, and metrizable. Every closed-valued measurable 

multifunction thus induces a regular probability measure pp - '  on t h r  Borel field of 3 ( X ) .  Convcr- 

gence in distribution of a sequence {F,) of such mappings, written F,-F, is then defined t o  be the 
D 

weakb-convergence of the measures pp,' t o  pp-' induced on J ( X ) .  

An important feature of this d e b i t i o n  is t ha t  i t  turns out t o  be equivalent t o  convergence of 

certain stochastic processes on X ,  ~ J I  the sense of convergence in distribution of the bite-dimensional 

sections. Each subset C c X may be associated in a unique way with the  distance function d ( . ,C)  : 

X - R+ given by 

where R+ is the space of nonnegative r e d s  made compact with the inclusion of the point a t  i n b i t y .  

Relying on the fact t ha t  a sequence of closed srts  converges in 3 (X)  if and only if the sequence 

of distance functions converges pointwise, Salinetti and Wets (1; Theorrm 2.51 demonstrate that  a 

sequence of random closed sets {F,) converges in distribution if and only if the distance processes 

{d(.,F,]) convergr as stochastic processes on X .  By d e b i t i o n  these stochastic processes d(. ,F,)  

converge to d(., F), in notation: 

if and only if for all finite coUections { P ~ , .  . . , zk) of points in X one has 

as random variables in RY).  This characterization plays an important role in computations. 

(The reader should note tha t  a sequence of random variables {w,) defined on a complete separable 

metric space U. converges in distribution t o  w if and only if one has wreaks-convergence of the measures 



induced by the w, on the spare U'. We may also regard these a random closed sets  since points 

are closed in U'. But in this view the sequence {w,) converges in distribution if and only if one has 

weak*-convergence of the distributions induced on the hyperspace 3 (Uf ) .  The two notions are not 

equivalent. I t  will always be clear from the context which is being employed.) 

Setting the stage for the central limit theorem, let Z be a separable complete metric vector 

space (separable Frichet space) equipped with its Bore1 field B(Z) and let the map F : Z 3 A' be  

closed-valued and measurable. O n  the space Z de6ne a sequence (5,) of random variables. Trivially, 

each F(r,) is a random closed set in X. Our  interest here is in the possibility of describing the 

asymptotic behaviour of this sequence of random closed sets when the sequence (r,.) of random 

variables satisfies a generalized central limit formula: there are a point r ,  a sequence of positive 

numbers (7,) monotonically decreasing to  0, and a limit distribution 8 such tha t  

as random variables in Z. 

A central limit theorem for the sequence {F( s , ) )  inevitably rests upon an appropriate debti t ion 

of &st-order behaviour for the multifunction F : Z =$ X. The theorem given below is based on 

debtitions due t o  Rockafellar 131. Fix a point 2 and a point 5 E F ( z ) ,  and define the collection 

{Dt : t > 0) of difference quotient multifunctions 

The n~ultifunction F is said t o  be semi-differentiable a t  i relative to z if there exist.s a multifunction 

D : Z =t A' such tha t  for all r E 2, 

(2.5) lim D; (z') = D ( a )  
: lo  

r ' 4  a 

taken as  a limit of sets (in the Kuratowski sense). If  such a property holds then i t  can be shown tha t  F 

is psendo-differentiable a t  ( i , ~ )  and D equals the pseudo-derivative Fi,,, all of which is summarized 

by the formula 

(2.6) l imgph D; = gph F:,, 
: lo  

taken as  a limit of sets in Z x X. (See the proof of [3; Theorem 3.21 which generalizes t o  this  inbti te  

dimensional setting.) The underlying philosophy of this differentiability notion is best considered from 

the geometric point of view. Take a point ( r ,? )  in the graph of F and construct there a tangent cone t o  

gph F ;  this cone is then the graph of F:,,. The picture is the exact analogue of t,hat for differentiable 

functions (going back t o  the original ideas of Fermat) viewing the graph of the derivative as t,he 

hyperplane in Z x A' tangent to  the graph of the function a t  (2, z) .  Naturally, different choices of 

tangent cones - e.g. Clarke, intermediate, contingent, etc. - all lead t o  different derivatives. The 

choice made in IS] is that  gph Fi,, should equal simultaneously the contingent and intermediate cones 

(respectively l imsup and liminf in (2.6)). 



Definition 3.1. Given a measure p on (Z,B (Z)), the multifunction F : Z f is said to be alrnosf 

surrlj.  srmi.difTrrrntiablr a t  f rrlativr to li with respect t,o p if there exists a multifunction D : Z =t X 

such that  (2 .5)  holds for all points z  except possibly those in a set of p-measure zero. Abusing the 

notation slightly, we still write D = Fi4 ,  even though the limit (2 .5)  and not (2 .6)  is understood herr. 

This differentiability notion turns out t o  be exactly what is needed as we see in the following, 

surprisingly elegant, central limit theorem for multivalued mappings. 

Theorem 3.3. Let Z be a separablr f i i che t  space and X a finite dimensional normrd linear space, 

and  supposr F : Z =t X is closrd-valued and measurable. If the sequence of random variables { r ,  ) 

satisfies a generalized central limit formula and if F is almost surely semi-diferentiable a t  2 relative 

t o  a point  z E F ( z )  with respect to the measure induced by 8 ,  then { F ( s , ) )  satisfies thr  generalized 

central limit formula: 

as random closrd sets in X or, equivalrntly, 

~q stochasstic processes on X. 

Proof. Denote by p ,  the measures induced on the space Z by the random variables r , ' [ r ,  - r] and 

by p tha t  induced by 8 .  The meaning of the formula (2.3)  is precisely tha t  p, weak*-converges to  

p.  Employing the difference quotient notation (2 .4) ,  the measures induced on the complete separable 

metric space T ( X )  by the  random closed sets on the left side of ( 2 . 7 )  may be represented as p , 6 ~ ' ,  

where 6," : Z 4 T ( X )  is tlie function identified with D,, . By Billingsley (6 ; Theorem 5.51 the 

sequence {p,6,') weak*-converges t o  jd-' if the set of points 2 for which lim6,, ( 2 , )  = 6 ( 2 )  fails t o  

hold for some sequence { z , )  approaching t has p-measure zero. This is precisely what is meant by 

almost sure semi-differentiability with respect to p ;  hence the condition is satisfied if 6 ( z )  = F i , , ( t )  

for p-almost all z .  This establishes (2 .7) .  That (2.8)  is equivalent t o  (2 .7)  was shown by Salinetti and 

Wets (3; Theorem 2.51. 

Evaluating these distance processes (2.8) at z = 0 gives a converging sequence of random variables 

in R+; and,  noting t>hat for any subset C c X the linearity of the norm implies 

we obtain the following corollary. 

Corollary 3.3. Under the conditions of Theorem 2.2, 



as random variables in W + .  

R e m a r k  2.4.  T h i s  corollary leads to  an important interpretation of the meaning of the asymptotic 

distribution Fi, , (3) .  It represents the residual u n c e ~ a i n t j .  in the estimate F ( s , )  relative t o  t E F ( f ) .  

If x ,  E F ( s , )  is a measurable selection then clearly 

so the asymptotic behaviour of r i l ( ( ?  - x u ( (  cannot be bettcr than that  described in (2.9). If F is 

convex-valued and i E int dom F then i t  can be shown that there exists a selection X ,  E F ( a , )  such 

that  

112 - = d ( i , F ( s , ) ) ,  

i.e. { x , }  in norm converges in distribution t o  2. To say more than this about selections seems t o  

require F and c,, t o  be almost surely single-valued - a theme we shall pursue in the rest of this 

paper. 

E x a m p l e  2.6. A simple counter-example illustrates the semi.differentiability condition. Let Z = 

X = R and F : Z 3 R be the subgradient of the absolute value function, 

Choose (z ,  3) = (0,O) E gph F .  It is easy t o  see that FA,o exists in the sense of formula (2.6) with 

F i , o ( z )  = {F if ' = 09 
otherwise, 

and that  the semi-differentiabili~ condition (2.5) holds for every point t # 0 but fails a t  t = 0 .  For 

each v  = 1 ,2 , . .  . let a,  be the Pandom variable" taking the value v -2  with probability one, then 

the sequence { v - ' I s ,  - 0 1 )  converges in distribution to  the random variable 3  taking the value 0  with 

probability one. All the conditions of Theorem 2.2 are satisfied except that 8  places nonzero mass on 

the point a t  which semidifferentiability fails. Denote by h, ( . )  the distance function d ( 0 , v - ' I F ( . )  -01) 

and by h ( . )  the function d(O,FA.o(.)). If Corollary 2.3 holds then h,  ( s , ) -h (3 ) .  But  for any closed 
D 

interval [b, +oo] in R+ wre have h, ( s , )  E Ib, +oo] with probability one for all sufficiently large v ,  and 

h(3)  E (b,+m] with probability zero. This contradicts the Portmanteau Theorem 16; Theorem 2.11, 

thus Theorem 2.2 fails for this example. 

E x a m p l e  1.6. An immediate application reveals the comput,ational potential of the theorem in 

mathematical programming. Let Z = lFtd and A' = W n ,  and define F ( r )  t o  be the  set. of all 2 E IRn 

satisfying 



where j, : Rd x R" - R is continuously differentiable for i = I , .  . . , m .  Suppose that the parameter z 

is known only in a statistical sense by making repeat.ed observations { I , ,  . . . , I,) and averaging them 

t o  form an estimate I,, i.e. 

Under easily satisfied conditions the S, obey a crntral limit formula 

where 3 has a centered Gaussian distribution. If ( i ,  2 )  is a point where the system (2.10) satisfies the 

Mangasarian-Fromowitz constraint qualification, then (cf. Rockafellar IS; Example 5.51) the mapping 

F is semidifferentiable a t  5 relative t o  z and, moreover, an  explicit formula is obtained for the contin- 

gent derivative Fi,,, n a m e l ~  for all z the aet Fi,,(z) consists of the points z satisfying the linearized 

system 

V r J i ( 2 , ~ )  . 2 + V t j i ( 2 , ~ )  ' 2  SO f o r a l l i ~ I ( f , ~ ) ,  
= O  for i = e + l ,  ..., m,  

with I ( r ,  P) denoting the inequality constraints of (2.10) active a t  (z,?). From Theorem 2.2 

and the  limit distribution F:,=(b) is seen t,o be a Gaussian random po4yhrdron: letting b, denote the 

(Gaussian) random variable '7, j, ( 2 , ~ )  . 3  for i = 1,. . . , m we have 

These Gaussian random polyhedra thus play a role in mathematical programming similar t o  tha t  of 

Gaussian random variables in classical statistics, since for large v 

i.e. the  distribution of F(s,) approximates a Gaussian random polyhedron. 



3. Convergence In Di~tribution for Selections 

Suppose that a sequence of random closed sets {F,) converges in distribution. R h a t  then can be said 

about the convergence in distribution of arbitrary measurable selections x, E F, as random variables? 

This question was introduced in Remark 2.4; in this eection we explore some answers. 

As always, the space X is finite-dimensional, linear and normed. Kt shall find it convenient to 

refer explicitly to the underlying probability space (n, A ,  p),  therefore in this section we use measurable 

multifunction and measurable funcbion in place of random set and random variable notations. The 

domain of a closed-valued measurable multifunction F : n 3 X, denoted dom F, is the measurable 

set 

d o r n F = { w ~ n I ~ ( w ) f  8 ) .  

A function 2 : n -. X is called a measurable selection o f F  ifz(w) E F ( c )  for palmost  all w E dom F. 

For such multifunctions there always exists a t  least one measurable selection; see, for example, Wagner 

[6]. It is important to note that p (domF)  may be less than one and in this case the measure pz- l  

induced on X by a measurable selection z of F is not a probabi l i~ .  measure. This introduces a 

minor technical difficulty into the very de6nition of convergence in distribution for eequences {z,) of 

measurable selections, which as the reader recalls is defined to be weakt-convergence of the sequence 

{pz, ) of measures on X. 

Lemma 3.1. A necessag- condition for the weak*-convergence for a sequence of finite measures {P,) 

on a complete separable metric space Z is 

Furthermore, if (3.1)  holds then all the equn~alences in the statement of the Portmanteau Theorem 

16; Theorem 2.1) hold true for the sequence {P,). 

Proof. The &st statement follows directly from the de6nition since P ( Z )  = S l d P .  For the second 

statement vie must refer to the proof of the cited Portmanteau Theorem. It is only necessary to show, 

in the notation of the proof. that (iii)+(ii). For this everything goes through to conclude that the 

linear transformation of f ,  i.e. a f + /? E ( 0 , l )  for a,/? E El, satisfies 

Using (3.1) we infer from this that 

limsup 1 fdP, 5 1 f dP, 

and the rest of the proof follows as written. 

The significance of this lemma is that it allows us to apply aU of the main  result.^ of weak*. 

convergence, in [6] for example, that depend on the equivalences in the Portmanteau Theorem but 

which do not specifically require the measures to be probabilities. 



Defidtion 3.1. A closed-valued measurable mult.ifunrtion F : 0 3 S is said t o  be p-almost sureb, 

single-valued if 

(3.2) p{u E dom F ) F ( G )  is not a singleton) = 0. 

Theorem 3.3. Supp osr that the closed-valued measurable multifunctions F, : fl f A', v = 1 ,2 , .  . ., 
converge in distribution to the closed-valued measurable multifunction F : n 3 X. Suppose, more- 

over, that  F is p-almost sureJy single-valued, that 

and that 

(3.4) p{w E dom F, IF, ( w )  is not single-valued) + 0. 

If z : fl -+ X and z, : 0 -. X are measurable select,ions of F and F,, respectivelv, then the sequence 

{z,) converges in distribution to z as  random variables in X.  

Proof. For convenience denote by P and P, the finite measures pz- '  and pz;' on S. First note 

tha t  P ( X )  = pz-I  (.Y) = p(dom F). Thus assumption (3.3) means P, ( X )  -+ P ( X ) ,  and so Lemma 

3.1 applies. Denote by B ( z , c )  the open sphere of radius c > 0 centered at the pont z E X ,  i.e. 

The collection of all sets that  are finite intersections of open spheres is a convergence determining 

class; cf. the corollaries t o  16; Theorem 2.21. Let A be a member of this class, i .e .  

We mag suppose without loss of generality tha t  the B ( z , , r , )  are P-continuit3 sets. Now note that 

~ ~ = l ( - m , ~ l )  is a continuity set for the random vector w I+ [d(zl , F ( w ) ) . . .  . , d (zk ,F (w) ) ] ,  since 

which is zero. The convergence of the processes d ( . ,  F, (i;)) t o  d(., F(i;)) - cf. equation (2.2) - and 

the Portmant,eau Theorem imply 



and this lat ter  set is equal to  P ( A )  since F is p-almost surely single.valued. Define the sets S,, 

" '1 ,2  ,..., by 

S, = {w E dorn F, 1 F, (LI) is a singleton). 

Koting that  by King [I] the sets S, are all measurable, we have 

Hence by assumption (3.4) and the observation tha t  

j~{w E dom F, I d(zi, F,(u)) < E;, t' = 1,. . . , k) 

=p{w E n ( d ( ~ , , F , ( w ) )  < c, ,  i =  1 ,..., k ) ,  

we have P,(A) - P(.4). Since A was an arbitrary member of a convergence determining clavs i t  

follows tha t  P, weak*-converges to P and the proof is complete. n 

To assist in the verification of condition (3.3) in Theorem 3.3 we have the following proposition. 

Propoeition 3.4. Suppose that the dosed-valued measurable multifunctions F, : R 3 X, u = 

1 , 2 , .  . ., converge in distribution to  the dosed-valued measurable multifunction F : R 3 A'. If 

p(dom F) = 1,  thrn 

p(domF,) - p ( d o m F ) .  

Proof. Since the F, converge in distribution to  F, the random variables w c, d(0, F,(w)) must 

converge in distribution t o  the random variable w c, d(O,F(w)); see equation (2.2). Now 

and thus by the Portmanteau Theorem p(domF,) - p ( d o m F )  provided R+ is a continuity set for 

the random variable L~ c, d(0,  F(c)) i.e. 

which is indeed the case by our assumption tha t  p(dom F) = 1. 



4. Central Umlt Theory for Selections 

Returning t o  the setting of Section 2, we let Z be a neparable Frichet space, A' a finite-dimensional 

normed linear nparr and F : Z 3 X a closed.valued measurable multifunction. 

Theorem 4.1. Supposr that the sequence {s,) oirandom variablesin Z satisfies a generalizrd central 

limit ionnula (2.3) with 2 E dom F, and  that  the ioJJowing assumptions hold: 

(4.1) F is almost s u r e k  semi-diferentiable a t  z relative to  z E F(z) 

with respect to  the m e a s u n  induced by 8; 

(4.2) Fj,, (8) is  almost surely single-valued; 

(4.3) Pr{% E dam F) + Pr{ 8 E dom Fit,); and  

(4.4) Pr{F(a,) is nonempty and not singlr-valued) + 0. 

Then for aU measurable selections x, E F(s,) a d  X E q,,(~) one has 

a s  random variables in X. 

Proof. In view of assumption (4.1), Theorem 2.2 applies and thus 

rvIF(av)  - ~]-fi,,(a) 

as  random sets in X. Clearly r,(x, - Z] is a selection of r,[F(a,) - j i ] ,  v = 1 ,2 , .  . .. Assumption (4.3) 

is  the counterpart of (3.3) in this setting, and with assumptions (4.2) and (4.4) the  conclusion follows 

from Theorem 3.3. 

Remark 4.3. This theorem is a far more general version of King [I; Theorem 4.61. Nevertheless it 

takes some effort t o  derive that  theorem from the present one. We give a brief indication here. If a 

closed-valued measurable multifunction F satisfies 

(i) F(z) = { E )  a singleton; 

(ii) F is Lipschitzian a t  z (cf. (1; Definition 4.11); and 

(iii) F z , ( b )  is a.s. single-valued, 

where F:, is the upper pseudo-derivative, i.e. the mapping whose graph is the contingent cone t o  

gph F at  (z,z)  and which therefore satisfies (2.6) with limsup, then one can show directly tha t  F is 

almost-surely semi-differentiable a t  t relative t o  z with respect t o  3 and tha t  F& = F:,, a.s. It is 

assumed tha t  F(a,) is single-valued a.s. The  only remaining thing t o  ver& is (4.3). This follows from 

the  assumption 

(iv) z E int dom F 

which implies tha t  domF:,, = Z; thus (4.3) now follows from Proposition 3.4. 



6. Hadamard Differentfable hnct ions  

The technique used in the main result, Theorem 2.2, can also be applied t o  functions. Let both Z 

and X be separable FrCchct spaces. Following Rockafellar (131, we say that a function j : Z -. A' is 

Badamard diferentiable a t  2 if the limit 

exists for all directions z. Paralleling Definit,ion 2.1, we shall say that  j is almost surely Hadamard 

diferentiable at f with respect to a measure p if (5.1) holds for all directions z except possibly those 

in a set of p-measure zero. 

Theorem 6.1. I,et Z and  X be separable fiichet. spares. Suppose {a,) is a sequence of random 

variables in Z satifiring a generalized central limit formula (2.31, and suppose also that j : Z -, X 

is measurable and almost s u r e b  Hadamard diferentiable with resp ect to the measure induced by the 

limit distribution 3. Then 

a s  random variables in X. 

Proof. A s  in the proof of Theorem 2.2, apply Billingsleg 16; Theorem Fi.51 t o  the sequence 

where p, is the "difference quotientn 

The condition tha t  (5.1) holds p-almost surely is precisely tha t  required to  ensure tha t  pup;' weak*- 

converges t o  p j l ( f ; . ) - ' ,  establishing (5.2). 
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