WORKING PAPER

AN EFFICIENT ALGORITHM FOR BICRITERIA
MINIMUM-COST CIRCULATION PROBLEM

Naoki Katoh

July 1987
WP-87-98

International Institute
for Applied Systems Analysis o
A-2361 Laxenburg/Austria ilsm

An Efficient Algorithm for Bicriteria Minimum-cost
Circulation Problem

Naoki Katoh

July 1987
WP-87-98

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only limited
review. Views or opinions expressed herein do not necessarily
represent those of the Institute or of its National Member
Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

Foreword

This paper is concerned with a bicriteria minimum-cost circulation problem
which arises in interactive multicriteria decision making. The author presents a
strongly polynomial algorithm for this problem, which runs in
O(min(nslogan, n‘(n logn + m)logsn{) time, where n and m are the numbers of
vertices and edges in a graph respectively. It is achieved by making use of the
parametric characterization of optimal solutions and a strongly polynomial algo-

rithm for the single objective minimum-cost circulation problem.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program

- iii -

An Efficient Algorithm for Bicriteria Minimum-cost
Circulation Problem

Naoki Katoh

1. Introduction

In recent years, many types of interactive optimization methods have been
developed and used in practical situations in order to support multicriteria deci-
sion makings (see the book by Sawaragi, Nakayama and Tanino [19] and Wierzbicki
and Lewandowski [27] for the survey of this topic). Given an admissible decision
set (or a feasible decision set) X ¢ R™, and p objective functions, SoSa ,fp
(2ll are assumed to be minimization for convenience), the following problem formu-
lations have been used in various situations of interactive multicriteria decision
makings:

minimize max la z) + . 1
nimi. lst‘p! Ji(x) + 841 1)

where a; and 8; are positive and real constants respectively, which are computed
based on the information supplied by the decision maker and/or the decision sup-

port system.

a, and 8, are typically determined in the following manner by the reference
point method, which is one of the well known methods used in interactive multicri-
teria decision support systems (see [27] for the survey of reference point
methods). This method requires the decision maker to specify the aspiration level
2; and the reservation level r; for each objective f;. The values of g; and r; are
respectively interpreted as the desirable outcome for i-th objective that the deci-
sion maker would like to attain, and the maximum allowable outcome for i-th objec-
tive. Then the degree of the achievement of a given £ € X for an i-th objective is

measured by

Mi(eq,re fi(x)) =(ry = f1(2))/ (ry —q4) . @)

-2-

The aggregated degree of the achievement for z is then measured by

s = min_ py(gqre.f1(x)) . 3)
1<i<p

The method solves the following problem:

maximize s (4)
zeX

and provides its optimal solution z° to the decision maker. If z° is not satisfacto-
ry for the decision maker, he or she may respecify the aspiration and/or reserva-
tion levels and the above process is repeated until a satisfactory solution is ob-
tained. At each round of this iteration, we need to solve the problem (4). Letting

a; =1/(ry —qy)and B; = —r,/(r; —q;), we have
a,fi(z) + By = —py(gy,ry.fe(x)) .

Therefore, the problem (4) is equivalent to problem (1).

Some other modifications and generalizations of this achievement function
have been proposed by several authors, i.e., Wierzbicki [22, 23, 24, 25, 26],
Nakayama [16], Steuer and Choo [20], (see also [27] for general discussion about
achievement functions). Many of those achievement functions have the form simi-

lar to the one in (3).

In view of this, it is of great significance to study the computational complexi-

ty required for solving the problem (1).

We concentrate on the case where » =2 and each single objective problem

P;,i =1,2 defined below

P, :minimize x S
1 Iy f(z) 6))

is a minimum cost circulation problem (SMCP). Both problems are assumed to have
optimal solutions. We shall study problem (1) with such restrictions, which we call a
bicriteria minimum-cost circulation problem (BMCP). Given a directed graph
¢ = (V,E), where V and E denote the sets of vertices and edges respectively, a
single objective minimum-cost circulation problem (SMCP) can be written as fol-
lows.

SMCP : minimize), c(e)z (e) 6)
eck

subject to

-3-

[Tz (e)le =(u,v)EE] = [Zz(e’)le’ = (v,w)eEE | for v €V)
a(e)sxz(e)<b(e)foreckE . (8)
Here a(e),b(e) and c(e) are given integer numbers. a(e) = —= and & (e) = +oo

are allowed. Let the objective functions f, and f, for Problem BMCP be

S1(z) = Y cy(e)z(e) and fo(z) =) cy(e)z(e) 9)
eck e ek
and define
gi(@)=ayfy(z)+8, , i=12 , (10)

where c4(e) and cy(e) are integers and ay,a; > 0. Problem BMCP is then descri-

besub as follows.
BMCP : minimize max{g ,(z), g o(z)} (11)

subject to the constraints of (7) and (8).

Recently Tardos [21] discovered a strongly polynomial algorithm for solving
Problem SMCP, the existence of which was an open problem since Edmonds and
Karp [5] proposed a polynomial time algorithm for it. An algorithm that solves a

problem whose input consists of n real numbers is strongly polynomial if

(a) it performs only elementary arithmetic operations (additions, subtrac-

tions, comparisons, multiplications and divisions),

(b) the number of operations required to solve the problem is polynomially

bounded in n, and

(c) when applied to rational data, the size of the numbers (i.e., the number of
bits required to represent the numbers) that the algorithm generates is polynomi-

ally bounded in n and the size of the input numbers.

Based on Tardos' result, Fujishige [7], Orlin [17], Galil and Tardos [9] pro-
posed more efficient strongly polynomial algorithms. Among them, the one given by
Galil and Tardos [9] is the fastest, which runs in 0(n%(m + nlogn)logn) time,
where n =[V|and m = |E|.

The major goal of this paper is to propose a strongly polynomial algorithm for
solving Problem BMCP, which runs in O(minin slogan, n‘(n logn + m)log5n D
time. Notice that that Problem BMCP can be equivalently transformed to the fol-

lowing form.
BMCP’:minimize 2
subject to (7), (8) and
gy(z)=z , i=12 (12)

Such reformulation has been used in the more general setting in order to solve
problem (1) (see Chapter 7 of the book [19]). This approach may not be recom-
mended in case the set X has a good structure, since the new constraints (12) ad-
ded to the original feasible decision set X may destroy the good structure of X. In
our problem, we cannot guarantee any more the total unimodularity of the con-
straint matrix associated with the constraints (7), (8) and (12) for the above prob-
lem BMCP’, while the constraint matrix associated with the constraints (7) and (8)
is known to be totally unimodular (see the books by Lawler [13] and Papadimitriou
and Steiglitz [18]), which enables us to develop efficient algorithms for Problem
SMCP.

The algorithm proposed here, on the other hand, does not use the above for-
mulation, but takes full advantage of the good structure of the constraints (7) and
(8). It employs as a subroutine the strongly polynomial algorithm for solving Prob-
lem SMCP by Galil and Tardos [9], and finds an optimal solution of Problem BMCP in
O(min(nslogan ,nim +nlog n)logsn) time. The techniques we use are related to
Megiddo [14, 15]. The problems treated in [14, 15] are, however, different from
ours. Our result implies that the basic ideas developed by [14, 15] can be utilized
to solve a class of problems which have the objective function such as the one in
(1) withp =2.

Our problem is also related but not equivalent to the minimum cost circulation
problem with one additional linear constraint, which was studied by Brucker [2].
The algorithm proposed by [2] is, however, not strongly polynomial. The tech-
niques developed here can be directly used to improve the running time of
Brucker’s algorithm to have a strongly polynomial algorithm whose running time is
the same as the one for BMCP. We also show that the techniques developed here

can be extended to the case where the objective function is not the one as in (11)
1
but is such as (Zay,|f () — 8,P)P, where p is a positive integer.

-5-

This paper is organized as follows: Section 2 gives some basic results. Sec-
tion 3 presents an outline of the algorithm for solving Problem BMCP. Section 4
gives the detailed description of the algorithm which runs in
o(nd(n logn + m)zlogz'n.) time. Section 5 improves the running time of the algo-
rithm explained in Section 4 to O(min{n 6logan., nd(m +n log 'n.)log‘r’n {), based on
the idea given by Megiddo [15], which employs the idea of parallel combinatorial
algorithms to speed up the running time for many types of combinatorial optimiza-
tion problems not including our type of problem, though in fact we do not need any
parallel processor but simulate the parallel algorithm in a serial manner. Section
6 discusses some extensions of our approach to other types of problems such as

the minimum cost circulation problem with one additional linear constraint.

2. Basic Concepts and Properties

Let X ¢ RF denote the set of |[E|-dimensional vectors z satisfying (7) and (8),
i.e., X is the feasible decision set, and let f(z) = (_fi(z),fz(z)):)?g -+ R? denote

the function that maps z € X to the objective plane R?. Define
Y = {(f1(z), fo(zNlz € X} (13)

which is called the feasible set (or admissible outcome set). Notice that set Y is a
convex polygon since X is a convex polyhedron and both f4(z) and f,(z) are
linear. A vector ¥ = (¥4,¥7) €Y is called efficient if there does not exist
v’' =(y{.,v2) €Y such that y{ < y; holds for ¢ =1,2 and at least one inequality
holds strictly. A set of all efficient vectors is called the gfficient setf, which we
denote Y,. A vector ¥ = (y4.%,) €Y is called weakly efficient if there does not
exist ¥y’ = (y{.y2) €Y such that y;/ <y, holds for each i =1,2. An z € X such
that f(z) is efficient is called an g¢fficient solution. The sets Y and Y, are illus-
trated in Figure 1 as the shaded area and the thick piecewise linear curve, respec-

tively.

The following auxiliary problem with nonnegative parameter A plays a central

role in our algorithm.

f,(x)

(f (x"), fy (x) Objectuve plane

9

XN+1) f (XN+1)

B 1, (x)

Figure 1. [llustration of the sets Y and Y),.

P(A):v(A) = minimize f (z) + Afy(x) (14)

subject to (7) and (8).

It is well known (see [10] for example) that the function v(A) is piecewise
linear and concave in A, as illustrated in Figure 2, with a finite number of joint
points A4y, A¢zy, " Ay With Aggy < Agp) <...< A(yy. Here N denotes the number of
total joint points, and let A(O) =0 and A(Nf—i) = o for convenience. Define for

each A € [0,)

X" (\) = |z € X|z is optimal to P(A)] . 15)
The following lemma is well known in the theory of linear parametric programs (see
Gal [B] for the survey of this topic). In what follows, for two real numbers a, b

with a <5, (a,b) and [a,b] stand for the open interval f{tla <t <b] and the
closed interval [tla <t < &] respectively.

Lemma 1.

(i) Forany A € (Ag 1) Agy) & =1,...,N +1, we have

X'\ €X' (A\g-ogy)and z°(A) X Ayy) - (16)

viA)

0l Xp) M Ma Ay

Figure 2. Nlustration of v (A).

(ii) For any two distinet A, A’ € (A(k ~1ys A(k)). k=1,....N +1, we have
XX =x'\ . am
(iii) For any A € (A(k ~1)s A(xy) and any A” € (A, y, Nk +1)), k=1,..,N,
XAy =fpz +(1-wz’Psu=<l,zeX (N)andz’ €X (1)}
Let fork =1,...N +1
Xe =z €Xlz €X' (\) forall A € [Ag_1y, Ayl - (18)

By Lemma 1, Xz =X'(A) holds for all A\ € (A4 4y, Ag))- The following lemma is

known in the theory of parametric linear programming.

Levonn 2.
(i) Forany twoz.z’ €X£ withl<k<N+1,

J1(z) =Ff(x’) and fo(z) = f(z”)

hold.

-8 -
(ii) Forany z €X, , andanyz’ € X, with2<k sN +1,

Jilz) <fy(z”) and fa(z) > fo(x’)

hold.

Lemma 3.
(i) Forany A=0and any z € X" (A), f(z) is weakly efficient.
(ii) For any A >0and any z € X' (A), f(z) is efficient.

(ifi) For any z €X;,k =1,2,....N +1, f(z) is a vertex of set Y.

Proof. The proof of (i) is given by Dinkelbach [4] and Bowman [1]. (ii) is proved
as follows. If there exists z° € X such that f;(z’) < f,(z),i = 1,2, hold and one of

inequalities is strict. In any case, by A > 0, it implies
Jx) + Af(x’) < fy(z) + Afp(z)

contradicting that z is optimal to P(A). (iii) is proved as follows. Since f(z) is ef-
ficient, f(zx) is on the boundary of set Y. If f(x) is not a vertex, it can be
represented by a convex combination of two vertices. That is, there exist

z’,z’’ € X and i with 0 < u < 1 such that
z=zux’' +(Ql-uzx’’ . (19)

Since z is optimal to P(A) with A € (A(k 1y A(”), it follows that
J1(x) + Afa(z?) = f1(z7) + Aoz) = fe(z) + Afo(z)

since otherwise J1(@) + Afa(z”) <Sfy(x) + Af2(x) or Si(z?)
+ Af2(z’’) < fi(x) + Afz(z) holds by (19), contradicting the optimality of z to
P(A). Therefore, both z° and z’° are optimal to P(A) and by Lemma 2 (i)
Ji(z) =f4(x°) =f(x’’) and fo(z) = fo(x’) = f(x*’) follow. This contradicts that
J(z), f(x’) and f(z*’) are distinct points in the objective plane. L[]

By Lemma 3 (iii) f(z) = (f1(z).f2(z)) maps all z EX; to a unique efficient
vertex in Y, and it is easy to see that such mapping from X,;, k=1,.,N +1 tothe
set of efficient vertices is one to one. Therefore we use the notation z* to
represent any z €X; in what follows. As k increases from 1 to N +1, the
corresponding efficient vertex moves from top-left to bottom-right in the objective
plane (see Figure 1). The edge connecting two consecutive efficient vertices

corresponding to X‘: and X,; +1 respectively corresponds to all optimal solutions of

-9-

P(A(‘._)). The following lemma gives a basis for our algorithm.

Lemma 4.
(i) If g4(z!) > go(z), then z! is optimal to Problem BMCP.
(i) If g,(z¥*1) < g,(z¥ *1), then z¥ *1 is optimal to Problem BMCP.

(iii) If neither (i) nor (ii) holds, there exists £* with 1 < & < N such that
91(z*') < go(z*') and g, (z*" *1) = g, (z*' 1) (20)

hold. Letting u be the solution of the following linear equation

poy(z5) + (1 =) g (z*) = ug ") + A - =* Y (21)

then
z' = uzkt + -zt (22)
is an optimal solution of BMCP.

Proof. (i) If ! is not optimal to BMCP, there exists £ € X such that f(£) < f4(z!)
and f,(£) < f,(z!) hold. f,(£) < f,(z!) implies that z! is not optimal to P(0), but

1

z"* is optimal to P(0) by Lemma 1 (iii). This is a contradiction. (ii) is proved in a

manner similar to (i). (iii) First note that by Lemma 2 (ii) and by definition of

k* +1 satisfy (20). In addition, by Lemma

g4 (x), there exists k* such that z** and z
2 (ii), the linear equation of (21) in x has a unique solution satisfying 0 < u < 1.
z" defined by (22) is then optimal to X'(A“..)) by Lemma 1 (iii), and f(z ') is effi-

cient by Lemma 3 (ii). It follows from (21) and (22) that
91(3') = 92(3.)

holds. Since f(z"') is efficient, there is no z € X such that J(x) <f1(z') and
Jaz) <f2(z') hold. Thus there is no z €X such that g,(z) < gi(z') and
ga(z) < gz(z') by (10) and ay,a, > 0, implying that there is no £ € X such that
max {g(z), gz(z)] < max {gi(z'),gz(z')} holds. [

To illustrate the situations corresponding to Lemma 4(i), (ii) and (iii), it is

useful to consider the set

Z = {(g(z). g2(z)x € X]

the set Z is obtained from set Y by an affine transformation and is similar to Y in

shape. Set Z is illustrated in Fig. 3 as the shaded area. The thick piecewise linear

-10 -

curve in Fig. 3 corresponds to the efficient set ¥,. Figures 3 (a), (b) and (c)
respectively illustrate the set Z in which Lemma 4 (i), (ii) and (iii) hold. The
straight line passing through the origin in Figs. 3(a) ~ (c) separates the set Z into
two subsets; one in which g (z) < g,(z) holds and the other in which g1(z) = go(z)
holds. If Lemma 4(i) holds, all (g,(z*), g,(z*)), & =1,....N +1, lie below the
straight line (see Fig. 3(a)) among which (91(::1), gz(zi)) is nearest to the line and
hence z1is optimal. The case of Lemma 4(ii) is similarly illustrated in Fig. 3(b). If
Lemma 4(iii) holds, the problem is reduced to find &' such that (gl(z“"). gz(z“"))
is above the straight line and (g i(zk' 1y gz(zk' *1y) is below it. An optimal solu-
tion z' is the one such that (g4(x Yy, gz ')) is the intersection point of the edge

connecting (g,(z**), g,(z*')) and (g,(z*" *1), g2(z** *1)) and the straight line (i.e.,
gi(x’) =g, (z")).

g, (x)

?
/
7

/ i
v,
r 1 1
(91 (x)lgz(x))
45°
v T > 91 (X)

(91 (XN+1)' 91 (XN+1))

Figure 3 (a). The case in which Laemma 4(i) holds

-11 -

g,(x) Z

() N/ ¥
91 (XN+1),92(XN+1))!

> g, (x)

Figure 3 (b). The case in which Lemma 4 (i1) holds.

By Lemma 2 (i), the condition of Lemma 4 (i) (resp. (ii)) is tested simply by tak-
ing any A with A <)\(1) (resp. A >)‘(N)) and obtaining an optimal solution z of
P()\). If neither the condition of Lemma 4 (i) nor (ii) holds, we need to find k'
satisfying (20). For this, we only have to know A(.). Once A(k+) is obtained,
z%'and z**' *1 are obtained by solving P()\(t.) — &) and P()\(t.) + £) respectively,
where ¢ is a sufficiently small positive number satisfying Agey = Aggs -1y < £ and
Aes +1) = Mgy <& The following lemma is useful for finding A with A <Ay, or
A > A(y) and for estimating the above .

Lemma 5. Let
a, =max|maxfla(e)|le €E, a(e) is finite] ,

(23)
max{|b(e)|le €E, b(e) is finite]}

a, =maxflc,(e)} |t =1,2, e €E] , (24)
and

M=(n+2m)ma;a, . (25)

-12 -

g,(x)
Fa
/
s
(91(x"').92(xk') ’
/ y
1T
+ (91 (xk'+1), gz(xk’-ﬂ))
) 45° D g, (x)
0
Figure 3 (c). The case in which Lemma 4 (111) holds
Figure 3. Illustration of set Z.
Then
Ay =M Ay, SH (26)
and
Ae+1) —A@y =1/ M2k =1, N -1 27)
hold.

Proof. (26) is proved by showing that for any A € [0,) and any z € X" (A)
maxﬂfj(z)l |z €X,j =1,2]{s M (28)

holds. After proving this, (26) follows by Lemma 9.2 in the paper by Katoh and
Ibaraki [11]. Note that P(A) for a fixed A is a linear program and the constraints
(7) and (8) of P(A) can be written in the form Az = b by introducing 2m slack vari-
ables for 2m inequalities of (8), where A is (n + 2m) X (3m) matrix, £ isa 3m-
dimensional vector and b is a (n +2m)-dimensional column vector each of whose

element is either O,a (e) or b(e). It is well known in the theory of linear program

-13 -

that there exists an optimal solution z of P(A) such that z is a restriction of Z to

nonslack variables where Z is a basic feasible solution of Az = b. Z is written by

adj
F=p1p =22

= ael(®) ©)

where B is a (n +2m) X (n + 2m) nonsingular square submatrix of 4,81 is the
inverse matrix of B.Badj is the adjoint of B and det(R) is the determinant of B. It
is well known (see Chapter 4 of the book by Lawler [13] or Chapter 13 of the book
by Papadimitriou and Steiglitz [18]) that matrix 4 is totally unimodular, i.e.,
every square submatrix C of 4 has the determinant of either 0,+1 or —1. Hence
det(P) is equal to either +1 or —1. Each element of B9 s, by definition, equal
to an determinant of (n +2m —1) X (n +2m — 1) submatrix of 4, which is also
equal to either O, +1, or —1 by the total unimodularity of 4. Since each element of
A is also equal to either 0, +1 or -1, Z is an integer vector and the absolute value
of each element of Z is at most (n +2m)a,. Therefore

| Y cy(e)z(e))s(n +2m)maa, i =1,2

e ek
follows. This proves (26), since by Lemma 2(i) the value f,(z°),i = 1,2 is the same
for all z° € z"(A) if A is not a joint point, and by Lemma 1 (iii) it is represented by
the convex combination of f, (z") and f, (z**1)if A is a joint point A(k)'

Now we shall prove (27). For k which 1 <k < N-1, consider z%, zt*! and

z*%*2, all of which can be assumed to be integer vectors as proved above. Since

z,z° €X (Ayy) and °,2°° € X" (A4 4q)) hold by Lemma 1 (i), it holds that
I1(@E) + Ay Po(2%) = 215 + Ay Po(E D
and
fl(zk +1) + 7\(‘: +1)f2(zk +1) =f1(zt +2) + A(t +1)f2(zk +2)
Thus, we have

_NEEheneh o £@EE @t
(k) fz(zk) _fz(zk +1) (k +1) fz(zk +1) __fz(zk +2)

Then

U1@E) =21 @ENP(2E) =125 D) = 11 D) = 1@ TN ") =125)
U2(z*) =12(z* "N) = 12(z*)

Ae+1y — Ay =

-14 -

Since f,(z) and f,(z) take integer values if z is an integer vector, and
fl(zt) < fi(z* H, <f1(:l:t *2) and fz(z:t) > fa(z* 1y >f2(zk *2) hold by Lemma 2

(ii), the numerator is not less than 1. Since
—M < fo(zk*2) < fo(zk) < fo(zF) s M
holds by (26),
U2(z") = L2)=) - 1525 *2)) < M2

follows. This proves A g .4y — Ay S1/ M?2 . O

By Lemma 5, it is easy to test whether the condition of Lemma 4 (i) or (ii)
holds. For this purpose, we have only to solve P(A) for some A with 0 <A <1/M
and for some A > M. If the condition of Lemma 4 (iii) holds, we must find &* satisfy-
ing (20), =%, 2% *1 and u of (21) to compute £° by (22). One possible approach to
do this is to employ the binary search for determining A € (A(L-'-l)' A(t-)) and
A€ (A(t.), Adke +1)) over the interval [A, X] where A and A are appropriate
numbers satisfying A <1/M and A>M respectively. By Lemma 5, such binary
search may be terminated until the interval length is reduced to less than 1/ M?
(though the details are omitted). Therefore such method requires
O(nz(m +nlogn)logn - logM) time. This is polynomial in the input size because
log M is polynomial in the input size by (25). However, it is not strongly polynomial
because of the term log M. The following section alternatively presents a strongly
polynomial algorithm for finding A(t') with &' satisfying (20). Once it is obtained,

z* and k't

are computed by solving P(A.y — &) and P(A .y + £) respectively.
Here & satisfies 0 <& <1/M2. This is justified since (27) implies

A(tn) - &€ (A(k' —1) A(k')) and A(k') + &€ (A(t')' A(k' +1)).

3. The Outline of the Algorithm

As discussed at the end of the previous section, it is easy to test whether the
condition of Lemma 4(i) or (ii) holds. Thus we assume in this section that the condi-
tion of Lemma 4(iii) holds and we shall focus on how to compute A(L..) with &° satis-
fying (20).

The idea of the algorithm is similar to the one given by Megiddo [14] which was
developed for solving fractional programs. The similar idea was also used by Gus-
field [10] to determine the curve of the objective cost for parametric combinatori-

al problems. We apply their ideas to find 7\(‘:')' The algorithm applies the algo-

-15 -

rithm of Galil and Tardos (the GT-algoriithm) to solve P(A (k')) without knowing the
exact value of A (k*)- The computation path of the GT-algorithm may contain condi-
tional jump operations, each of which selects proper computation path depending
upon the outcome of comparing two numbers. Notice that the GT-algorithm con-
tains arithmetic operations of only additions, subtractions, multiplications and
divisions, and comparisons of the numbers generated from the given problem data,
and that when applying the GT-algorithm to solve P(A) with A treated as unknown
parameter, the numbers generated in the algorithm are all linear functions of A or
constants not containing A. Note that comparisons are necessary at conditional
jumps. If a comparison for a conditional jump operation is made between two linear

functions of A(k.) , the condition can be written in the form of

for an appropriate critical constant i, which can be determined by solving the
linear equation in A(L..) constructed from the compared two linear functions. Here

X is assumed to be positive since otherwise A< A (k) Is clearly concluded.

An important observation here is that condition (30) can be tested without
knowing the value of A(‘,.) . For this, solve P(x - s),P(i) and P(i + £) by the GT-
algorithm, where X is now a known constant, and ¢ is a positive constant satisfying
£ <1/2M% Let z,z’,z’’ be the obtained solution of P(X - e),P(X) and P(x + &)
respectively. First we test whether Aisa joint point or not, based on the following

lemma.

Lemma 8. Let £,z and z°’ be those defined above. Then Ais a joint point if and

only if the following linear equation in A has the unique solution A‘ equal to A

F1(@) + Afp(z) = 14(x7) + Afp(z”) . (31)

Proof. If A is a joint point, say A(k). A—¢c and A + ¢ lie in the intervals
(A(k —1)s A(k)) and (A(k). J\(k 1q)) respectively, by Lemma 5. Thus, from definition of
a joint point, f4(z) + Afx(z) (resp. fy(z’’) + Af(x*’)) defines the value v (A) of
(14) for A € [A(t _1>,J\(t)] (resp. [A(t)- A(k +1)]). Thus (31) has a unique solution
A= Ay

If A is not a joint point, let A belong to (A(k—i)' A(k)) for some k with

2<k<N+1 The following five cases are possible.

Case 1.)\(k_n(X—s and i+£<k(k). In this case f,(z)=Sy(z’’) and

-16 -

J2(z) = f2(z’’) hold by Lemma 2, and (31) has no unique solution.

Case 2. A-:c< A -1y and A+e< A(k)- By £<1/2M? and Lemma 5,
A-&£> Ak —z) holds and the equation (31) has the unique solution A® = A 4y
which is not equal to A

Case 3. X —¢> A -1) and A+e> A(t)- This case is treated in a manner similar
to Case 2.

Case4. A — = = A(g -1) and A+e< Ak)- z1 satisfies

Sa(z) S fa(z’)

since v (A) of (14) is concave. If fy(z) < fa(z’’), the equation of (31) has the
unique solution A’ = A(k -1) # A If J2(z) = fo(z %), (31) has no unique solution.
Case5. A —-¢>)\(k ~1yand A+e=)\(”. This case is analogous to Case 4.

Note that the case of A — ¢ = A(k -1) and A + £ = A(k) is not possible because

of gy — Ak -1) = 1/ M? by Lemma 5 and £ < 1/2M? by assumption. [J

After computing z,z’ and z°’ defined above, the algorithm proceeds as fol-

lows. If one of z,z”’ and z ** (say, £) satisfies

(91(2) =)ayf1(Z) + By = apfa(Z) + Ba(=g,(x)) . (32)

£ is an optimal solution of BMCP since f(Z) is weakly efficient by Lemma 3 (i) and
hence there is no z € X such that f{(z) < f4(£) and fa(z) < f(Z) hold. So, as-
sume in what follows that none of z, z’, z°’° satisfies (32). Depending upon whether

Aisa joint point or not, consider the following two cases.

Case 1. A is not a joint point. We then compare the two values g,(z°) and g(z”’).

Two subcases are possible.

Subcase 1A. g,(z’) <gy(z’). Then A >R s concluded, and the algorithm

chooses the computation path corresponding to A > A

Subcase 1B. g.(z°) > gy(z°). Then A< s concluded, and the algorithm

chooses the computation path corresponding to A" < A
Case 2. Aisa joint point. Then we consider the following three subcases.

Subcase 2A. g,(z°’) <g,y(z’’). By Lemma 2 (ii), g (z) < gy(x) follows. This im-

plies A* > A + £ and the algorithm chooses the computation path corresponding to

-17 -

A > A

Subcase 2B. g,(x) > gy(x). Similarly to Subcase 2A, g4(z’’) > g, (z**) follows.
This implies A’ < A—¢ and the algorithm chooses the computation path
corresponding to A* < .

Subcase 2C. g;(z) <gz(z)and gy(z*’) > g(z”).

Then A is the desired joint point A(A:-) by Lemma 4 (iii). By Lemma 5 and
0<e<1/M%x €X£. and z°*° €X‘;. +1 follow. Therefore, by Lemma 4 (iii), an op-
timal solution z‘ of BMCP is found by (21) and (22) after letting z*¥' =z and
zk' + z’

With this observation the algorithm starts with the initial interval Q,X),
where A and A are typically determined by A =1/ M +1), A=M +1, and every
time it performs the conditional jump operation, the critical value A is computed,
and P(x - &), P(X) and P(x + £) are solved. Depending upon the cases explained
above, the length of the interval may be reduced in such a way that the desired
joint point Ae. exists in the reduced interval. It will be shown in the next section
that Subcase 2C always occurs during the course of the algorithm, which proves
the correctness of our algorithm. Since the GT-algorithm requires
0O(n?(nlogn + m)logn) jump operations, and at each jump operation at most
three minimum cost circulation problems, i.e., P(X - .-:),P(x) and P(i + &), are
solved by calling the GT-algorithm, the entire algorithm requires
o(nt(n log n + m)®log?n) time in total.

4. Description and Analysis of the Algorithm
The algorithm for solving Problem BMCP is described as follows:
Procedure SOLVEBMCP

Input: A directed graph ¢ = (V,E) with costs c,(e), cy(e), lower and upper compa-

cities a (e) and b (e) for each e € E, and the weights a4, a;, 84 and 8.
Output: An optimal solution of Problem BMCP.

Step O: [Initialization]. Compute M by (23), (24), (25). Let
A=1/(M +1),A =M +1and £ =1/ (24? +1).

rd

Step 1: [Test the conditions of Lemma 4 (i) and (ii)]. Compute optimal solutions z
and z’ of Problems P(}) and P(X) respectively by applying the GT-algorithm. If

-18 -

z’ (resp. z**) satisfies g,(z*) > g, (z’) (resp. g,(z’") < g (z*’)), output =’ (resp.
z’’) as an optimal solution of BMCP and halt. Otherwise go to Step 2.

Step 2: [Test the condition of Lemma 4 (iii)].

(i) Follow the GT-algorithm applied to P(A(b.)) treating A.) as unknown con-
stant satisfying A < A,y < A. If the GT-algorithm halts, go to Step 3. Else at the

next conditional jump operation, do the following.

(ii) Let the condition of the jump operation given by
P1Aesy)) <P2AGey) P1Aeey) =PoAgey) o8 P1(Aeey) > Po(Aesy) + (33)
where pl(k(k.)) and pz(k(b.)) are linear functions in A(b-)' Solve equation
P1gey) =Poesy) (34)

(iii) If equation (34) has no solution A" satisfying A <A’ < X, ie.,
pl(A') <p2(A') (or pl(k') >p2()\')) holds for all such A", then choose the
corresponding computation path at the current conditional jump operation. Go to
(viii).

(iv) If equation (34) holds for all A' with A < A" < A, choose pl(k') =p2(k')
as the proper computation path, and go to (viii).

(v) If equation (34) has the unique solution A such that A< A <X, the condi-

tions of (33) are transformed to
A(kn) <A (resp. A(k') > A), A(k') =Aor A(bn) >A (r‘esp. A(kn) < A)

Solve P(X - o:),P(i) and P(x + £) by applying the GT-algorithm, and let z,z’ and
z’’ be optimal solutions of these problems respectively.

(vi) If one of z,z’,x*’ satisfies (32), output it as an optimal solution of BMCP

and halt.
(vii) Test whether Aisa joint point or not based on Lemma 6.

(vii-a) If A is not a joint point, determine)‘(k') > A or A(b-) <A according to
Subcases 1A and 1B given prior to the description of the algorithm, and choose the
proper computation path corresponding to A(‘:‘ y > A or A(‘,.) <A respectively. If
Agsy > A, let A = X. Otherwise let X = X. Go to (viii).

(vii-b) If Aisa joint point, determine A(b') >A+e, A(t-) <A-cor A(b.) =
according to Subcases 2A, 2B and 2C given prior to the description of the algo-
rithm, respectively. If A(t') >A+¢ (resp. A(b') <A- £), let A = A+¢ (resp.

-19 -

A=A- £), choose the proper computation path according to A(L..) > A (resp.
Aery < X) and go to (viii). If Ag.y = i. compute u satisfying (21) and then z' by
(22) after letting z*" =z and z*¥* *1 = £’ Halt.

(viii) Return to the conditional jump operation of the GT-algorithm in Step 2,
from where it exited to find the proper computation path.

Step 3: Halt. [

The correctness of the algorithm is almost clear by the discussion given in the
previous section. What remains is to prove that the algorithm always halts either
in Step 1, Step 2 (vi) or Step 2 (vii). Assume otherwise. Note that Algorithm SOL-
VEBMCP always halts because it follows the GT-algorithm. Assume that SOLVEBMCP
halts in Step 3 and consider the interval (A, X) generated when it halts in Step 3. It
follows from the discussion given in Section 3 that A < A(‘:.) < A holds. When Algo-
rithm SOLVEBMCP halts, it has obtained a solution which is optimal to P(A) for all
A€ Q\,X), since if the GT-algorithm is applied to solve P(A) for any A € Q,X), it
follows the same computation path irrespective of choice of A from the interval
(A,X). However, by Lemma 2(iii), an optimal solution of P(A”) with A <A’ < A4y is
not. optimal to P(A*’) with A(L..) < A\’’ < X. This is a contradiction.

The running time of the algorithm can be derived in a manner similar to [14].
At each jump operation, a linear equation (34) is solved and if it has the unique
solution A with AL A <X, three problems P(x - e),P(X), P(X + &) are solved. So
Step 2 (v) requires O(nz(n logn + m)logn) time. The other part of Step 2 is dom-
inated by this. Since the total number of jump operations in the GT-algorithm is
0(n?(nlogn + m)log n), Step 2 is repeated o(né(n logn + m)logn) times. So,
Step 2 requires o(n(n logn + m)zlogzn) time in total. Since Step 0 requires
constant time and Step 1 requires O(nz(n logn + m)logn) time, Algorithm SOL-
VEBMCP requires O(n‘(n logn + m)zlogzn) time in total.

Theorem 1. Algorithm SOLVEBMCP correctly computes an optimal solution of
Problem BMCP in O(n Yn logn + m)zlogzn) time.

The algorithm is in fact strongly polynomial, since the running time depends
only on the numbers of vertices and edges in a graph, and if the input data are all
rational numbers, the size of the numbers generated in the algorithm is clearly po-

lynomial in n,m and the size of the input numbers.

-20 -

This running time is improved to O(min{n®log3n,n%(n logn + m)log®n}) in
the following section by utilizing the idea of simulating the parallel shortest path
algorithm in a serial manner. Such idea of simulating parallel algorithms for the
purpose of the speed-up of algorithms was originated by Megiddo [15]. The appli-

cation of his idea to our problem, however, seems to be new.

5. Time Reduction

In order to reduce the running time of Algorithm SOLVEBMCP, the following

remarks are useful.

Remark 1. In the GT-algorithm, the shortest path algorithm is applied O(nzlog n)
times as a subroutine. Since the best known shortest path algorithm with a single
source node, which is due to Fredman and Tarjan [6], requires 0(n log n +m) time,

the GT-algorithm requires O(nz(n log n +m)log n) time in total.

Remark 2. When the GT-algorithm is applied to solve P(\A), comparisons with two

numbers containing A are made only when the shortest path algorithm is applied.

We modify Algorithm SOLVEBMCP in such a way that instead of using
0O(n log n +m) shortest path algorithm, we employ a parallel shortest path algo-
rithm such as Dekel, Nassimi and Sahni's [3] and Kucvzera's[lz] in a serial manner
when SOLVEBMCP follows the GT-algorithm in Step 2(i). We still use O(n logn +m)
shortest path algorithm in other parts of SOLVEBMCP such as Step 1, Step 2 (v).
The idea of the time reduction is based on Megiddo [15]. We shall explain how it is
attained. Let P denote the number of processors and let 7p denote the number of
steps required on a P-processor machine. Dekel, Nassimi and Sahni's scheme re-
quires P = 0(n3) and T7p = O(log 2n) while Kucera's scheme requires P =0(n 4 and
7p = 0(logn). We simulate these algorithms serially. According to some fixed per-
mutation, we visit one processor at a time and perform one step in each cycle. At
each processor, when two linear functions pi(k),pz(k) are compared, we execute
Step 2 (ii), (iii) and (iv). If the equation p(A) = p,(A) has a unique solution A with
AL A< X, such critical value A is stored and we proceed to the next processor
without executing Step 2 (v), (vi) and (vii). After one step of the multiprocessor,
we have at most P such critical values. Let il,iz, .. ,iP denote such critical

values. We then compute

A =max [A,|1<i<P, X, < Aesyd

-21-

A =max (A |1Si<P, A, > Apy)

or in the meantime we may find the desired joint point)\(,,. y among those critical
values. As explained in [15], this is done by performing a binary search that re-
quires 0(P) time for median findings in subsets of the set of critical values, and
O(log P) applications of the GT-algorithm. We explain in more details how A’ is
computed (the case A’ is similarly treated). Each time the median ii is found from
among the remaining critical values, we execute Step 2 (v), (vi) and (vii) with A re-
placed by it' In Step 2 (vii), it may happen that i, is concluded as the desired
joint point A.y. Otherwise i, < Aggsy Or X, > A(gs) Is concluded, and half of the
remaining critical points are discarded. Since the remaining subset during binary

search is halved each time, the time required to find all medians is
OP+P/2+P/4+:--)=0(P) ,

as shown in [15]. Since we need O(log P) applications of the median finding in ord-

er to find A’, it requires
O(nz(n logn + m)logn -log P)
time. Hence, each step of the multiprocessor requires
O(P + nz(n logn +m)logn -log P)

time. After A“and A’’ are computed, we can choose the proper computation path at
each processor. Since the above process is repeated 7p times in total, each appli-

cation of the parallel shortest path algorithm requires
o((P + nz(n log n + m)log nlog P)Tp)

time. Since the shortest path problem is solved O(nzlog n) times as mentioned in

Remark 1, the total running time is

O(nzlogn (P + 11.2(11. log + m)log nlog P)7p)

If Dekel, Nassimi and Sahni’s scheme is employed, this becomes
o(ni(nlogn +m)log5n) ,
while if Kucera’s scheme is employed, it becomes

o(n sloga'n.)

-22-

Therefore, depending on how dense the graph is, we may choose the better one. We

then have the following theorem.

Theorem 2. The modified SOLVEBMCP solves Problem BMCP in
O(minfn4(nlogn +m)logn,n Slog3n |) time.

6. Extensions

In this section, we shall show how our approach is generalized to other types
of problems which are variants of Problem BMCP studied so far. One of such prob-
lems is the minimum-cost circulation problem with one additional linear constraint

studied by Brucker [2]. This is described as follows.
SMCPLC: minimize f,(z)

(35)
subject to the constraints of (7) and (8) and

fz(Z)Sd

Here, f, and f, are those defined in (9), and d is a given constant. The above

problem is solved as follows. It is easy to see that there exists an optimal solution

z' of SMCPLC such that f(z ") is efficient. Define z% &k =1,...N +1, by
k]
zt eX, . (36)

as before. If fz(zl) <d,z! is optimal to SMCPLC. If fz(zN"l) > d, there is no
feasible solution to SMCPLC. So assume

2@Vt sd <rp=t) . @37)
Let
Mgy =minfAg |1 Sk SN, fz"*) saf | (38)
Mgy =Max Ay |1 Sk SN, £z >af . (39)
Lemma 7. Let u satisfy
uraE) + - wr ettt =a (40)
Then
z' = yzk,u +@ _”’)zkau (a1)

Fig. 4

-23 -

is optimal to SMCPLC.

Proof. By (9), ' satisfies fo(z') =d, and f(z") is efficient since f(zk‘ﬂ) and

f(zka*l) are adjacent efficient vertices by (38), (39) and Lemma 3 (see Fig. 4).
Thus, there is no z € X such that f;(zx) <f1(z') and f,(z) sfz(z') hold. This

proves the lemma. O

fz(x)

{s

7

k,+1 k41
(f1(x 1) £, (x 1))

S Sy L(ﬂ(x’),f (x'))

ka+1 k,+1
(11(x 2),f2(x 2))

> f,(x)

Figure 4. Nlustration of the set Y used in Lemma 7.

By the lemma, all what we do is to compute Ay and A, Once Ag y and
A(kz) are obtained, z:*" 1 (resp. z:kz*i) are computed by solving P(A(kl) + £) (resp.
P()\(ks) + &), where ¢ satisfies 0 < & < 1/ M2. We shall explain only how)\(kl) is
computed (the case of A(k 2) is similarly treated). This is done in a manner similar

to the way of finding A in Algorithm SOLVEBMCP given in Section 4. Following

k"
the GT-algorithm to solve P(A(h)) without knowing the exact value of A(h)' every
time comparison is made at conditional jump operation, we compute a critical value

A by solving the linear equation in A (k) formed by the compared two numbers con-
taining A(k RE We first test whether A is a joint point or not, using Lemma 6. If Alis
a joint point (say Ag,,), we solve P(X + &) to obtain z**! and compute fz(z:“ 1y,
According to whether f,(z**1!) <d or not, A= Ade,y Or A< A,y Is concluded

respectively, and the proper computation path is chosen. If A is not a joint point,

-24 -

we solve P(X) to obtain £ € X* (X) and compute fz(:E). According to whether
J2(Z) < d or not, AD> A(h) or A < A(h) is concluded respectively, and the proper
computation path is chosen. In any case, by the discussion similar to the one in
Sections 3 and 4, we finally obtain A(h)' We do not give the details of the algo-
rithm since it is almost the same as SOLVEBMCP. In addition, we can also apply the

idea of the time reduction given in Section 5 and hence the following theorem

holds.
Theorem 3. Problem SMCPLC can be solved in

O(min{n 6logan. n‘(n logn + m)logsn {) time

We now turn our attention to another type of problem to which the idea similar
to the one given in Sections 3 and 4 can also be applied. Recall that Problem BMCP
in (11) arises in interactive multicriteria decision making. Consider the situation
in which only aspiration level ¢ = (g4,¢7) is specified by the decision maker and ¢
is unattainable. In this case, the distance between f(z) and ¢ can be considered to
represent a measure of regret resulting from unattainability of f(z) to ¢, instead
of considering the achievement function such as s in (3)(see Figure 5). The follow-
ing weighted Lp-norm has been considered in the literature to measure such dis-
tance (see [19, 27]).

1
2 _
d(f(x)g) = Llayl|liz) ~qP)?, a; >0 . (42)
1=1

Here p is a positive integer and a; are given constants. For the ease of exposi-

tion, we assume
g1 S f1(zt) and g, s £Vt (43)

where z* are those defined in (36). The other case such as g4 >f1(z:1) or

92> fz(zNﬂ) are treated later. We therefore consider the following problem:

BMCP2 : minimize & (f(z).q)
(a4)
subject to the constraints (7) and (8).
Since ¢ £ Y is assumed, it is clear by (43) that f(z") is efficient for any op-
timal solution z° of BMCP2. The efficient set Y, is represented by a function of one

parameter y, with f(z 1) sSy,s fi(zNH) as follows.

-25 -

f,(x)
¥
£, (f,(x‘),fztx’))

fz(xN+1)

. (f1 (xN*1),fz(xN*'1))
lay. ay)

>

0 £4(x") £, M)

Figure 5. Illustration of point ¢ and the set Y.

[y AGT1(@5) —yy) + 7,5)| y(2*) sy <7z,

45
E=1,---.N}| “5)
By (43) and (45), the objective function d (f(z).q) is then represented by
S
(ay(yy —g)P +a(AG5(1(z5) = yy) + 12(z*) —q)P)P (46)

if f(x) is on the efficient edge between the vertices f(zk) and f(zk +1)_ Define,
for y, with £, (z%) <y, < fl(z" ,

g(Wyk) =a(yy a1 + ax(Ah Fy(z%) —yy) +1,5) —q P . (aT)
and define
+ oo if v, <fq(zh)
9(vy) ={g(yk) iff) sy, s r(z¥*), k=1,...N . (48)

+ o if yg > /1"

-26 -

Since g(y,) is clearly convex and Problem BMCPZ is equivalent to minimizing

g (v1), Problem BMCPZ2 is reduced to find y; such that
dg(v1) =0 , (49)
where dg () denotes the subgradient of g (y,). Let for (¥4,¥3) €Ypand A >0
8(y1.¥2N) =ap(y1 —¢)P 1 = A lapp(yr—g Pt . (50)

From (46), (47) and (48), we have

b —o<pusd(f(z), £2(zh), Mgyt vi=r1(zh
| 8 1(z8), £2@E) A _gy)) S S 8¢ 1(25), £o(=5). Ay
dg(yq) = yi=r1(k), k=2,...N (51)
b | 8¢ @), LoV, A) S <o),y =1 @YY
8(yy, AgH P 1(25) —yq) +12(z5) Ay S1&@E) <y <ryeF) k=1,
Lemma B.

(i) If 6(]1(2:1), fz(zl),k(l)) >0, any zlis optimal to BMCPZ2.

(i) If 6(f4(@N*Y), £,V *1).\ yy) <0, any z¥ is optimal to BMCPZ2.

(iii) If 8(f4(z*").72(z%"), Agu_qy) SO and &(f4(z*")./5(z*). A (4.)) = 0 hold
for some k° with2 < k£° < N, any z* is optimal to BMCP2.

(iv) If 6(f1(z*").L2(z*"), A(eey) S 0 and 6(f (2% *Y), £o(z*" 1), A(4ey) 2 0 hold
for some k' with2 sk’ s N,

z' = uzk + (1 -zt (52)
is optimal to BMCPZ2, where u satisfies

ay(urf (%) + Q—w)f@) — g Pt

. R _ (53)
= Ak y (s (@5) + (1 — p)f p(z® *1) — g)P 71

Proof. (i), (ii) and (iii) are obvious from (48) and (49). (iv) is proved as follows.
Since g(y,) is convex, there exists (y;,¥,) such that (¥,,y,) is on the edge con-
necting (_fi(z:"'),fz(z"')) and (fl(:z:"' *1),_)"2(2:"' *1)) and 0 € 8g (y4). Since the
point (v¥,,¥;) on this edge is represented as (;.Q’l(z:"') + (1 - p.)fl(:z:"'),

;.Q’z(:z:k') + (1 - p.)fz(:z:"' +1)) by using the parameter u with 0s =<1 and

-27 -

oy (j’1(z')) = 0 holds by (50) and (53), ="' of (52) is optimal to BMCPZ2.

Based on Lemma 8, we can construct an algorithm for solving BMCPZ2 which is
similar to the one presented in Sections 4 and 5. The conditions of Lemma 8 (i) and
(ii) can be verified simply by solving P(A) for A < 7\(1) and A > A(N) respectively,
which is similar to Lemma 4 (i) and (ii). If none of the conditions of Lemma 8 (i) and
(ii) holds, there exists k" satisfying the condition of Lemma 8 (iii) or (iv). To com-

pute an optimal solution z * for this case, we compute
A =minfh L & SN, 60 (x5), 755 DAy 205 . (55)

Suppose that these two values are obtained. We then consider the following two

cases.

Case 1. A’ = A*’. Then the condition of Lemma 8 (iv) holds for A(k') = A’ z*¥* and
z%* *1 are obtained by solving P(A(k.) - &) and P(A(k.) + &) respectively, where &
satisfies 0 < £ <1/M2%. An optimal solution z° of BMCPZ2 is then computed by (52).
The value of u in (62) is obtained by solving the following linear equation in w
which is equivalent to (53).

1

— 22 32T (up (k') + (1 - Wt Y —gp)

ur(=E) + @ -y @) —gq = (
a1 k)

(56)
Case 2. A’ <A’’. Then A’ and A’’ are two consecutive joint points. Otherwise
there exists a joint point Ay with A* <A,y <A?. Since the values of
6(_/‘1(::"),f2(z"),k(k)) and 6(_1’1(::‘”1),_)’2(::"+1),A(‘:)) are respectively increasing
in £ by the convexity of g(¥4). it follows from the maximality and the minimality of

A’ and A’ respectively that
8(f1 (x5)0 2(z5) Ak y) >0 and 621 (5), fo(z5) A) <O

holds. This is, however, impossible by _fl(z"') < fl(zk'ﬂ) and _fz(z"') >f2(.1:"’*1).
So let A’ = A(k‘*i) and A"’ = A(t')' By the maximality of A’ and the minimality of

A’’, we have
8y (x%). 7525) A (o _yy) <0 and 8Ly (=5).75(z%"), Apay) >0

This is equivalent to the condition of Lemma 8 (iii). Therefore by Lemma 8 (iii) an

optimal solution of BMCP2 is obtained by solving P(A) for a A with

-28 -

AV A<CAT. .

With this observation, what remains to do is to compute A’ and A’ of (54) and
(55) respectively. This is done in a manner similar to the ways of computing A(k.)

explained in Sections 3 and 4 and of computing A(kn) and A(ka) of (38) and (39) ex-
plained in this section. Therefore, the details are omitted here.

Finally, we mention the case in which (43) does not hold. If
g4 >f1(z:”+1),f(z') may not be efficient for an optimal solution z" of BMCP2 (see
Figure 6). However, if we consider the following new parametric problem for a

nonnegative parameter A,

P’(A): minimize —f4(z) + Af2(z) .,
reX

f,(x) +

f2 (xN+1)

® q=(Q1,q2)

—» f, (x)

0 f1 (XN+1)

Figure 8. lllustration of the case in which ¢4 > fi(:cN“) holds.

we can have the property relating P’(A) to BMCP2 which is similar to Lemma 8
(though the details are omitted here). The case of ¢, >f2(z:1) can be similarly

treated. Thus we assume that
71 % f1(z¥*1) and g, < f,(zY) (57)

hold.

-29-

Let us consider the case ¢, > fi(zi). Since ¢4 < fi(z:N"i) is assumed by (57),
there exists an efficient point (f'1(£).f2(£)) with f(£) = ¢4 (see Fig. 7). Since the
objective value d (f(z),q) is larger than d(f(z).qg) for all efficient f(z) with
J4(z) < q,, since if f(z) is efficient and f,(z) < g4, [f1(x) — g4 > ((£) — g4 =0
and |fa(z) — @3 > |[f2(£) — g hold (the last inequality follows from fx(z) > f2(Z)
and fz(i) < g@5). Thus, we can eliminate all efficient f(z) with f,(z) < ¢,, and con-
sider £ as if it is z!. Therefore this case can be reduced to g1 S f1(z!). The case
of g, >f2(zN+1) can be reduced to the case of g, < fz(z:N"i) in a similar manner.
Finally, notice that the solution £ considered above is computed by solving the fol-

lowing problem.
minimize f,(z)
subject to (7), (8) and
Jiz)sd

As discussed at the beginning of this section, this problem can be solved in
O(minn %og®n, n4(n logn + m)log®n}) time and its optimal solution z"* always sa-

tisfies f,(x ') =d. As aresult, we have the following theorem.

Theorem 4. Problem BMCP2 can be solved in
O(minn 6log3n, n4(n logn + m)log®n }) time.

-30 -

f2(X)T

/

IRUHRTIRRRIRRNY

(£, (x"), £,(x")

(£, (=", £,(x")

(f1 (XN+1)' f (XN+1))

q = (dy.4,) A

» £, (x)

94

Figure 7. [llustration of the case in which ¢, < fi(zN*i) and g, S fz(zi) hold.

References

[1]

[2]

[3]

[4]

[5]

V.J. Bowman, Jr., On the relationship of the Chebyshev norm and efficient
frontier of multiple-criteria objectives, In H. Thiriez and S. Zionts (eds.) Mul-
tiple criteria decision making. Springer, Berlin, Heidelberg, New York, Lec-

ture Notes in Economic and Mathematical Sysiems, Vol. 130, 1976.

P. Brucker, Parametric programming and circulation problems with one addi-
tional linear constraint, Osnabriicker Schriften zur Mathematik, Reihe P,

Heft 56, Fachbereich Mathematik, Universitat Osnabrick, 1983.

E. Dekel, D. Nassimi and S. Sahni, Parallel matrix and graph algorithms, S/IAM
J. Comput., 10 (1981), 657-675.

W. Dinkelbach, Uber einen Losungsansatz zum Vectormaximumproblem. In M.
Beckman (ed) Unternehmungsforschung Heute. Springer, Berlin, Heidelberg,
New York, Lecture Notes itn Operational Kesearch and Mathematical Sys-
tems, Vol. 50, 1-30, 1971.

J. Edmonds and R. Karp, Theoretical improvements in the algorithmic efficien-

cy for network flow problems, J ACM 19 (1972), 248-264.

-31 -

[6] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses, Proceedings of
25th Annual IEEE Symposium on Foundations of Computer Science, (1984),
225-231.

[7] S. Fujishige, A capacity-rounding algorithm for the minimum-cost circulation
problem: a dual framework of the Tardos algorithm, Mathematical Program-

ming, 35 (1986), 298-308.

[8] T. Gal, Linear parametric programming - a brief survey, Mathematical Pro-
gramming Study, 21 (1984), 43-68.

[9] Z. Galil and E. Tardos, An O(n(m +n log n)log n) min—cost flow algorithm,
Proceedings of 27th Annual IEEE Symposium on Foundations of Computer Sci-
ence, (1986), 1-9.

[10] D. Gusfield, Parametric combinatorial computing and a problem of program
module distribution, J. ACM, 30 (1983), 551-563.

[11] N. Katoh and Y. Ibaraki, A parametric characterization and an £ -approxima-
tion scheme for the minimization of a quasiconcave program, Discrete Applied

Mathematics, 17 (1987) 39-66.

[12] L. KuCera, Parallel computation and conflicts in memory access, /Information

Processing Letters, 14 (1982), 93-96.

[13] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart & Winston, New York, 1976.

[14] N. Megiddo, Combinatorial optimization with rational objective functions,
Math. Oper. Res., 4 (1979), 414-424.

[15] N. Megiddo, Applying parallel computation algorithms in the design of serial
algorithms, J. ACM, 30 (1983), 852-865.

[16] H. Nakayama, On the components in interactive multiobjective programming
methods (in M. Grauer, M. Thompson, A.P. Wierzbicki, editors: Plural Ra-
tionality and Interactive Decision Processes, Proceedings, 1984), Springer
Verlag, Berlin, 1985.

[17] J.B. Orlin, Genuinely polynomial simplex and non-simplex algorithm for the
minimum cost flow problem, Working Paper No. 1615-84, A.P. Sloan School of
Management, MIT, December 1984.

[18] C.H. Papadimitriou and K. Steiglitz, Combinatorial QOptimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

-32 -

Y. Sawaragi, H. Nakayama and T. Tanino, Theory of multiobjective optimiza-

tion, Academic Press, New York, 1985.

R.E. Steuer and E.V. Choo, An interactive weighted Chebyshev procedure for
multiple objective programming, Mathematical Programming, 26 (1983),
326-344.

E. Tardos, A strongly polynomial minimum cost circulation algorithm, Com-

binatorice, 5 (1985), 247-255.

A.P. Wierzbicki, Penalty methods in solving optimization problems with vector
performance criteria, Proceedings of the 6th IFAC World Congress,

Cambridge-Boston, 1975.

A.P. Wierzbicki, Basic properties of scalarizing functionals for multiobjective
optimization, Mathematische Operationsforschung und Statistik. Optimiza-
tion, 8 (1977), 55-60. '

A.P. Wierzbicki, On the use of penalty functions in multiobjective optimization,
In W. Oettli, F. Steffens, et al., editors: Proceedings of the 3rd Symposium on

Operational Research, Universitat Mannheim, Athenaum, 1978.
A.P. Wierzbicki, A mathematical basis for satisficing decision making,

Mathematical Modelling, 3 (1982), 391-405.

A.P. Wierzbicki, On the completeness and constructiveness of parametric
characterizations to vector optimization problems, OF Spekirum, 8 (1986),
73-87.

A.P. VWierzbicki and A. Lewandowski, Dynamic Interactive Decision Analysis

and Support, Working Paper, IIASA, Laxenburg, Austria, 1987.

