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Foreword 

During t h e  last t w o  y e a r s ,  Valeri Fedorov h a s  been bringing his  ve ry  consid- 
e r a b l e  s ta t is t ica l  ta lents  to b e a r  on t h e  design of environmental monitoring sys- 
tems and on t h e  analysis of experimental  d a t a  in t h e  environmental sciences.  In 
th is  pa r t i cu la r  Working P a p e r ,  Valeri has  examined t h e  concept  of kriging, a 
method used t o  r e c o v e r  spat ia l  p a t t e r n s  from point measurements, f i r s t  applied in 
t h e  geological sciences.  Unfortunately, environmental fields usually va ry  in time 
as well as space.  This leads to s e v e r e  difficulties which have not been fully real -  
ized by environmental scientists .  The na tu re  of these  difficulties i s  e laborated in 
th i s  p a p e r .  

R.E. Munn 
Leader  

Environmental Program 



KRIGING AND CYlTtEZ ESTIMATORS OF 
SPATIAL FIEU) CHARACl'ERISTICS 

(WITH SPECIAL REFERENCE TO 
J3lWIRONMEWTAL SrUDIES). 

K Fedorov 

1. Introduction 
During t h e  l a s t  d e c a d e  u s e  of t h e  kriging method ( o r  simply "kriging") in- 

c r e a s e d  g rea t ly  in r e s e a r c h  r e l a t e d  to t h e  analys is  of spa t i a l  var iabi l i ty  of en- 
vironmental  p a r a m e t e r s ;  see f o r  ins tance ,  Barnes  (1980), Dennis and Seilkop 
(1986), Clark et a l .  (1986), Endlich et a l .  (1986), Finkelstein and Seilkop (1981), 
D e r  Megreditchan (1979) and McBratney and Webster  (1981). I t  i s  diff icult  to 
unders tand t h e  r e a s o n  f o r  th i s  increas ing  popular i ty  (but  with some occas ional  
d a r k  spots ;  see f o r  ins tance ,  Akima (1974), Armstrong (1984)). I s  i t  i t s  compara-  
t ive  simplicity, s t a t i s t i ca l  e f fec t iveness ,  mathematical elegancy o r  t h e  mesmerizing 
impact of t h e  word "kriging" (sometimes "universal kriging")? In th i s  p a p e r  a n  at- 
tempt to c l a r i fy  t h e  s i tua t ion  and t o  unders tand i t s  p l ace  in t h e  s t a t i s t i ca l  t h e o r y  
of spa t i a l  p a t t e r n  analys is  and t h e  admissibility of t h e  kr ig ing  method in environ- 
mental s tudies  i s  unde r t aken .  

Technical  de ta i l s  and  computing a s p e c t s  of t h e  kr ig ing  method are avoided but  
t h e  r e a d e r  c a n  find them f o r  ins tance ,  in Journa l  a n d  Hui jbregts  (1978), Ripley 
(1983) and Thiebaux and P e d d l e r  (1987). Tho b ib l iographic  overview by Bell and 
Reeves  (1979) p rov ides  a guide t o  t h e  or ig ina l  t h e o r e t i c a l  l i t e r a t u r e  (mainly by 
Kr ige ,  Matheron and Journel )  and t h e  numerous appl ied  p a p e r s .  

I t  i s  worthwhile to note  t h a t  t h e  method i s  t h e  analogue  f o r  spa t i a l  p r o c e s s e s  
of Wiener-Kolmogorov predic t ion  theory .  I t  "has been developed and used mainly 
by Matheron and h i s  school  in t h e  mining indus t ry .  He ch r i s t ened  t h e  method krig-  
ing a f t e r  D.G. Krige" (Ripley (1983) sec t ion  4.4). 

U. Linear Estimators. Kriging 
L e t  some value  y ( z )  b e  obse rved  at points  z l , z z ,  . . . ,z, E X, where  X i s  t w o  

dimensional in t h e  majori ty of applicat ions.  Poin ts  x i ,  i = l , n ,  could b e  spaced  at 
t h e  in t e r sec t ion  poin ts  of some r e g u l a r  g r i d  bu t  i t  i s  not  essent ia l  f o r  t h e  t h e o r y  
and d o e s  no t  c a u s e  s e r i o u s  diff icult ies  f o r  modern so f tware  if t hey  are not. 

The  estimation of va lue  y a t  t h e  p r e s c r i b e d  point  z0 i s  of i n t e r e s t  in t h e  
analys is  of spa t i a l  p a t t e r n s .  F o r  t h e  p u r p o s e  of th i s  p a p e r ,  i t  i s  suf f ic ient  to con- 
s i d e r  only t h e  l i n e a r  es t imator  of y o  = y (zo):  

where  "T" s t and  for t ranspos i t ion ,  h E Rn , = ( y l ,  y 2 ,  . . . , y,), yi = y (xi)  . 



A p rac t i t ioner  wishes to have  y ,̂ as close to i t s  t r u e  value y o  as possible. In 
o t h e r  words, one  h a s  to minimize some measure of d iscrepancy between Go and y o  : 

A 

y o  = Arg min !discrepancy (Go, y O) j. 
A 

(2) 

The choice  of t h e  "distance" i s  defined by t h e  s t r u c t u r e s  of y (2 ) .  Frequently some 
const ra in ts  can b e  imposed on  X in optimization problem (2). 

Two main a p p r o a c h e s  c a n  b e  easi ly t r a c e d  in t h e  corresponding l i t e r a t u r e :  
t h e  f i r s t  i s  determinist ic and closely re la ted  to c lass ica l  function approximation 
theory ,  while t h e  second i s  based on t h e  assumption t h a t  y ( z )  i s  genera ted  by a 
random field (see  f o r  instance Katkovnik (1985), Miccheli and Wahba (1981) and 
Ripley (1983)). 

In both cases ,  t h e  most c ruc ia l  assumptions are r e l a t e d  to t h e  "smoothness" of 
s u r f a c e  y (2).  In t h e  determinist ic case ,  t h e s e  assumptions usually concern  t h e  
der ivat ives  of y (2 ) .  When y ( z )  i s  genera ted  by a random field, assumptions con- 
ce rn ing  i t s  co r re la t ion  s t r u c t u r e  are mainly used. 

This p a p e r  concerns  t h e  latter case. The s q u a r e  r i s k  (discrepancy measure) 

where  p ( y o , y )  i s  t h e  density (assuming i t s  exis tence)  of t h e  random v e c t o r  
( y o , y )  E R n + I ,  will b e  used as a c r i t e r ion  of t h e  optimality of Go. I t  i s  known t h a t  
t h e  l inea r  est imator (1)-(3) i s  t h e  b e s t  one  only if y ( z )  i s  a Gaussian random field. 
In o t h e r  cases. i t  i s  r e f e r r e d  to as t h e  best Linear  e s t ima tor .  

Observa t ions  w i t h  k n o w n  mean-covar iance  s t r u c t u r e .  

Let  us  assume tha t :  

(a)  for any z and z '  t h e  mean m ( z )  = E [ y ( z ) ]  and t h e  covar iance  
C ( z  ,z ') = E [(y  (2)-  ( z ) ) ( y  (2')-m (z ')]  are known. In matrix notat ion,  th is  
means par t icular ly  t h a t  

are given. 

From definition (3) and (4), i t  follows tha t :  

v2(X) = COO + m t  - 2 h T ( ~ 1 0 + m o m )  + XT(Cil+mm T)X . (5) 

The minimization of (5) leads  to t h e  best Linear  ( u n c o n s t r a i n e d )  es t imator :  
A 

Xl = (Cll+rnrn T)-l (ClO+rnrnO) , ( 6 )  
T -1 u2(i1) = min u2(X) = Coo + m - (Col+m Tko)(Cll+mm ) (Clo+m Tm 0) . (7) 

A 

When l inea r  cons t ra in t s  are imposed: 

F X = L ,  

where  F i s  a (k xn)-matr ix  and L i s  a (k x1)-vector, then  t h e  solution of X2 of (5) i s  
defined by t h e  system: 



where p corresponds t o  Lagrangian multiples. 

The var iance of t he  prognosis is  equal to: 

v2(X2) = v2( i1 )  + + T [ ~ T ( ~ l l + m m  T ) - l ~ ] - l +  , (10)  

T -1 where .I. = F T ( c l l  +mm ) (COl +m om ) -L . The las t  t e r m  in (10)  i s  positive due t o  
positive definiteness of t h e  matrix F T ( c l l + m m  T ) - l ~ .  

In o t h e r  words, when demanding t he  fulfillment of some proper t i es  f o r  ( the 
fulfillment of ( 8 ) ) ,  one sacr i f ices  i t s  precision in t h e  sense of (3): 

v2(K1) s v 2 ( K 2 )  . (11)  

Unknown mean s t r u c t u r e ,  k r i g i n g .  

Formulae (6),  ( 7 )  are of theoret ical  in teres t  but f o r  a prac t i t ioner  t he i r  use- 
f ulness is  ve ry  res t r i c ted .  Knowledge of both m  (z ) and C  (z  ,z ') i s  more often a n  
exception than a frequently m e t  situation. Therefore ,  a number of attempts t o  con- 
s t r u c t  estimators t ha t  do not use m  ( 2 )  and C ( z  ,z ')  o r  at leas t  p a r t  of th is  informa- 
tion have repeatedly been undertaken. One of them is  kr ig ing ,  where knowledge of 
m  ( z )  i s  not necessary.  Unfortunately one  has  t o  pay f o r  this by t h e  additional as- 
sumption: 

(b) t h e  mean of y  ( z )  does not depend upon z , e.g., m  ( z )  = m  0 ,  and by t h e  fol- 
lowing constra int  imposed on A :  

k 

In terms of ( 8 ) ,  th is  means t ha t  F  = I T  i s  t h e  vec tor  ( l x k )  with all  elements equal 
to 1  and L = m o .  Constraint ( 1 2 )  provides an  unbiasness of t h e  corresponding esti- 
mator X T y :  

From ( 9 )  and (12)  i t  follows tha t  t h e  kr ig ing  es t imator  i s  t h e  solution t o  
t h e  following l inear  system 

which does  not include vec tor  m  

The res t r i c ted  na tu r e  of assumption (b) w a s  evident at t h e  yery beginning of 
kriging history and t h e  so-called u n i v e r s a l  kr ig ing  estimator Auk w a s  proposed 
(Huijbregts and Matheron (1971) ) ,  which was based on t h e  assumption: 

(b') t h e  mean of y  ( z )  can b e  presented in t he  form m  (z ) = 1 9 ~  f (z  ), where 
f ( z )  i s  a vector  ( k x l )  , k  < n ,  of a p r i o r i  known functions. To obtain t h e  
unbiased estimator,  one has  t o  impose t h e  following constraint:  

E [ x ~ ~ ]  = X T  F ~ I Y  = f T ( z ) ~ ,  f o r  any z E X , 



where  

F = LP(z1) , f (z2)* .  . . # f ( ~ , ) l  

From (9) and (14) i s  follows t h a t  t h e  u n i v e r s a l  k r i g i n g  e s t i m a t o r  Xuk i s  t h e  solu- 
tion of t h e  system: 

which similarly to (13) does  not  include v e c t o r  m . 
The es t imator  iuk is  unbiased if (b ' ) i s  fulfilled but  v 2 ( i )  S v2(Xuk ). 

For  t h e  universa l  kriging es t imator ,  (10) can  b e  t ransformed to 

v 2 ( i u t )  = Coo - c ~ ~ c ~ ; ~ C ~ ~  + 

+ ~ ( z o ) - ~ c , i ~ c ~ o l ~ ( ~ , i ~ ~ ~ ) - ~ L P ( z o ) - ~ ~ ~ ~ ~ o ~  (16) 

Kriging i s  more a t t r a c t i v e  theoret ica l ly  when (a)  i s  changed into t h e  following 
assumption (Huijbuegts and Matheron (1971)): 

where  i t  i s  assumed t h a t  only t h e  i n c r e m e n t s  of t h e  random field admit t h e  f i r s t  
and second o r d e r  moments. From theory ,  i t  i s  known t h a t  t h e r e  are cases when 
these  moments d o  not ex i s t  f o r  y ( z )  itself while they exis t  f o r  t h e  corresponding 
increments. Function 7 ( z  , z  ') i s  cal led a s e m i v a r i o g r a m  and 

27(z  ,z') = [m ( z )  - m ( z  ')12 + C ( z  ,z ) + C(z ' ,z  ') - 2C(z' ,zJ)  , 

if mean m ( z  ), var iance  C ( z  ,z ) and covar iance  C ( z  ,z') exist .  Usually in p r a c t i c e  
one believes in t h e i r  exis tence .  

In applied s tudies  using kriging, a u t h o r s  p r e f e r  to work with t h e  
semivariogram 7 ( z  ,z') instead of t h e  familiar covar iance  C ( z  ,z') although i t  does  
not  make accep tance  of t h e  resu l t s  any e a s i e r  (see  t h e  nex t  section).  

To summarize th i s  subsect ion,  one  can  say t h a t  kriging i s  a p a r t i c u l a r  c a s e  of 
l i n e a r  e s t i m a t i o n  t h e o r y  or,  to b e  more specific,  some generalization of t h e  
Wiener-Kolmogorov f i l t e r .  

Probably  i t  i s  also worthwhile to notice t h a t  a universa l  kriging es t imator  can  
b e  const ructed in t h e  framework of t h e  generalized least s q u a r e  method ( see  sec- 
t ion IV) when t h e  model 

i s  considered under  t h e  assumption t h a t  t h e  covar iance  s t r u c t u r e  of t h e  random 
error E(Z) i s  known. 

The simple kriging es t imator  can  b e  considered a l so  as a p a r t i c u l a r  case of 
t h e  moving a v e r a g e  (see,  f o r  instance,  Katkovnik (1985)): 



where weights Xi  a r e  defined by (3). 

Clbservations w i t h  u n k n o w n  mean-covariance s t r u c t u r e  

Assumption (a) (o r  t h e  theoretically slightly milder assumption (a')) i s  dras t i -  
cally res t r i c t ive  in p rac t ice  f o r  environmental analysis. In t h e  publications re la t -  
ed t o  kriging, t h e  author_ could not find any approach o the r  than using t h e  empiri- 
cal  estimates 6 ( z )  and C ( z , z  ') in place  of m ( z )  and C ( z , ~ ' ) .  

Probably th i s  recommendation i s  worthwhile in engineering sciences  where 
t h e r e  exists t h e  possibility of repeat ing similar experiments and where one can 
use so-called learning samples t o  r e s t o r e  m ( z )  and C ( z  , z ' )  and then t o  use  krig- 
ing. But in th is  case the  simpler and well established technique can  b e  used. For  
instance, instead of ( I ) ,  (8) one can  use  t h e  estimator: 

T $ = X o + X  y 

t h a t  in c a se  of (3) i s  defined by t h e  following formulae: 

and 

If t h e  learnicg sample is  sufficiently l a rge  and one can fo rge t  t he  uncertain- 
t i e s  of 6 ( z )  and C ( z  ,z ') then (1.7) is be t t e r  than kriging. 

In environmental applications and by t h e  way, in geostatist ics ( the  homeland 
of t he  kriging method), i t  i s  more real is t ic  to use  t h e  t e r m  observat ions  than ez- 
periments .  Therefore ,  t h e  problem of a good learning sample becomes h e r e  espe- 
cially acu te  and usually t h e r e  is  no hope t ha t  t h e  e r r o r s  of estimates $ ( z )  and 
C ( z  ,z ') can  b e  neglected. 

In th is  case ,  t h e  average  in formulae (7) and (10) (where all a p r i o r i  unknown 
values are substi tuted by t h e i r  estimates) has  t h e  conditional cha r ac t e r :  

E [ ( Q  --y)2/ learning sample] = v2(j;) 

Of course  t h e  to ta l  variance, taking into account t he  randomness of learning 
sample, will b e  g r e a t e r  than v 2 ( ~ )  defined e i t h e r  by (7) or (10). To some extent  
they can be  considered as est imates  of the Low bounds for the  corresponding to- 
ta l  v a r i a n c e s .  

The plight becomes worse when t h e  same set of da ta  y = (y1,y2, . . . , yn ) i s  used 
both f o r  t h e  estimation of C,,, C,, and kriging. In t h a t  case ,  t h e  au tho r  has  failed 
to find in t h e  l i t e r a tu r e  any ser ious  theoret ical  resu l t s  on t h e  evaluation of t h e  
bias  and t h e  var iance of t h e  kriging estimators. 

A sensitivity analysis examining how t h e  estimate Gut = ;&y will change f o r  
given small per turbat ions  in Cll and Clo was done by Warnes (1986). But i t  i s  a nu- 
merical  analysis of t h e  stabil i ty of system (15), r a t h e r  than a s ta t is t ical  analysis of 
t h e  corresponding estimator.  which, f o r  instance, must determine how much t h e  
var iance of cut will change under small random per turbat ions  of t he  aforemen- 
tioned matrices.  

To conclude th i s  section,  one can  say  t h a t  in t h e  ca se  of a p r i o r i  unknown Col 
and Cll, the  k r i g i n g  approach  gives  some h i n t s  on how to choose w e i g h t s  for the  
Linear es t imator  x~~ but  i t  g ives  n o  s e r i o u s  guarantee  of t h e i r  op t imal i t y .  



III. Examples 
In all  t h r ee  examples presented here ,  attention will be focussed on the  most 

sensitive aspect  of kriging : fitting of y(z  ,z ') o r  C(z  ,z ') , leaving aside o ther  
aspects  of the  problem. 

1. Dis t r ibu t ion  of r e s i d u a l  contaminat ion from atmospheric  n u c l e a r  tests 
(Barnes (1980)). 

Thi e ample il lustrates how the  sernivariogram w a s  estimated using data  on 
isotope FZ4k f o r  one ground zero site. Smallboy. The data  w a s  extracted from a 
more extensive study related t o  the  analysis of residual contamination a f t e r  atmos- 
pheric nuclear tests. The final objective w a s  t o  evaluate the  contours of 241 
activity. All  experimental and geographical details can be found in (Barnes (198& 
and in the  references given there.  In the  cited r epo r t  it w a s  assumed tha t  the  
observed value y ( z )  i s  a random spatially weak stationary field, e.g., E [ y  (z ) ]  = m 
and y(z  , z  ') = y(h ), where h = d ( z  -z ') '(2 -z ') 

This assumption is essential because firstly it allows one t o  estimate y ( z , z 8 )  
and secondly i t  makes i t  possible to use simple kriging (m (z)=m , see  assumption 
(b) from the  previous section). The consistency of the  assumption with reality can 
be evaluated, at least partly,  with the  help of Figure 1. Here, t he  "observed" 
values ?(A) are plotted by numbers which correspond to the  directions presented 
at the  top-right co rne r  of Figure 1 .  

The "observations" were calculated by the  following procedure (Barnes 
(1980)): "All points within a small angle of t r u e  east-west of a given point are put in 
the  "east-west" class and points tha t  a r e  "approximately" h away of a given point 
are put in t he  distance h class. The size of small angle and the  closeness of the  
distance approximation can be  controlled by the user  t o  reduce the  e r r o r  intro- 
duced by these approximations". 

The dashed line in Figure 1 corresponds t o  the  final approximation of y ( h )  
and i t  is  clear tha t  both anisotropy and possible dr i f t  were ignored. Barnes did 
not mention how ?(A) w a s  fitted t o  the  data,  but what i s  evident is tha t  i t  does not 
follow the  points at all ,  except maybe in the  interval 0 c h S 1000ft. 

From the  definition of the semivariogram, it follows tha t  in t he  case when the 
dr if t  of m ( z )  can be  ignored and y ( z )  is weakly spatially stationary, then 
y ( h )  = C' - C(h) ,  where C = C ( z , z )  and C ( h )  = C(z,z8) .  

It  seems that  f o r  the  physical phenomenon (distribution of contamination) con- 
sidered by Barnes, C(h ) 2 0 f o r  a l l  h and lim C(h ) = 0 (implicitly this  is 

h -+- 

assumed, see p.6 of cited paper ,  where various types of y ( h )  are considered). 
Therefore,  f o r  t he  upper bound of y(h ), one has 

S?P 7(h  = C ,  

e.g., t he  plateau of y ( h )  (or  "sill") has  to be  equal to the  variance C of observed 
values. From Figure 1 it follows tha t  C N 3400. Unfortunately, the  scale of the  
vertical axis w a s  not accurately defined. Does it correspond t o  y ( h )  o r  t o  2y(h)?  
So  i t  could be  tha t  C a! 1700, but this would not change the  situation, i.e., where 
one cannot be  s u r e  tha t  the  inaccuracy of ?(A) defined by the  dashed line in Fig- 
u r e  1 is not less than 30%. How can i t  violate the  resul ts  of the  kriging procedure? 
Is  t he re  any hope f o r  i t s  optimality? O r  maybe i t  is  a very indirect way to con- 
s t ruc t  a mediocre moving average estimator with very restr ic t ive intermediate 
assumptions? 
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Figure 1: Pointwise est imates for t h e  semivariogram 7 ( h ) ,  Barnes (1980). 

Probably i t  i s  b e t t e r  to use t h e  moving a v e r a g e  di rect ly  because  i t  needs 
simpler computing and more s t ra ightforward and explici t  assumptions about  t h e  na- 
t u r e  of y (3: ). 

2. Kriging a n a l y s i s  of the r e g i o n d  pat terns of the chemical const i tuents  of 
precipi tat ion.  

In t h e  r e p o r t  on "Statistical analysis of precipitat ion chemistry measure- 
ments" by Endlich et al, (1986), Ch. 4, t h e  kriging approach  was applied t o  interpo- 
late t h e  year ly  medians of t h e  daily l abora to ry  pH and analyte  concentra t ions  at 
each  s i t e  and f o r  t h e  year ly  to ta l  deposition of H and o t h e r  analytes.  To perform 
kriging t h e  a u t h o r s  s e p a r a t e d  'long-term spat ia l  and temporal t r e n d s  from year-  
to-year fluctuations". The quadra t i c  spat ia l  polynomial plus t h e  l inea r  time t rend  
w e r e  used t o  approximate t h e  logarithms of these  t rends .  The fi t t ing technique 
was t h e  ordinary l eas t  s q u a r e  method. The residuals (observed values minus t h e  
least s q u a r e  estimates) were taken as inputs f o r  kriging. Their  var ia t ions  f r o m  
year-to-year were assumed to be independent ,  and t h e  covariat ion s t r u c t u r e  was 
"assumed to be both s ta t i onary  (independent of Location) a n d  isotropic  ( in-  
aependent of direction)" 



The semivariograms were evaluated by a l inear  model: 

y ( h )  = I9, + b2h  . 

Fitting w a s  done by t h e  weighted leas t  square  method with weights proportional t o  
t he  number of s i te-pairs  and inversely proportional t o  distance h .  Typical exam- 
ples of th is  fitting a r e  presented in Figure 2.  I t  i s  difficult t o  evaluate t h e  good- 
ness  of fitting because t h e  inverse  values of weights were not plotted. However, i t  
seems tha t  t he  f i t  i s  not very good. Besides t h e  l inear  approximation does  not  re- 
f lect  t h e  f a c t  t ha t  t h e  observations from t h e  mutually remote s i tes  have not t o  b e  
cor re la ted  and lim y(h ) = c o n s t ,  i .e . ,  y(h ), has  to approach saturat ion (compare 

h +- 

with t h e  previous example and with t h e  definition of a semivariogram). 
There  are some o t h e r  points t ha t  can be  criticized: 

(a) Use of t h e  l eas t  square  method to remove t rends  and subsequent application t o  
kriging i s  not consistent with theory: one ha s  to use at leas t  universal kriging in- 
s tead of these  t w o  s teps .  Only in th i s  case are t h e  estimates optimal in t h e  sense of 
(3) o r  at leas t  approximately optimal if t he  estimates f o r  C ( h )  and subsequently 
f o r  C1, and Cll are sufficiently precise .  I t  seems t h a t  t he  use of covariances (if 
they exist)  i s  more convenient both from t h e  theoret ical  and t h e  computational 
points of view. In what follows, C(h  ) o r  C ( z , z  '), o r  C1, ,Cll will b e  used without 
comments. 

With r e spec t  t o  residuals u i ,  t he  au thors  of t h e  r e p o r t  did not notice t ha t  
t he i r  variance-covariance matrix i s  singular. Therefore  all  "kriging" formulae 
(see ,  f o r  instance, (9), (15), (16)) c anno t  be %sed d i r ec t l y  (the solution will not  b e  
unique). Probably,  t he  use of some estimate Cll  instead of Cll will regular ize  com- 
putations. But this "regularization" simultaneously means t h e  loss of optimality of 
t h e  prognoses ( z  ) due t o  t h e  poor  estimation of Cll. 

The singularity of Cll  can be  easily verified. 

Assume tha t  y = F T $ + &  ( o r  ~i = f T(zi )*+ci where 
F = (f(zi) , . . . , f (zn)) .  Then t h e  leas t  square  estimator 3 is defined by t h e  for-  
mula (see,  f o r  instance,  Anderson, 1971): - 

I9 = ( w T ) - I F y  , 

t h e  vec tor  of residuals equals 

u = y -FTS = [ I - F ~ ( F F ~ ) - ~ F ] E  

and t he  variance-covariance matrix of t h e  residuals 

Ell = [I-F~(IT~)-~F]C,~[I-F~(IF~)-~F]. 

The p ~ o j e c t i o n  matrix I - F T ( I T T ) - l F  ha s  rank (n - m),  where m i s  t h e  di- 
mension of I9. There fore  rank  CI1 = n - m ,  i.e. Cll i s  singular ( I Cll 1 = 0). 

(b) The method of semivariogram estimation can b e  improved (from the  s ta t is t ical  
point of view) almost without an  increase  of computations. 

For  t h e  s ake  of simplicity le t  us  assume tha t  observed values (i.e.,  ordinates  
in Figure 2)  are normally distributed.  Then (see, for instance, Sebe r ,  1977, Ch. 
14): 



Figure 2: Empirical and fi t ted semivariogram functions, Endlich et a1 (1986). 



where h is  t he  distance between observation points. In t he  case of o the r  distribu- 
tions, this formula is more complicated. 

The method of t h e  i terat ive least  squares: 
n 

19, +, = Arg min C st [yt -y(ht ,19)12/ y2(ht ,9 , )  , 4 = lim IJ, , 
d i =1 s -- 

gives asymptotically ( n  --) optimal estimates f o r  I9 and y(h  ,19) , i.e., t he  method 
minimizes v a r  (19) and v a r  y[(h ,6)], see Malyutov (1982). In (18) ri is  t h e  number 
of observations f o r  every hi , I9 stands f o r  unknown parameters.  In prac t ice  usu- 
ally t h e  i terat ive procedure (18) i s  terminated a f t e r  3,4 steps.  

(c) For all four  fi t ted lines in Figure 2, t he  intercept  ( i.e., i s  significantly 
g r e a t e r  0. I t  means tha t  t h e r e  exis ts  a so-called nugget  effect (see, f o r  instance, 
Gilbert and Simpson (1984)), i.e., a discontinuity of t he  covariance function 
C(z  ,z'). This could probably occur  in geostatistics when one analyses t h e  deposi- 
tion of some o r e  minerals, but in t h e  analysis of pollutants in fluids or atmospheric 
contamination, i t  seems unreal. This i s  also confirmed by t h e  existence in each p a r t  
of Figure 2 of observation points located close t o  t he  origin. Presumably, only 
observations with h r 3 f 4 still satisfy t h e  kriging assumptions and more distant 
observations are e i t he r  violated by t rends and anisotropy, o r  t he  covariance func- 
tion is  negative f o r  h r 4 .  The resul ts  presented in Figure 3 ( the model 
~ ( h )  = +19~z')/ ( l + ' l ~ ~ z ~ ) ,  z =e -h -1, w a s  f i t ted t o  t he  data  with t h e  help of 
i terat ive use of BMDP AR program, 1983) are a good confirmation of this  assertion. 

The above crit ique leads to the  same conclusion as in t he  previous example. 

3. Su l fu r  deposition model eva lua t ion .  

One of t h e  main goals of t he  r e p o r t  by Clark et a1 (1986), w a s  t h e  comparison 
of t he  several  models current ly  used f o r  computing of sulfur deposition in North 
America. Roughly, t h e  s t ra tegy consists of t he  following steps: 
- observations from irregularly located observation stations are used t o  esti- 

mate values at regular  grid points with t he  help of kriging, 
- model predictions ove r  some grid are used to obtain gridpoint values with t he  

help of kriging, 
- both sets of resul ts  are compared by procedures  mainly based on methods of 

mathematical statistics. 

In this approach,  f o r  instance, "a confidence interval" f o r  t he  difference in 
observed and predicted values w a s  constructed as follows: 

where 

vPmd = kriging estimate f o r  model prediction at t he  grid point, 
yobs = kriging estimate f o r  t he  observed data  at t h e  grid point, 

V a r  (.) = kriging var iance estimate. 

If t he  deviation of kriged values from t r u e  values tha t  they estimate have normal 
(Gaussian) distribution, then (19) defines 95% confidence interval. S e e  Clark et a1 
(1986), p. 5.12. 
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Figure 3: Fitted semivariogram y (h  ) = (.IPlz +.IP2z ') / (1 +I@ '), z =e -1, ver t i ca l  
l ines s tand f o r  t h e  s t andard  e r r o r  of prognoses.  



From t h e  previous considerations (see t he  concluding p a r t  of section I1 and 
t h e  f i r s t  two examples) i t  i s  c l e a r  t h a t  t h e  var iances  computed by substitution of 
t r u e  values of C ( z )  and C ( ( z , z  ') (or  y ( z , z  ')) by t he i r  estimates (which are usually 
very  poor)  have  a very  remote relation with reali ty.  Therefore ,  one  can u s e  (19), 
keeping in mind a number of "ifs" due t o  t h e  violation of assumptions about  "pure 
kriging" and  due  to t h e  assumption on t h e  normality of distr ibutions of yPd and 

Yobs 
Together with th is  technical  remark t h e r e  i s  one more general  comment. The 

s t ra tegy  of model comparison with da t a  can b e  described by t h e  scheme presented 
in Figure 4. I t  i s  c l e a r  from this  scheme tha t  one compares d i s tor ted  images of 
two objects. In principle t h e  distortion due to projection I can b e  very  small be- 
cause a u se r  can continue computing until his models give good resu l t s  on  any given 
grid.  Then t h e  whole p rocedure  of comparison can be  descr ibed as comparison of 
t h e  given set of models with one very  simple model which is  defined by t h e  kriging 
method assumption (see Section 11). Implicitly t h e  au thors  believe t h a t  th i s  model 
i s  be t t e r  than any o t h e r  considered in t he i r  r epo r t .  

Probably t h e  approach schematically presented in Figure 4 would be  more 
fruitful .  

IV. Some Alternatives to Kriging 

General ized least  s q u a r e s  (g.1.s.) es t imator .  In th is  subsection t h e  links 
between t h e  kriging approach and t h e  old-fashion leas t  squares  estimators will b e  
illuminated. 

Let similarly to (b') from section I1 

y f  = J T ( ~ f  )+ + cf , i = l,n , 

where f ( z )  i s  t h e  vector  of known basic functions, 

E [ q ]  = 0 , E[cf  E~ '1 = Cll,ffd , o r  in t h e  matrix presentation 

y = F ~ + + E ,  E [ E E ~ ] = c ~ ~  . (21) 

To estimate t he  value of t h e  response y ( z )  at a given point z ,  one can follow 
t h e  t w o  s t eps  procedure:  

- compute t h e  paramete rs  estimates $, 
- pred ic t  y ( z )  using t h e  l inear  estimator 

G(z) = f T ( z ) 4  + A &  , 

where u i s  t he  vec tor  of residuals,  i.e. u -= y - F ~ + .  

Vector Xo i s  defined as a solution of t h e  following optimization problem 

A , = A r g  m p E [ u ( z )  - f T ( z ) a  - X ~ ( ~ - F ~ $ ) ] ~  , 



Figure  4: Comparison of model ou tpu t s  with d a t a .  



I t  i s  known (see, f o r  instance,  S e b e r ,  1977) t h a t  t h e  generalized leas t  s q u a r e  
est imator (which i s  t h e  bes t  l inear  unbiased estimator)  

8 = Arg min ( y  - F ~ I ~ ) ~ c G '  ( y  -FT 19) 
d 

can b e  calculated implicitly: 

5 = ~ - l ~ c , i l y  , M =FC,-~FT . 

Formally (22) coincides with (3) and at f i r s t  glance all considerations from section 
I1 can  b e  applied to (23). Nevertheless. t h e r e  ex i s t  some specif ic  f e a t u r e s  of (22): 
- I t  i s  not necessary  to impose any const ra ints  on h t o  g e t  a n  unbiased estime- 

tor, because  E[u (z)] = 0 and E[u] = 0, due to t h e  unbiased n a t u r e  of I9, 
EL91 = 9 , .  

- The covar iance s t r u c t u r e  of vec to r  u is singular,  i.e. IDl1 1 = 0, where 
Dll = E [UU T]. There fore  t h e  majority of formulae from section I1 cannot b e  
used. The s t ra ightforward calculations give: 

Unfortunately one  cannot use (I?), where h = 0fi1lI1,, because  Dll i s  singular 
(see a l so  comments in Example 2)  and one must find a way to solve t h e  singular 
l inear  system: 

(c,,-F~M-~F)A = c,, -F~M-~FC,- ,~C,,  (25) 

One of t h e  simplest solutions of (25) is: 

ho = c,~~c,, , 

(CI1 assumed t o  b e  regu la r ) .  

I t  h a s  to b e  s t ressed  t h a t  Cll i s  t h e  va r iance-covar iance  m a t r i z  of t h e  vec- 
t o r  E b u t  n o t  t h e  vector of r e s i d u a l s  u! sombining (24) and (26) one finds t h a t  
t h e  var iance of t h e  est imator y^(x ) = f T ( z ) 9  + C, l ~ $ u  i s  equal to 

If t h e  est imator t ( z  ) = f T(x )a i s  used, then 

E [ y ( x ) - F ( z ) I  = C, + ~ ~ l z ) ~ - ~ 3 ( 2 : )  . 
The same resu l t  will b e  obtained if Ci, = 0 (observation at point x i s  uncorre la ted 
with o t h e r  observations).  

Expression (27) coincides with (16). i.e. t h e  u n i v e r s a l  k r i g i n g  c a n  be con- 
s i d e r e d  as a p a r t i c u l a r  a p p l i c a t i o n  03 t h e  g e n e r a l i z e d  l e a s t  s q u a r e  method. 

Application to t h e  least s q u a r e  method allows one  to trace a common t a k e  in a 
number of applied studies (see  examples) viz., t h e  est imates of Dll and Dzl are 
used to calculate ho (o r  &); see also  (24). 



In sp i t e  of the  theore t i ca l  c la r i ty  of t h e  generalized l eas t  s q u a r e  method, i t s  
applicability to r e a l  empirical  si tuations i s  ve ry  problematic because  of t h e  neces- 
s i ty  to know matrices Cll and C1, and one  can r e p e a t  h e r e  al l  considerations f r o m  
section I1 re la ted  t o  t h e  case with a n  unknown mean-covariance s t r u c t u r e .  

Moving l eas t  s q u a r e s  es t imator .  In t h e  majority of applications (see  section 
111) t h e  c o r r e l a t e d  observational errors are used t o  simulate t h e  deviations of real 
processes  from a comparatively simple t r end  approximation. Example 2 i s  a good 
example. Unfortunately, t h e  model (i.e., deviations which are random values with 
covar iance s t r u c t u r e  C, , C1,, Cli) contains too many unknown paramete rs  to pro- 
vide good prognoses. The use of kriging-related approaches  where C,, C1,, CI1 
are substi tuted by t h e i r  rough estimates (and sometimes wrongly const ructed 
theoretically) misleads r e a d e r s  (and probably a u t h o r s  also) in t h e  evaluation of 
t h e  precision of prognoses. 

I t  seems t h a t  in t h e  examples considered,  t h e  moving a v e r a g e  o r  i t s  slightly 
modified version - moving Least s q u a r e s  es t imator  can  give b e t t e r  r e s u l t s  and 
c l e a r e r  and more d i r e c t  understanding of t h e  bounds of admissibility of t h e  as- 
sump tions used. 

Let z b e  a point where t h e  prognosis h a s  t o  b e  made, and zi = z + ui b e  loca- 
tions of observation points. Assume that :  

(a)  In  t h e  vicinity of point z t h e  following approximation i s  valid 

where y i  i s  t h e  resu l t  of observation at point xi = z + ui,'lPO(z) and $ (z )  a r e  
pa ramete rs  t o  b e  estimated, E~ (z)  i s  t h e  observation (and approximation) er- 
ror, p ( u  ,Z ) i s  a vec to r  of given functions vanishing when u -, 0. 

The estimator can  b e  defined a s  
n 

f $ o ( z ) , $ ( ~ ) j  = Arg min X(ui,  z ) [ y i  - ' lPO-'lPT~(~i , 2 ) l 2  . G(z) = (29) 
dose i =1 

Function X(u ,z ) h a s  to re f lec t  t h e  confidence in using approximation (28) a t  
point u. Normally X(u ,Z ) i s  a unimodal function and 

h(O,z) = max X(u , z )  , lim X(u , z )  = 0 , 
U u +- 

Using di f ferent  h ( u  , z )  one can easily va ry  t h e  smoothness 5 ( z ) .  Due to (30), 
t h e  approaches  similar t o  (29) are frequently addressed by t h e  dis tance-weighted 
Least s q u a r e s  method (see  Ripley, 1981, Ch. 37). In t h e  c a s e  when t h e r e  i s  no pri-  
or "physical" information about  y ( z )  ( o r  j ' (u,z)) ,  o n e  can consider (28) as t h e  
Taylor approximation of t h e  response y ( z  ). For  t h e  second o r d e r  Taylor approxi-  
mation, one  will have in t h e  two-dimensional case: 

where ei ( z )  is t h e  remainder t e r m  at point z - ut . For  a sufficiently dense  obser-  
vation network, approximation (31) usually s e r v e s  rel iably.  In more general  case 
one can  use  any reasonable  ( b e t t e r  if suppor ted by some physical considerations) 
f ( u  , z )  vanishing when u -, 0. 



The s tandard leas t  squares  technique provides simple algorithms and formulae 
f o r  t he  calculation of y^(z) = Go(") (see,  f o r  instance, Golub and Van Loan (1983), 
Sebe r  (1977)). For  theoret ical  analysis, i t  i s  convenient t o  use t he  following for-  
mulae: 

where 

The estimator (29)-(32) can  b e  considered as some approximation scheme 
which can  b e  used in both deterministic and s tochast ic  approaches .  Usually in t h e  
stochastic case, i t  i s  e a s i e r  t o  evaluate t h e  discrepancy between ( z )  and t h e  t r u e  
value y (I), of cou r se  paying f o r  tha t  by t h e  additional and practically nonverified 
assumption: 

(b) The observation e r r o r s  e i ( z )  are random values with E[ci  (x)]  = 0, 

ECci(z)cf (z)], = x-'(u~ ,z)bi i .  

If (b) holds and f ( 0 , z )  = 0 (it i s  quite a usual case, compare with (31)) then: 

One has  t o  notice t ha t  t h e  observed value y = y (zi)  + e i ( z ) .  In many appli- 
)r cations i t  i s  reasonable t o  choose x-'(u , x )  = a + b (u  ,I) ,  where cr2 i s  t h e  vari-  

ance  of a n  observation e r r o r ,  6 ( u  , x )  comprises local stochastic fluctuations and 
d(0,z)  = 0 ,  lim 6 ( u  ,z) = =. The estimation scheme (29)-(33) can be  generalized 

u +- 

in t h e  case of cor re la ted  observations.  Application to th i s  case seems not  t o  be  
useful because due to t h e  local c h a r a c t e r  of (28), t he  model a l ready takes  into ac- 
count local tendencies and changes while in t h e  kriging (or  similar) approaches  
they are handled via t h e  corre la t ion s t r uc tu r e  of a n  observed field. 

The cautious r e a d e r  will notice tha t  proposed estimator demands a r a t h e r  
tedious calculation necessitating inversion of matrix M(z)  f o r  every  z taken into 
consideration. 

A t  f i r s t  glance, one can  easily avoid this  by using to models describing t h e  ob- 
served field in t h e  vicinity of f ized point x O: 



and using subsequently t h e  simplified vers ion (Clltii. = dii. h-'(ui )) of t h e  tech-  
nique discussed in t h e  previous subsection,  when 

I t  is  c l e a r  t h a t  f o r  a l l  z ,  where  < ( z )  h a s  to b e  calculated,  one  h a s  to solve 
t h e  l eas t  s q u a r e s  problem only once.  Unfortunately, i t  i s  necessa ry  to pay f o r  th is  
simplification (which does  not  seem to b e  ve ry  crucia l  in o u r  computerized age)  by: 

(a)  Estimator (32) i s  smooth (continuous, differentiable)  if functions A(u , z )  and 
f ( u , z )  are smooth. Estimator (35) will "jump" when zo will b e  changed (i t  i s  
changed discre te ly) .  To avoid discontinuities, one  needs  to a d d r e s s  to t h e  
least s q u a r e  method merging toge the r  prognoses based on d i f fe ren t  zo. But 
t h e  merging p r o c e d u r e  removei t h e  simplicity of (35). 

(b) Model (28) provides  t h e  b e s t  approximation at point z ,  which i s  of in te res t ,  
while (34) is or ien ted  to some fixed point zo which can  b e  qu i t e  remote from 
t h e  moving z . 
In conclusion, i t  i s  worthwhile to note  t h a t  in t h e  majority of applied s tudies  in 

fluid flows, in meteorology or t h e  atmospheric pollution studies,  in c o n t r a s t  to geo- 
logical applications,  one  h a s  temporal  as well as spat ia l  information: see Example 
2 .  The methods discussed in th i s  section can easily incorpora te  temporal  d a t a  ex- 
plicitly expanding matrix F by adding a time dimension in generalized l eas t  s q u a r e s  
c a s e  o r  in (29)-(32) t h e  summation h a s  to b e  taken o v e r  s p a c e  and time. In t h e  
kriging a p p r o a c h ,  temporal  information can b e  implicitly used through improve- 
ment of t h e  est imates f o r  Cll and C1,. 

References 

Akima, H.  (1975) Comments on "Optimal contour  mapping using universal  kriging" by 
Ricardo A. Olea J o u r n a l  ofGeophysica1 Resea rch ,  80, pp. 832-836. 

Armstrong, M .  (1984) Problems with universal  kriging. Mathemat ica l  Geology, 16, 
pp.  101-108. 

Barnes,  M.G. (1980) The use  of kriging f o r  estimating t h e  spat ia l  distr ibution of ta- 
dionuclides and o t h e r  spa t i a l  phenomena. Battelle Memorial Inst i tute,  Paci f ic  
Northwest Laboratory ,  Richland, Washington, PNL-SA-9051, pp.  20. 

Bell, G.D. and Reeves,  M. (1979) Kriging and geostat ist ics:  a review of t h e  l i tera-  
t u r e  available in English, P r o c .  Australas. Ins. Min. Metal. No.  269, pp. 17-27. 

BMDP (1983) Biomedical Computer Programs,  University of California P r e s s .  

Clark,  T.L., Voldner, E.C., Olson, M.P., Seilkop, S.K. and Alvo, M. (1986) Interna- 
t ional  sul fur  deposition model evaluation (ISDME), Repor t .  

Dennis, R.L. and Seilkop, S.K. (1986) The use of spat ia l  p a t t e r n s  and t h e i r  uncer-  
ta in ty  est imates in t h e  m o d e l s  evaluation process .  AMS/APCA Conf., pp .  xxx.  

D e r  Megreditchan, G. (1979) Optimization d e s  rdseaux  d 'observation d e s  champs 
m6t6urologiques, L a  Meteorologie, 17, pp.  51-66. 

Endlich, R.M., Eynon, B.P., Fe rek ,  R.J., Valdes, A.D. and Maxwell, C. (1986) Stat ist i-  
c a l  Analysis of Precipi ta t ion Chemistry Measurements Over t h e  Ecosystem Un- 
i ted S ta tes ,  UAPSP-112, EPRI, Pa lo  Alto, California. 



Finkelstein, P.L. and Seilkop, S.K. (1981) Interpolation error and t h e  spat ia l  vari-  
ability of acid  precipitation.  P roc .  of t h e  7th Conference on Probability and 
Stat is t ics  in Atmospheric Sciences of AMS, AMS, Boston, pp. 206-212. 

Gilbert ,  R.O. and Simpson, J.C. (1984) Kriging f o r  estimating spatial  pa t te rn  of con- 
taminants: potential and problems. Environment Monitoring a n d  Assess- 
ment,  9, pp. 113-135. 

Golub, G.H. and Van Loan, Ch. F. (1983) Matrix computations. The Johns Hopkins 
University Press, Baltimore, pp. 476. 

Huijbregts, C. and Matheron, G .  (1971) Universal kriging (an optimal method f o r  
estimating and contouring in t rend su r f ace  analysis). Decision making in t h e  
mineral industry. Can. Inst .  M i n .  Met. *ec., Vol. 12, pp. 159-169. 

Journel,  A.G. and Hui jbregts,  Ch. J .  (1978) Mining geostatistics. Academic Press .  
NY, pp. xxx. 

Katkovnik, V.Y. (1985) On parametr ic  identification and da ta  smoothing. Nauka, 
Moscow, pp. 336. 

Malyutov, M.B. (1982) Asymptotical p roper t i es  and applications of t h e  IRGINA- 
estimator of paramete rs  of generalized regress ion model. In "Stochastic 
processes  and applications", Moscow, pp. 144-158. 

McBratney, A.B. and Webster, R. (1981) The design of optimal sampling schemes f o r  
local  estimation and mapping of regionalized variables-11. Computers and  
Ceosciences, 7 ,  pp. 335-365. 

Miccheli, C.A. and Wahba, G .  (1981) Design problems f o r  optimal sur face  interpola- 
tion, Approximation Theory and Applications, Academic P re s s ,  NY, pp. 
329-349. 

Ripley, B.D. (1981) Spatial  Statist ics,  Wiley, NY,  pp. 252. 

Sebe r ,  G.A.F. (1977) Linear regress ion analysis, Wiley, NY, pp.  456. 

Thiebaux, H.J. and Peddler ,  M.A. (1987) Spatial  objective analysis with applications 
in atmospheric science.  Academic Press ,  NY, pp. 

Warner, J .J .  (1986) Sensitivity analysis f o r  universal kriging, MathematicaL Geolo- 
g y ,  18, pp. 653-676. 


