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Foreword

During the last two years, Valeri Fedorov has been bringing his very consid-
erable statistical talents to bear on the design of environmental monitoring sys-
tems and on the analysis of experimental data in the environmental sciences. In
this particular Working Paper, Valeri has examined the concept of kriging, a
method used to recover spatial patterns from point measurements, first applied in
the geological sciences. Unfortunately, environmental fields usually vary in time
as well as space. This leads to severe difficulties which have not been fully real-
ized by environmental scientists. The nature of these difficulties is elaborated in
this paper.

R.E. Munn
Leader
Environmental Program
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KRIGING AND OTHER ESTIMATORS OF
SPATIAL FIELD CHARACTERISTICS
(WITH SPECIAL REFERENCE TO
ENVIRONMENTAL STUDIES).

V. Fedorov

1. Introduction

During the last decade use of the kriging method (or simply "kriging") in-
creased greatly in research related to the analysis of spatial variability of en-
vironmental parameters; see for instance, Barnes (1980), Dennis and Seilkop
(1986), Clark et al. (1986), Endlich et al. (1986), Finkelstein and Seilkop (1981),
Der Megreditchan (1979) and McBratney and Webster (1981). It is difficult to
understand the reason for this increasing popularity (but with some occasional
dark spots; see for instance, Akima (1974), Armstrong (1984)). Is it its compara-
tive simplicity, statistical effectiveness, mathematical elegancy or the mesmerizing
impact of the word "kriging" (sometimes "universal kriging'')? In this paper an at-
tempt to clarify the situation and to understand its place in the statistical theory
of spatial pattern analysis and the admissibility of the kriging method in environ-
mental studies is undertaken.

Technical details and computing aspects of the kriging method are avoided but
the reader can find them for instance, in Journal and Huijbregts (1978), Ripley
(1983) and Thiebaux and Peddler (1987). The bibliographic overview by Bell and
Reeves (1979) provides a guide to the original theoretical literature (mainly by
Krige, Matheron and Journel) and the numerous applied papers.

It is worthwhile to note that the method is the analogue for spatial processes
of Wiener-Kolmogorov prediction theory. It "has been developed and used mainly
by Matheron and his school in the mining industry. He christened the method krig-
ing after D.G. Krige" (Ripley (1983) section 4.4).

. Linear Estimators, Kriging

Let some value y () be observed at points z4.z,, . .. 1 Zn € X, where X is two
dimensional in the majorily of applications. Points z;, i =1,n, could be spaced at
the intersection points of some regular grid but it is not essential for the theory
and does not cause serious difficulties for modern software if they are not.

The estimation of value ¥y at the prescribed point z, is of interest in the
analysis of spatial patterns. For the purpose of this paper, it is sufficient to con-
sider only the linear estimator of y, = v (z):

To=ATy , (1)

where "T'" stand for transposition, A € R, yT = (Y Ygr - Yn ) Yy =) .
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A practitioner wishes to have 270 as close to its true value y, as possible. In
other words, one has to minimize some measure of discrepancy between ﬁo and Yo

270 = Arg mAinidiscr'epancy ('_[io, vyl (2)

The choice of the "distance” is defined by the structures of y(z). Frequently some
constraints can be imposed on A in optimization problem (2).

Two main approaches can be easily traced in the corresponding literature:
the first is deterministic and closely related to classical function approximation
theory, while the second is based on the assumption that y(z) is generated by a
random field (see for instance Katkovnik (1985), Miccheli and Wahba (1981) and
Ripley (1983)).

In both cases, the most crucial assumptions are related to the "smoothness’ of
surface y(x). In the deterministic case, these assumptions usually concern the
derivatives of ¥y (x). When y(z) is generated by a random field, assumptions con-
cerning its correlation structure are mainly used.

This paper concerns the latter case. The square risk (discrepancy measure)
V2N =E[(@¥,)%1 = SNy ) p(vo.¥)dy pdy., 3)

where p(yo.¥) is the density (assuming its existence) of the random vector
(Vo) € R *1, will be used as a criterion of the optimality of ﬁo. It is known that

the linear estimator (1)-(3) is the best one only if ¥y (x) is a Gaussian random field.
In other cases, it is referred to as the best linear estimator.

Observations with known mean-covariance structure.
Let us assume that:

(@) for any  and =x° the mean m(xz) =FE(y(x)] and the covariance
Cz.x’) =E[(y(x)—m(z))(y(x)—m(x’)] are known. In matrix notation, this
means particularly that

mo =E(yo), m=E(y).
Coo = E[(¥o—me)?1, Cfy = Cyy =E[(y —m)(yo—m )], (4)
C1 =El(y —m)(y-m)T].
are given.
From definition (3) and (4), it follows that:
Vv2(A) = Coo + m& = 2AT(Cio+mom) + AT (Cyy+mm TN (5)
The minimization of (5) leads to the best linear (unconsirained) estimator:
Ay = (Cy+mmTYL (Crg+mmy) (6)
v3(X,) = min v2(A\) =Cop +m2 —(CortmTm)(Cyy+mm )L (Cyg+mTmy) . (7)
When linear constraints are imposed:
Fx=1L, ®)
where F is a (k Xn)-matrix and L is a (k X1)-vector, then the solution of A, of (5) is

defined by the system:

C11+mmT FT
F 0

A

" (9)

L

001+mm0]
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where u corresponds to Lagrangian multiples.
The variance of the prognosis is equal to:

v2(Xp) = v&(Xy) + ¥TFT(Cy +mmT) 1P 1y, (10)

where ¥ = FT(Cu+mm T)_1(001+m om)—L. The last term in (10) is positive due to
positive definiteness of the matrix FT(Cll+mm T)”IF.

In other words, when demanding the fulfillment of some properties for A (the
fulfillment of (8)), one sacrifices its precision in the sense of (3):

vE3(A,) s V3R, . (11)

Unknown mean structure, kriging.

Formulae (8), (7) are of theoretical interest but for a practitioner their use-
fulness is very restricted. Knowledge of both m(z) and C(z.z') is more often an
exception than a frequently met situation. Therefore, a number of attempts to con-
struct estimators that do not use m(z) and C(z .,z ') or at least part of this informa-
tion have repeatedly been undertaken. One of them is kriging, where knowledge of
m (x) is not necessary. Unfortunately one has to pay for this by the additional as-
sumption:

(b) the mean of y(z) does not depend upon z, e.g., m(x) = m,, and by the fol-
lowing constraint imposed on A:

k
Z A =1 (12)
i1=1
In terms of (8), this means that F = 1T is the vector (1xk) with all elements equal

to 1 and L =m,. Constraint (12) provides an unbiasness of the corresponding esti-
mator )\Ty:

MR

E[)\T'y]=mo,i A=m,.

=1

From (9) and (12) it follows that the kriging estimaior Xk is the solution to
the following linear system

Cyy 1
tT o

Co1

Mo

A

u , (13)

which does not include vector m.

The restricted nature of assumption (b) was evident at the very beginning of
kriging history and the so-called universal kriging estimator A,, was proposed
(Huijbregts and Matheron (1971)), which was based on the assumption:

(b') the mean of y(z) can be presented in the form m(z) = 'L9Tf(:c), where
f(z) is a vector (kxl1l),% <n, of a priori known functions. To obtain the
unbiased estimator, one has to impose the following constraint:

ENTyl1=ATFT9 = fT(z)8, forany z €Xx

or

Fx=r(z), 14)



where
F=[f(zl)|f(zz):-«-:f(zn)]-

From (9) and (14) is follows that the universal kriging estimator Xuk is the solu-
tion of the system:
T
Lc‘ll F COl
0 T (=)

which similarly to (13) does not include vector m.
The estimator X, is unbiased if (b * ) is fulfilled but v3(X) s v3(X,,).
For the universal kriging estimator, (10) can be transformed to
2/ - -1
V(Aye) = Coo —C01C11 Cyo +

+ [f (2 ) FC1LC 1T FCHFTY 1L (24)-FC71C 0] (16)

A

” ' (15)

Kriging is more attractive theoretically when (a) is changed into the following
assumption (Huijbuegts and Matheron (1971)):

(@) Ely@)—y)l=040z.z°) El(y(z) -y =27@x.z"),

where it is assumed that only the increments of the random field admit the first
and second order moments. From theory, it is known that there are cases when
these moments do not exist for y (z) itself while they exist for the corresponding
increments. Function y(z.z ') is called a semivariogram and

2z, xz’) =[(m(z) —m(z ‘)]2 +Cz.xz)+Clx’',z°) —2C(z",z2"),

if mean m(x), variance C(zx,z) and covariance C(z.z’) exist. Usually in practice
one believes in their existence.

In applied studies wusing kriging, authors prefer to work with the
semivariogram y(z,z”) instead of the familiar covariance C(z,z’) although it does
not make acceptance of the results any easier (see the next section).

To summarize this subsection, one can say that kriging is a particular case of
linear estimation theory or, to be more specific, some generalization of the
Wiener-Kolmogorov filter.

Probably it is also worthwhile to notice that a universal kriging estimator can
be constructed in the framework of the generalized least square method (see sec-
tion IV) when the model

y(z) =97 (z) + e(z)

is considered under the assumption that the covariance structure of the random
error &(z) is known.

The simple kriging estimator can be considered also as a particular case of
the moving average (see, for instance, Katkovnik (1985)):

- 3 n
Vo= X MYy X A =1,
(=1 =1



where weights A, are defined by (3).

Observations with unknown mean-covariance structure

Assumption (a) (or the theoretically slightly milder assumption (a“)) is drasti-
cally restrictive in practice for environmental analysis. In the publications relat-
ed to kriging, the author could not find any approach other than using the empiri-
cal estimates m(zx) and C(z,z’) in place of m(z) and C (z,z’).

Probably this recommendation is worthwhile in engineering sciences where
there exists the possibility of repeating similar experiments and where one can
use so-called learning samples to restore m(z) and C(x,x’) and then to use krig-
ing. But in this case the simpler and well established technique can be used. For
instance, instead of (1), (8) one can use the estimator:

U =Ag + ATy
that in case of (3) is defined by the following formulae:
S - T~-1 Y
Aoz=mo—m Cy3Cip, A3 =C11Cqp.
Yo =my +CpyCi (w—m), %))

and

If the learning sample is sufficiently large and one can forget the uncertain-
ties of m(z) and C(x .z ") then (17) is better than kriging.

In environmental applications and by the way, in geostatistics (the homeland
of the kriging method), it is more realistic to use the term observations than ezx-
periments. Therefore, the problem of a good learning sample becomes here espe-
cially acute and usually there is no hope that the errors of estimates m(z) and
C(z,xz’) can be neglected.

In this case, the average in formulae (7) and (10) (where all a priori unknown
values are substituted by their estimates) has the conditional character:

E[(J —y)?/ learning sample] = v2(})

Of course the total variance, taking into account the randomness of learning

sample, will be greater than vz(k) defined either by (7) or (10). To some extent
they can be considered as estimates of the low bounds for the corresponding to-
tal variances.
The plight becomes worse when the same set of data y g (¥1.%2,- - .,Yp) is used
both for the estimation of Cy,, C,, and kriging. In that case, the author has failed
to find in the literature any serious theoretical results on the evaluation of the
bias and the variance of the kriging estimators.

A sensitivity analysis examining how the estimate ﬁuk = il,cy will change for
given small perturbations in C,, and C,, was done by Warnes (1986). But it isa nu-
merical analysis of the stability of system (15), rather than a statistical analysis of

the corresponding estimator. which, for instance, must determine how much the
variance of ﬁuk will change under small random perturbations of the aforemen-

tioned matrices.

To conclude this section, one can say that in the case of a priori unknown Cyq
and C4,, the kriging approach gives some hints on how Lo choose weights for the
linear estimator )\Ty but it gives no serious guarantee of their optimality.




IIl. Examples

In all three examples presented here, at.t.gent.ion will t;e focussed on the most
sensitive aspect of kriging : fitting of 7(z,z ) or C(x.x ) , leaving aside other
aspects of the problem.

1. Distridution of residual contamination from atmospheric nuclear tests
(Barnes (1980)).

Thi 4ef(amp1e illustrates how the semivariogram was estimated using data on
isotope Am for one ground zero site, Smallboy. The data was extracted from a
more extensive study related to the analysis of residual contamination after atmos-
pheric nuclear tests. The final objective was to evaluate the contours of 241
activity. All experimental and geographical details can be found in (Barnes (1988{9
and in the references given there. In the cited report it was assumed that the
observed value y (z) is a random spatially weak stationary field, e.g., Ely(z)] =m
and y(z,z’) = y(h), whereh = \/(z: - ’)T(z —z’)

This assumption is essential because firstly it allows one to estimate ¥(z,z ")
and secondly it makes it possible to use simple kriging (m (z)=m , see assumption
(b) from the previous section). The consistency of the assumption with reality can
be evaluated, at least partly, with the help of Figure 1. Here, the 'observed”
values F(h) are plotted by numbers which correspond to the directions presented
at the top-right corner of Figure 1.

The "observations’’ were calculated by the following procedure (Barnes
(1980)): "All points within a small angle of true east-west of a given point are put in
the "east-west” class and points that are "approximately” h away of a given point
are put in the distance A class. The size of small angle and the closeness of the
distance approximation can be controlled by the user to reduce the error intro-
duced by these approximations’.

The dashed line in Figure 1 corresponds to the final approximation of y(h)
and it is clear that both anisotropy and possible drift were ignored. Barnes did
not mention how ¥(h) was fitted to the data, but what is evident is that it does not
follow the points at all, except maybe in the interval 0 < A < 1000ft.

From the definition of the semivariogram, it follows that in the case when the
drift of m(zx) can be ignored and y(z) is weakly spatially stationary, then
y(h) =C’ —C(h), where C =C(x.,xz)and C(h) = C(z.z").

It seems that for the physical phenomenon (distribution of contamination) con-
sidered by Barnes, C(h) 20 for all A and hlim C(h) =0 (implicitly this is

assumed, see p.6 of cited paper, where various types of 7(h) are considered).
Therefore, for the upper bound of y(h ), one has

sup y(h) =C,

e.g., the plateau of y(h) (or "sill”) has to be equal to the variance C of observed
values. From Figure 1 it follows that C ~3400. Unfortunately, the scale of the
vertical axis was not accurately defined. Does it correspond to y(h) or to 2y(h)?
So it could be that C = 1700, but this would not change the situation, i.e., where
one cannot be sure that the inaccuracy of ?(h) defined by the dashed line in Fig-
ure 1 is not less than 30Z. How can it violate the results of the kriging procedure?
Is there any hope for its optimality? Or maybe it is a very indirect way to con-
struct a mediocre moving average estimator with very restrictive intermediate
assumptions?
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Figure 1: Pointwise estimates for the semivariogram y(k ), Barnes (1980).

Probably it is better to use the moving average directly because it needs
simpler computing and more straightforward and explicit assumptions about the na-
ture of y{(x).

2. Kriging analysis of the regional pallerns of the chemical constituenis of
precipilalion.

In the report on "Statistical analysis of precipitation chemistry measure-
ments" by Endlich et al, (1986), Ch. 4, the kriging approach was applied to interpo-
late the yearly medians of the daily laboratory RH and analyte concentrations at
each site and for the yearly total deposition of H' and other analytes. To perform
kriging the authors separated "long-term spatial and temporal trends from year-
to-year fluctuations”. The quadratic spatial polynomial plus the linear time trend
were used to approximate the logarithms of these trends. The fitting technique
was the ordinary least square method. The residuals (observed values minus the
least square estimates) were taken as inputs for kriging. Their variations from
year-to-year were assumed to be independent, and the covariation structure was
"assumed to be both slationary (independent of location) and isotropic (in-
aependent of direction)’



The semivariograms were evaluated by a linear model:

y(h) =9, + D,k .

Fitting was done by the weighted least square method with weights proportional to
the number of site-pairs and inversely proportional to distance A. Typical exam-
ples of this fitting are presented in Figure 2. It is difficult to evaluate the good-
ness of fitting because the inverse values of weights were not plotted. However, it
seems that the fit is not very good. Besides the linear approximation does not re-
flect the fact that the observations from the mutually remote sites have not to be
correlated and hlim y(h) = const, i.e., y(h), has to approach saturation (compare

with the previous example and with the definition of a semivariogram).

There are some other points that can be criticized:
(a) Use of the least square method to remove trends and subsequent application to
kriging is not consistent with theory: one has to use at least universal kriging in-
stead of these two steps. Only in this case are the estimates optimal in the sense of

(8) or at least approximately optimal if the estimates for C(A) and subsequently
for C,, and C,, are sufficiently precise. It seems that the use of covariances (if

they exist) is more convenient both from the theoretical and the computational
points of view. In what follows, C(h) or C(z,z ‘), or C,,,Cq; will be used without
comments.

With respect to residuals u,, the authors of the report did not notice that
their variance-covariance matrix is singular. Therefore all "kriging" formulae
(see, for instance, (9), (15), (18)) cannot be used directly (the solution will not be
unique). Probably, the use of some estimate C,, instead of C,; will regularize com-
putations. But this "regularization” simultaneously means the loss of optimality of
the prognoses ¥ (z) due to the poor estimation of Cy,.

The singularity of C,, can be easily verified.

Assume that Yy = FTo+e (or Yy = ff(.z:{ Yo+ ), where
F=U(z;),..., f(z,)). Then the least square estimator ¥ is defined by the for-
mula (see, for instance, Anderson, 1971):

3 =@FT)y Ry
the vector of residuals equals
u=y -FI's = -rFTEFrT)IFe
and the variance-covariance matrix of the residuals
€y, =U-FTEFTYF10,,U-FTFFT) F].

The projection matrix J —FT(FF'T)_lF has rank (n — m), where m is the di-
mension of ¥. Therefore rank C;; =n —m, i.e. Cy, is singular (| Cy4] =0).
(b) The method of semivariogram estimation can be improved (from the statistical
point of view) almost without an increase of computations.

For the sake of simplicity let us assume that observed values (i.e., ordinates
in Figure 2) are normally distributed. Then (see, for instance, Seber, 1977, Ch.
14):

var [(y —y %] = 29%(h),
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where A is the distance between observation points. In the case of other distribu-
tions, this formula is more complicated.

The method of the iterative least squares:

n -
U5y SArg min T ry (7 =7(hy 9))2/ Y3(hy B) , B = lim By , (18)

8§ —»oo

gives asymptotically (n — ) optimal estimates for ¥ and y(h,¥), i.e., the method
minimizes var (;9) and var 7[(h..13)]. see Malyutov (1982). In (18) r; is the number
of observations for every h; ., ¥ stands for unknown parameters. In practice usu-
ally the iterative procedure (18) is terminated after 3,4 steps.

(c) For all four fitted lines in Figure 2, the intercept ( i.e., ¥,) is significantly
greater 0. It means that there exists a so-called nugget effect (see, for instance,
Gilbert and Simpson (1984)), i.e., a discontinuity of the covariance function
C(x,x’). This could probably occur in geostatistics when one analyses the deposi-
tion of some ore minerals, but in the analysis of pollutants in fluids or atmospheric
contamination, it seems unreal. This is also confirmed by the existence in each part
of Figure 2 of observation points located close to the origin. Presumably, only
observations with A =3 + 4 still satisfy the kriging assumptions and more distant
observations are either violated by trends and anisotropy, or the covariance func-
tion is negative for A=24. The results presented in Figure 3 (the model
y(h) = (V9,2 +9,22)/ (1+952%), z=e ~h 1, was fitted to the data with the help of
iterative use of BMDP AR program, 1983) are a good confirmation of this assertion.

The above critique leads to the same conclusion as in the previous example.

3. Sulfur deposition model evaluation.

One of the main goals of the report by Clark et al (1986), was the comparison
of the several models currently used for computing of sulfur deposition in North
America. Roughly, the strategy consists of the following steps:

- observations from irregularly located observation stations are used to esti-
mate values at regular grid points with the help of kriging,

- model predictions over some grid are used to obtain gridpoint values with the
help of kriging,

- both sets of results are compared by procedures mainly based on methods of
mathematical statistics.

In this approach, for instance, "a confidence interval’ for the difference in
observed and predicted values was constructed as follows:

Vprea — Vobs t 1.96 (Var (ppeq ) + Var (ygps)1Y 2, (19)
where
Ypred = kriging estimate for model prediction at the grid point,
Yoss = Kriging estimate for the observed data at the grid point,

Var (-) = kriging variance estimate.

If the deviation of kriged values from true values that they estimate have normal
(Gaussian) distribution, then (19) defines 952 confidence interval. See Clark et al
(1986), p. 5.12.



CMise
'
<

28+

¢

PHee2
=
-~

Mo

0.0 #

Figure 3:

(a)  Precipitation smount per event

-11 -

+
¢ 0 R
T I 00 -
T P 0 | N
[ S S S 4 | S S S 4 8-
0 0 R
0 R
+
0
0 -
+
....... L IPCTNRNE NN ZETTTION NN JUNIRE SE
6 10
(i pH {lsboratory)
0 +
+
0 6 0 -
0
‘PP}’PPPPPP P
0 00 0 0-
0 -
+
+
....... L PPN S PP P PR TR TIN
[ 10

DISTANCE (1 MAP UNIT = 170 KM}

CMee2

(KG/MA)ee2

1.§

R

R

2

(b} Total precipitation per year

U—

¢ +

‘ ‘

. 0 X

‘ A

- 0 PP v p P LI P-

PP P .

0

0 R

+ 8 00 [ 1] 0 '

,P )
-0

....... L T N U N 2O TTus T

H §. ij it
(d) Total H* depasition per yesr (from lsboratory pH)

. 1 .

- P -

+ 0 +

- 0 -

R P .

) .

- PO 0 -

0 0 00 -

0 preserferer I

. 0 _

+ 0 0 +

P R

R ;

....... [SUUUDOY JUDDRURE SUUUDUE JUNUDIIE DUPPUIIE DIDIRIE SPRRIIN

2 6. 10 iy

DISTANCE 1 MAP UNIT = 170 KM}

Fitted semivariogram y(h) = (¥,z +U,2%)/ (1+9,2%),z=e® —1, vertical
lines stand for the standard error of prognoses.



-12 -

From the previous considerations (see the concluding part of section II and
the first two examples) it is clear that the variances computed by substitution of
true values of C(z) and C((z,z ") (or ¥(z .z ")) by their estimates (which are usually
very poor) have a very remote relation with reality. Therefore, one can use (19),
keeping in mind a number of "ifs" due to the violation of assumptions about "pure
kriging"” and due to the assumption on the normality of distributions of VUpred and

Yobs -

Together with this technical remark there is one more general comment. The
strategy of model comparison with data can be described by the scheme presented
in Figure 4. It is clear from this scheme that one compares distorted images of
two objects. In principle the distortion due to projection I can be very small be-
cause a user can continue computing until his models give good results on any given
grid. Then the whole procedure of comparison can be described as comparison of
the given set of models with one very simple model which is defined by the kriging
method assumption (see Section II). Implicitly the authors believe that this model
is better than any other considered in their report.

Probably the approach schematically presented in Figure 4 would be more
fruitful.

IV. Some Alternatives to Kriging

Generalized least squares (g.l.s.) estimator. In this subsection the links
between the kriging approach and the old-fashion least squares estimators will be
illuminated.

Let similarly to (b”) from section II
A =fT(:z,,_)'t9+e:i .1 =1n ,
where f (z) is the vector of known basic functions,
Ele,;]=0 , E[ge€;] =Cqq4- . orinthe matrix presentation
y=FTo+¢, E[eeT]=Cyy . (1)

To estimate the value of the response y (z) at a given point z, one can follow
the two steps procedure:

— compute the parameters estimates '@,

— predict ¥y (x) using the linear estimator
@) =rT@)B3 +afu
where u is the vector of residuals, i.e. u =y —FT4.
Vector A, is defined as a solution of the following optimization problem
Xo = Arg min E[y (z) ~f T(z)8 Ny FT9)?
or

Ao = Arg min E[u (z y-aTui? . (22)
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It is known (see, for instance, Seber, 1977) that the generalized least square
estimator (which is the best linear unbiased estimator)

B = Arg m1i,n (y —}""7'13)7'01‘11 (y -—FT19)

can be calculated implicitly:

3 =M1Fc ]y . M =FCcJIFT . (23)
Formally (22) coincides with (3) and at first glance all considerations from section
IT can be applied to (23). Nevertheless, there exist some specific features of (22):

- It is not necessary to impose any constraints on A to get an unbiased estima-
tor, because E[u(z)) =0 and E[u] =0, due to the unbiased nature of f?,
E[¥]=14,.

- The covarlance structure of vector w is singular, i.e. |D44| =0, where
Dy =FE[uu ] Therefore the majority of formulae from section Il cannot be
used. The straightforward calculations give:

Dy =EuuTli=cy ~-FTH'F |
DI =D, =E[u(x)uTl =cCy —Cp4Cy 5P —1FTM7IF (24)
Dyp =E[u®(=z)] = Cp' = QCo1Ci7F My (z) + r T @)W 71 ()

Unfortunately one cannot use (17), where A = D11 D,..because D, is singular
(see also comments in Example 2) and one must find a way to solve the singular
linear system:

(Cyy—FTM PN =C,, —F™MFcfc,, (25)

One of the simplest solutions of (25) is:
=C1Cy (26)

(C,4 assumed to be regular).

It has to be stressed that C,; is the variance-covariance matriz of the vec-
tor & but not the vector of residuals u' Combining (24) and (26) one finds that
the variance of the estimator y(z) = fT(z )19 + C 1011 u is equal to

Ely@)—y @ =Elu@)-AulR=C, ~C,,ClC,, + (27)
+ [f(z)-FCc ) TM I r(zy-FCiC,, ]

If the estimator #(z) = T(z )P is used, then
Ely@) @) =C, +rTa@Mmtr(z)
The same result will be obtained if C;, = 0 (observation at point z is uncorrelated

with other observations).

Expression (27) coincides with (16), i.e. the universal kriging can be con-
sidered as a particular application of the generalized least square method.

Application to the least square method allows one to trace a common take in a
number of applied st.udxes (see examples) viz., the estimates of D,; and D are
used to calculate A, (or A 2); see also (24).
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In spite of the theoretical clarity of the generalized least square method, its
applicability to real empirical situations is very problematic because of the neces-
sity to know matrices C,4 and C,, and one can repeat here all considerations from
section II related to the case with an unknown mean-covariance structure.

Moving least squares estimafor. In the majority of applications (see section
IIT) the correlated observational errors are used to simulate the deviations of real
processes from a comparatively simple trend approximation. Example 2 is a good
example. Unfortunately, the model (i.e., deviations which are random values with
covariance structure C., Cy;, Cq4) contains too many unknown parameters to pro-
vide good prognoses. The use of kriging-related approaches where C,., Cy;, Cq4
are substituted by their rough estimates (and sometimes wrongly constructed
theoretically) misleads readers (and probably authors also) in the evaluation of
the precision of prognoses.

It seems that in the examples considered, the moving average or its slightly
modified version — moving least squares estimator can give better results and
clearer and more direct understanding of the bounds of admissibility of the as-
sumptions used.

Let z be a point where the prognosis has to be made, and z; =z + u; be loca-
tions of observation points. Assume that:

(a) Inthe vicinity of point £ the following approximation is valid

Y, = Vx) + 9T(z)f(u, z) +6,(z) . i =Tn (28)

where vy, is the result of observation at point z; =z + u;,9y(z) and %z) are
parameters to be estimated, &, (x) is the observation (and approximation) er-
ror, f(u,z) is a vector of given functions vanishing when u -+ 0.

The estimator can be defined as

" - n "
{99(x),9(x){ = Arg :’nir:, Y Ay, )Yy =BT r (u, . 2)7, G(x) = Yo(z) (R9)
OV { =1

Function A(u,x ) has to reflect the confidence in using approximation (28) at
point u. Normally A(u ,z) is a unimodal function and

A0, z) = max A(u,z), lim AM(u,z)=0 . (30)
u U —»oo

Using different A(w .z ) one can easily vary the smoothness % (z). Due to (30),
the approaches similar to (29) are frequently addressed by the distance-weighted
least squares method (see Ripley, 1981, Ch. 37). In the case when there is no pri-
or "physical” information about y(xr) (or f(u,z)), one can consider (28) as the
Taylor approximation of the response ¥ (z). For the second order Taylor approxi-
mation, one will have in the two-dimensional case:

2 2
So(e) =y (@), T(a) = (-2 Py Fy oy
0z, Oz, dzi 0Oz; 0z,0z,

fT('“'i'z) = (uu,um,uft.uzzt,uuuu) (31)

where ¢, (x) is the remainder term at point £ — u;. For a sufficiently dense obser-
vation network, approximation (31) usually serves reliably. In more general case
one can use any reasonable (better if supported by some physical considerations)
f(u ,x) vanishing when u - 0.
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The standard least squares technique provides simple algorithms and formulae
for the calculation of J(z) = '30(:) (see, for instance, Golub and Van Loan (1883),
Seber (1977)). For theoretical analysis, it is convenient to use the following for-
mulae:

¥ (@) =Byz) + 3T (2)r (0,2) , (32)
where
Bo@)|
3() =M (z)Y(z),
L T
1 ,
Moo(z) Mip(z) tz=:1 wif Gy 2)
M(z) = Mo1(z) M11(z) = '

n n
Yw fugz) Y w st (w2 ugz)
-1 {1=1

Y wyyy
i=1 (A(yy.z)
Y()=|, y Wy =
2wy f(ug.z) Y Auy.x)
1=1

i=1

The estimator (29)—(32) can be considered as some approximation scheme
which can be used in both deterministic and stochastic approaches. Usually in the
stochastic case, it is easier to evaluate the discrepancy between Y (z) and the true
value y (z ), of course paying for that by the additional and practically nonverified
assumption:

(b) The observation errors e&;(x) are random values with E[e;(x)] =0,

Ele;(z)e (2)], =A"YHu,.z)6,.

1f (b) holds and F(0,z) = 0 (it is quite a usual case, compare with (31)) then:

n
Var 7(z) = (( Y Muy.z)(A My, (2)M 7 (2)M oz )] 72 (33)
i=1

One has to notice that the observed value y; =y (z;) + &;(z). In many appli-
cations it is reasonable to choose A‘l(u,x) = g° + 6(u.,z), where o? is the vari-
ance of an observation error, §(u,z) comprises local stochastic fluctuations and
6(0,z) =0, 1iim 6(u,z) = o. The estimation scheme (29)—(33) can be generalized

in the case of correlated observations. Application to this case seems not to be
useful because due to the local character of (28), the model already takes into ac-
count local tendencies and changes while in the kriging (or similar) approaches
they are handled via the correlation structure of an observed field.

The cautious reader will notice that proposed estimator demands a rather
tedious calculation necessitating inversion of matrix M(z) for every zx taken into
consideration.

At first glance, one can easily avoid this by using to models describing the ob-
served field in the vicinity of fired point z,:
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Yy = 1’0(10) + ﬂT(xo)f(ui o) + &y (zo) , (34)

and using subsequently the simplified version (Cy4 44- = O44- A’l(ui )) of the tech-
nique discussed in the previous subsection, when

(@) =By(zy) + 3 (zp)f(w.zg)  u =2 ~x, . (35)

It is clear that for all x, where ¥ (z) has to be calculated, one has to solve
the least squares problem only once. Unfortunately, it is necessary to pay for this
simplification (which does not seem to be very crucial in our computerized age) by:

(a) Estimator (32) is smooth (continuous, differentiable) if functions A(w,z) and
f(u,z) are smooth. Estimator (35) will "jump" when z, will be changed (it is
changed discretely). To avoid discontinuities, one needs to address to the
least square method merging together prognoses based on different z, But
the merging procedure removes the simplicity of (35).

(b) Model (28) provides the best approximation at point &, which is of interest,
while (34) is oriented to some fixed point z, which can be quite remote from
the moving .

In conclusion, it is worthwhile to note that in the majority of applied studies in
fluid flows, in meteorology or the atmospheric pollution studies, in contrast to geo-
logical applications, one has temporal as well as spatial information: see Example
2. The methods discussed in this section can easily incorporate temporal data ex-
plicitly expanding matrix F by adding a time dimension in generalized least squares
case or in (29)—(32) the summation has to be taken over space and time. In the
kriging approach, temporal information can be implicitly used through improve-
ment of the estimates for C,; and C,.
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