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FOREWORD

Viability tubes and invariant tubes of a differential inclusion are
defined and then used to build “bridges!” between an initial set
K and a “target” C that at least one trajectory (respectively
all trajectories) follows for leaving A and reaching C in finite
or infinite horizon. (This is the target or K — C problem). We
study some asymptotic properties of these tubes (it is shown
in particular that targets are necessarily viability domains) and
viability tubes are characterized by showing that the indica-
tor functions of their graphs are solutions to the “contingent
Hamilton-Jacobi equation”. Some examples of viability tubes
are provided .

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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1 Imntroduction

Let X be a finite dimensional vector space and F' : [0,00[XX ~ X a set-
valued map which associates with any state z € X and any time ¢ the
subset F'(t,z} of velocities of the system. The evolution of the system is
governed by the differential inclusion?

(1) Z'(t) € F(t,=z(t)), z(0) = =z

We consider now “tubes”, i.e., set-valued maps ¢t ~» P(¢) from [0, oo to X.
We say that a solution ¢t — z(t) € X is “viable” (in the tube P) if

VeE>0, z(t) € P(t)

A tube P enjoys the viability property if and only if, for all £, > 0 and
zy € P(ty), there exists at least a solution z{-) to the differential inclusion
(1) which is viable.

Remark A simple-valued tube ¢t ~» {z(t)} enjoys the viability
property if and only if z{-) is a solution to the differential inclusion (1). Soit
is legitimate to regard a tube having the viability property as a "multivalued
solution” to the differential inclusion (1). O

The knowledge of a tube enjoying the viability property allows to infer
some informations upon the asymptotic behavior of some solutions to the
differential inclusion (1), as we do with Lyapunov functions. They also
share the same disadvantages: the dynamics F' being given, how do we
construct the tubes of F' ?

We shall begin by characterizing such tubes as “viability tubes”. For
that purpose, we need an adequate concept of derivative of set-valued map,
the “contingent derivative® 7.

‘Examples of differential inclusions are provided by contrel problems. specially by
control problems with a priori feedbacks, which can no longer be parametrized in a smooth
way, or by differentiai games, or by systems evolving under uncertainty. See Aubin-Cellina
[1984] for further motivations.

31t is defined as follows: If z & P(t), v belongs to DP(¢,z)(1) if and only if

I / Plt+hA])—
hm1nf,._.0+ d (U, —ﬁ#) =0



Viability tubes are those tubes satisfying
(2) Ve>0, YreP(t), F(t,z)NDP(t,z)(1) #;0

We can regard (2) as a “differential equation for tubes”, which provides
another approach than the “funnel equations” to study the evolution of
tubes.

A first application of these tubes can be made in control and differential
games, for “guiding” at least one solution from an initial set K to a target
C. In the finite horizon case, we look for tubes P satisfying the boundary
conditions P(0) = K and P(T) = C. This the reason why Russian math-
ematicians called them bridges. In infinite horizon, we need to study the
asymptotic properties of P(t) when ¢ — oco.

We prove in the third section that the “Kuratowski upper limit” when
t — oo of a viability tube P(t) is a viability domain: hence targets of a
differential inclusion are necessarily viability domains. We construct in the
fourth section the largest viability tube “converging” to a given target.

We also provide in the fifth section a surjectivity criterion which is useful
for solving such problems.

We can also characterize viability tubes P(t) by the indicator functions
Vp of their graphs, defined by:

[o if

Vp(t,x) | +oo if z¢ P(t)

We thus observe that P is a viability tube if and only if Vp is a solution to
the “contingent Hamilton-Jacobi equation*”

(3) nf DV(a)(Le) = 0

This issue relating this new approach to classical concepts is the topic of
the sixth section.

{where T
DT"'(taJ)(lav) = h—!iorzi?lf—’u ( + ,I-'-hu _— ( ,l)

is the “contingent epiderivative,, of ¥V at (¢, z) in the direction (1,v)



We then investigate in the seventh section tubes enjoying a dual prop-
erty, the invariance property: for all {5 > 0 and z, € P{t,), all solutions
to the differential inclusion are viable. We justify in section 7 the claim that
viability tubes and invariant tubes are in some convenient sense “dual”.
When F(t,xz) := A(t)z is a “set-valued linear operator” (called a closed
convex process), we can define its “transpose”. Therefore, we associate
with the “linear differential inclusion”

'(t) € A(t)z(t)
its “adjoint” differential inclusion
—p'(t) € A@t)p(t)

We show that if a tube ¢ ~» R(t), the values of which are closed convex
cones, enjoys the invariance property (for the original system), its polar
tube t ~» R(t)*, where R(t)" is the positive polar cone to R(t), is a viability
tube of the adjoint differential inclusion.

We end this exposition of viability tubes with one family of examples.
In section 9, we investigate “finite horizon” tubes of the form P(t) :=
#(t,G, D) where ¢(0,C,D) = C and ¢(T,C,D) = D, which “carry” a
subset C to a subset D.



2 Viability Tubes

Let X be a finite dimensional vector space. We consider a set-valued map
F :[0,T] x X ~» X which associates with every (¢,z) the subset F(¢, z) of
velocities of the system at time ¢ when its state is z € .X. We shall study
the differential inclusion

{i) for almost all t€[0,T), 2'(t) € F(t )
1t) z(t)) = =

(4)

It will be convenient to regard a set-valued map P from [0,T] to X as a
"tube”.

Definition 2.1 We say that a tube P enjoys the viability property if
and only if for all ty € [0,T], xo € P(ty), there czists a solution z(-) to ({)
which 13 “viable” in the sense that

{i) Vte [t T, z(t) € P(t)

(5) it) if T<+oo, Vt2T, z(t) €P(T)

Recall that a subset K has the “viability property” if and only if the
“constant tube” ¢t ~» P(t) := K does enjoy it. For time independent
systems, we know how to characterize closed subsets K which enjoy the
viability property (see Haddad [1981], Aubin-Cellina [1984]). For that pur-
pose, we introduce the “contingent cone” Tx(zx) to K at z, the closed cone
of vectors v € X such that

liming 2E T E) g
h—0+ h

A subset K is said to be a viability domain of a set-valued map

F : X ~ X if and only if

Vee K, Flz)NTx(x)#9

When F is upper semicontinuous with compact convex images, such
that ||F(z)|| £ (]|=|| + 1), Haddad’s viability Theorem states that a closed
subset K enjoys the viability property if and only if it is a viability domain.



QOur first task is to characterize tubes enjoying the viability property
thanks to its “contingent derivative” (see Aubin [1981]|, Aubin-Ekeland
[1984]). We recall that

(6) v € DP(t,z)(7) < hh’minf d

—0+4,7' -1

(U’P(H-:h) —z:) — 0

We observe that it is enough to know this contingent derivative in the
only directions 1,0 and —1. In particular, we note that

{ i) DP(t,z)(1) = {v € X | liminfy_o, 1 d (v, ZE2TH=2) = 0}
i) Tpy(z) c DP(t,z)(0)
(Equality in (2)i) holds when P is Lipschitzean in a neighborhood of ).

We observe that the graph of DP({t,z) is the contingent cone to the
graph of P at (t, z).

Definition 2.2 A tube P : [0,T] ~» X 18 called a viability tube of a
set-valued map F : [0,T] x X ~» X if its graph is contained in the domain
of F and sf

) {i) Vte[0,T[, Vze€P(t), Fit,z) N DP{t,z)(1) #0
ii) if T<oo, Vz€P(T), F(T,z)NDP(T,z)(0) # ¢

A tube 18 sasd to be closed sf and only if sts graph 15 closed.

Haddad’s viability Theorem for autonomous systems and other results
imply easily the following:



Theorem 2.1 Assume that the set-valued map F : [0,00[x X ~» X satis-
fies:

(8) { i) Fupper sems-continuous wsth closed convez values

i) |IF@E o) < a(fl=fl +1)
1. A necessary and sufficient condstson for a closed tube to enjoy the
viabslity property is that it ss a viabslity tube.

2. There exssts a largest closed viabslity tube contasned sn the domasn of

F.
3. If P, i3 a sequence of closed vsiabslsty tubes, then the tube P defined
by the Kuratowsks upper limst

Graph(P) := limsup Graph(P,)

n—00

i3 also a (closed] viabslity tube.

Proof We introduce the set-valued map G from Graph(P) to R x
R" defined by

{1} x F(s,z) i s € [0,
G(s,z) := [0,1] x F(T,z) if ¢ = T
{0} x F(T,z) if ¢ > T

We observe that (s(-), z(-)) is a solution to the differential inclusion
(#'(8),2'(t)) € G(s(t),=(t))

starting at (8(to),z(to)) = (to,xo) if and only if x(-) is a solution to the
differential inclusion (4). We also note that the tube P has the viability
property if and only if its graph enjoys the viability property for G and
that P is a viability tube if and only if its graph is a viability domain of G.
It thus remains to translate the time independent results.



3 Asymptotic properties of viability tubes
We shall now study the behavior of viability tubes when ¢ — .

Theorem 3.1 Conssder a set-valued map F from X to X, which i3 as-
sumed to be upper semicontinuous, convez compact valued and satssfies

Va €Dom(F), |F(z)] < a(fll+1)
Then the Kuratowsks upper lsmst

C = limsup P(t)

t—oo

19 a viability domasin of F.

Proof We shall prove that C enjoys the viability property. Let
€ belong to C. Then § = im &, where § € P(t,). We consider the
solutions z,(-) to the differential inclusion

7,(t) EF(za(t)), @alta) = &

which are viable in the sense that V¢ > t,, z.(t) € P(t). The function
¥n(-) defined by y,(t) :== z,(¢ +¢,) are solutions to

9.(t) € F(yalt)), 9:(0) = &,

The assumptions of Theorem3.l imply that these solutions remain in a
compact subset of C(0,00; X). Therefore, a subsequence (again denoted)
converges to y, which is a solution to

y'(¢) € Fly(t)), y(0) = ¢

Furthermore, this solution is viable in C since for all ¢ > 0, y(¢) is the
limit of a subsequence of y,(t) = z,(¢t+ t,) € P(t +t,), and thus belongs
toC. O



4 The target problem

We shall study the “target problem”

A closed viability domain C of F being given regarded as a
target, find the largest closed viability tube P; ending at C in
the sense that Po(T) = C if T < 400 or imsup,_, P:(t) = C
if T = 4o0.
Knowing such a tube P;, we thus deduce that starting at time 0 from
K := P;(0), a solution to the differential inclusion ' € F(x) must bring
this initial state to the target.

Proposition 4.1 The assumptions are those of Theorem3.1. We can as-
sociate with any closed viabslity domain C of F' a largest viabslity tube P,
ending at C. This tube 35 closed if we assume, for instance, that for any
compact subset K, the set S of solutions to

Z'(t) € F(z(t)), z(0) € K
8 compact in the Banach space B(0,00; X) of bounded functions.
Proof The solution is obvious when T < +o0: We take
Po(t) = {a(t) |&(¢) € F(2(t)), =(T)€C}

It has the viability property: if (¢, £) belongs to the graph of P, there exists
a solution z(-) to the differential inclusion z' € F(z) such that z(t) = £ and
z(T) € C satisfying z(s) belongs to P (s) for all 8 > ¢ by the very definition
of P;. Hence it is viability tube ending at C.

It is the largest one: if P is any viability tube, then, for all (¢,&) €
Graph(P), there exists, thanks to the viability Theorem, a solution z{-) to
¢’ € F(z) such that z(s) € P(s) for all 8 > ¢. Since z(T) € P(T) c C, so
that £ belongs to Pg(t).

The graph of P: is closed : if £, € Pe(t,) and if (¢,,&,) converges
to (t,£), we see that (¢, &) belongs to the graph of P;. For there exists
a sequence of solutions z,(-) to z, € F(z.) satisfying z,(¢t,) = &, and
z,(T) € C. Since these solutions remain in a compact subset of C{0,T; X),
a subsequence (again denoted) z,(-) converges uniformly to a solution z(-)
to the differential inclusion 2’ € F(z) which satisfies z{t) = £ and z(t) =
lim, . z,(t) € C.



We also observe that

(9) Polt) = (y(T -0 | ¥() € -F(ylt)), &y(0) e C}

Those two subsets do coincide because z(-) is a solution to x’ € F(x)
if and only if the function y(-) defined by y(t) := «(T —¢) is a solution to
y' € —F(y) such that y(0) = z(T).

Consider now the case when T' = oc and denote by L the set-valued
map associating with any continuous function x(-) € £(0,00;X) its limit
set

L(z) = 1ittnsup{x(t]} = ) (=([T, ]
™ T>0
The same arguments as those in the finite horizon case imply that the

tube Py defined by
(10) Po(t) == {z(t)|2'(t) € F(x(t)), & L(z) < C}

is the largest viability tube "converging” to C.

We have to show that it is closed. As in the finite horizon case, we
consider a sequence (¢,,,) € Graph(P;) which converges to (¢,r) and
solutions ,(-) to

x;(t) € F(In(t))s .L‘,,(tn)=6,. & L(ln) c C

Since the &, 's belong to a compact K, the last assumption we made
implies that the solutions z, () lie in a compact subset of B(0, co; X).

A subsequence (again denoted) x,(-) converges uniformly on {0, 0| to
a solution x(-) to &' € F(x), =z(t) = €.

We deduce that its limit set L(x) is contained in C from the fact that the
set-valued map L is lower semicontinuous: for if y belongs to L(x) and if a
sequence &, (-) converges uniformly to x(-), then there exasts y, € L{x,) € C
which converges to y, and which thus belongs to C, which is assumed to be
closed.



The lower semicontinuity of L follows from:

Lemma 4.1 Let be the Banach space of bounded continuous functions. The
set-valued map L 13 lower semicontinuous from B(0,00;X) to X.

Proof Let £ € L(z) and z,(-) € B(0,00;X) converge uniformly to
z(-) on [0, c0[. There exists t; — oo such that r(tx) converges to €. Further,
for all € > 0, there exists .V such that

Va2 N, ||le.(te) —2(t)|| £ ¢

Hence ||z, (tx) — &|| < € for all ¢, large enough. Since the dimension

of X is finite, the subsequence z,(ts) converges to an element &, which
belongs to L(z,) and thus, ||, — &|| < 2¢ for all n > N. Hence L is lower
semicontinuous. [

10



5 A surjectivity criterion for set-valued maps

We propose now a criterion which allows to decide whether a compact
convex subset C lies in the target of a differential inclusion. It belongs to
the class of surjectivity theorems for *outward maps” (see Aubin-Ekeland.
[1984]). The idea is the following. We consider a set-valued map R (the
reachable map in our framework) from a subset K of a Hilbert space X
to another Hilbert space Y. We want to solve the following problem (The
K-C problem):

For every y in C, find x in K such that y belongs to R(x)

(i.e. we can reach any element of the target C from K). Assume that we
know how to solve this problem for a "nicer” set-valued map @ from K to
Y (say, a map with compact convex graph).

For every y in C, find x in K such that : belongs to Q ()

The next theorem states how a relation linking R and @ (R is “outward with
respect to” @) allows to deduce the surjectivity of R from the surjectivity

of Q.

Theorem 5.1 We assume that the graph of Q) i3 conver and compact and
that R i3 upper semicontinuous wsth convez values. We set

K := Dom(@), C = Im(Q)
If R i3 outward with respect to @ in the sense that
(11) VeeK, VyeQ(x), y € R(x)+T:(y).
then R is surjective from K to C (in the sense that C C R(R)).

Proof It is a simple consequence of Theorem 6-4.12 p.343 of Aubin-
Ekeland [1984]. We replace X by X x Y, K by Graph(Q@)} (which is convex
compact), A by the projection piy from X xY toY and R by the set-valued
map G from X X Y to Y defined by:

G(z,y) == R(xz) — yo where y; is given in C

11



The outwardness condition implies that the tangential condition :
O € —y+R(x)+Tc(y)

if satisfied. Since yo — y belongs to T (y) (because yo € C), then

O € —yw+RE)+Tely) = Glz,y) +Tely)

We observe that

TC-'('.'/) =TIm(Q]('y) = T”Y(Graph(Q])(piY(xvy))
= ”Y(TGraph(Q](xay))

so that

0 € G(x,4) + ™ (TGraphig) (*:¥))
Theorem 6.4.12 of Aubin-Ekeland [1984] implies the existence of (£,§) in
the graph of @, a solution to the inclusion 0 € G(z, §), i.e., to the inclusion

Yo € R(f)

Remark The dual version of the “outwardness condition” is the
following:
(12) VgeNc(y), Vzed ' (y), <qy> L o(R(x)9q)

where V-(y) denotes the normal cone to the convex set C at y and

o(R{z),q) = sup <gq,y>
yER(x)

is the support function of R(x).

12



Remark By using the concept of o-selectionable maps introduced
by Haddad-Lasry [1983] (see also Aubin-Cellina [1984], p. 235), we can
extend this theorem to the case when R is o-selectionable instead of being
convex-valued. We obtain:

Theorem 5.2 We assume that the graph of Q 3 convez and compact and
that R i3 o-selectionable. If R 15 “strongly outward with respect to Q7 in
the sense that

Ve K, VyeQ(z), R(z) € y—Tc(y)
than R i3 surjective from K to C.

Remark Other sufficient conditions can be proposed to guarantee
the surjectivity of R. For instance, “inwardness” condition

C c r_l(R(x) + T (Q(x)))

implies the surjectivity condition when R is upper semicontinuous with
convex valued and “strong inwardness” condition

C-R@) ¢ [ Lol

yEQ 1z

implies the surjectivity condition when R is only o-selectionable.
To prove these statements, we use the same methods applied to the

set-valued map
H(z.y) = R(z)—yo

6 Contingent Hamilton-Jacobi Equations

We may regard condition (7)i) involved in the definition of viability tubes
as a “set-valued differential inclusion”, the solutions to which are “viability
tubes” and condition (7)ii) as a “final” condition. Actually. conditions (7)
defining “viability tubes” is a multivalued version of the Hamilton-Jacobi
equation in the following sense.

13



We characterize a tube P by the indicator function Vp of its graph
defined by
R I if » € P(t)
(13) p(t,.t) = { +o0 if =z ¢ P(t)
The contingent epiderivative D;V (¢,z) of a function V from R x X to
R U {400} at (t,z) in the direction {a,v) is defined by

| N
(14) DV(t,z)ev) = liminf ~UTPRZHh0) -Vt 2)

h—0+,w—v,d—a h

The epigraph of D1V (¢,z) is the contingent cone to the epigraph of V at
(ta T, V(ta :lf))

Hence, conditions (7) can be translated in the following way:

Proposition 6.1 A tube P i3 a viabslity tube if and only if the sndicator
function Vp of sts graph i3 a solution to the contingent Hamilton-Jacobi
equation.

(15) vean({:]DTV (¢, x)(l,v) = 0

satisfying the final condition [when T < o0):

(16) ue}'!(l;',:) DV (T,z){0,v) = 0
Remark When the function V' is differentiable, equation (15) can
be written in the form
V n
9 inf ) B—K(t, rjy, = 0

E vEan[t,.r) :; Bx.-
We recognize the classical Hamilton-Jacobi equation (see Aubin-Cellina
[1984], Chapter 6). A thorough study of contingent Hamilton-Jacobi equa-
tions (for lipschitzean maps F(¢,z)) is carried out in Frankowska [1986]),
where relations with viscosity solutions introduced by Crandall & Lions
P.L. [1983] (see also Lions P.L. [1982]) and generalized Hamilton-Jacobi
equations (Clarke & Vinter [1983], Rockafellar [to appear|) are worked out.

14



7 Invariant tubes

We distinguish between viability tubes and invariant tubes in the same way
as viability domains and invariant domains.

Definition 7.1 We say that a tube P enjoys the snvariance property if
and only if for all t, and xy € P(t,), all the solutions to the differential
inclusion (8.1) are viable in the tube P.

We say that P is an "invarsant tube” if
17) i) Vtel|0,T|, Yze P(t), F(t,z) < DP(t, z)(1)
{ i) if T<+w, Yz€P(T), F(t,z) c DP(t,)(0)

We obtain the following theorem.
Theorem 7.1 Assume that F : [0,T[x(} — X is lipschitzean wsth respect
to x in the sense that

dk()e LYO,T) | F(t,x) < F(t,y) + k(t)l|x - yl| B

(B i3 a unit ball). Let t ~ P(t) < () be a closed tube: If P is invariant,
then st enjoys the snvariance property.

Proof The theorem follows from the following lemma, an extension
to a result from Aubin-Clarke [1977].

Lemma 7.1 Let P be a closed tube and wp(y(y) denote the set of best
approzsmations of y by elements of P(t).
{ Bminfy_o, WrAePUM—deLU) < pf. o d(v, DP(t, 2)(1))
Indeed, with any solution to the differential inclusion £/(t) € F (¢, x(t)).
we can associate the function ¢(t) := d(x(t), P(t)). Let us choose y(¢) €
7p(e)(x(t)). Inequalities
glt+h)=gt) _  d(z(t)+h () +ho(h).P(t+h])~d{x(t).P(t))
h A
l < llofh)|| + #IAZOLEAMZALLED < d(2/ (). DP(t, y(6) (1))
< d(x’(t),F(t,y(t))) < Supue."(t.r(t)] d(v,F(t,y(t)))
< k(t)||g(e) = =(e)|| = k(e)d(=(t),P(t)) = kit)g(t)
imply that g(t) is a solution to the differential inequality
Dig(t)(1) < k(t)g(t) & g(to) = d(xo, P(to)) = 0
Hence d{z(t),P(t)) =g{t)=0forallt €[t,, T[. O

15



Proof of Lemma 7.1 Let y€ P(t) and « € DP(t,y)(1) be given.
We consider sequences h, — 0+ and %, — u such that

d(y + h,u,, P(t + h,
liminf (y + uh. (¢ + hn)) — 0

Hence, forall v € X,
d(y+ hov, P(t+ R )) /Ry < |lv = wall + d(y + haven, P(t + ko)) /R

which implies the desired inequality by letting h, > 0 go to 0.
Let us choose now y ¢ P(t) and = € P(t) such that ||z —y|| = d(y, P(t)).
We observe that

{ (d(y + kv, P(t+ k) — d(y. P(t))) /R

< (lly — =ll + d(=z + kv, P(t + &)) — d(y, P(t))) /A
= d(z+ho,P(t+h)/k

Since x belongs to P(t), the desired inequality for r implies the one for y
since

< liminfs_.o4 d(z + ho, P(t + h))/h
< d(v,DP(t,z)(1)) O

Remark This lemma implies that if

{ liminfs_os(d(y + hv, P(t + k) — d(y, P(t))) /A

Vt,Vz € P(t), F(t,x) € DP(t,z)(1)

and if

Vi, x~» F(t,x) is lower semicontinuous,
then

Vt,Vx € P(t), F(t,z) c CP(¢,x)(1)
where

v€CP(t,z)(l) — lim d(y +hv, Pt +4))

h—~0+.y—~p“,1 h

=0

This convergence is uniform with respect to v € F'(¢, x) if this subset is
compact. In particular, if x ~» DP(¢,z)(1) is lower semicontinuous. then

16



DP(t,z)(1) = CP(t,z)(1) O

Remark If we assume that the condition

V(t,y) € Dom(F), Iz & np()(y) such that F(t,y) <€ DP(t,x)(1)

holds true, then the tube P is invariant by F': this knowledge of the
behavior of F' outside the graph of the tube P allows to dispose of the
lipschitzean assumption. 0O

We can characterize the indicator functions of the graphs of invariant
tubes in the following way:

Proposition 7.1 A tube P i3 invariant by F if and only if the indscator
function Vp of its graph is a solution to the equation

(18) sup D,V(t,z)(l,v) = 0

vEF (t,x)
satisfying the final condition

(19) If T<+4oo, sup D/WV(T,z){0,v) = 0

vEF (t,2)

8 Duality relations between invariant and
viability tubes

Let us consider the case when F(¢,z) := A(t)z is a time dependent closed
convex process A(¢) whose domain is the whole space X. In this case, we
look for tubes R the images of which are closed convex cones.

17



We associate with such a tube R its “polar tube” R' mapping any ¢ to
the (positive) polar cone

R(t)" = {ge X" |Vy€ER(), <¢qy>2 0}
We also associate with A(t) its “transpose” A(t)* defined by

J pE Aft)q
<> V(z,y) € Graph(A(t)), <p,z><<q,y>
l < (-p,q) € Graph(4(t))*

We consider the “linear” differential inclusion
(20) '(t) € A(t)=z(t)
and its “adjoint differential inclusion”

(21) —-p(t) € Alt)p(t)

We shall prove that the invariance of the tube R implies that its positive
polar tube R* is a viability tube of the adjoint inclusion.

Theorem 8.1 Let us assume that the domasns of the closed convez pro-
cesses are all equal to X and that

I i)  the lipschitz constants of A(t) is bounded by k(-) € L*([0,T])
| i) VzeX, (t,g)— o(A(t)z,q) is lower semicontinuous

Let R be a tube wsth closed convez cone values. If R enjoys the viability
property for A(t), then the tube R is a viabslity tube of the adjoint dif-
ferentsal snclusion and thus, enjoys the viabslsty property sn the sense that
Vte[0,T],Vq€ R(t)T, there ezists a solution q(-) to the adjoint inclusion
such that q(t) = ¢q and

Vrelot, qlr) € R(r)*
Proof We have to prove that
Vee[0,T], Vg € R(t)", A(t)"e¢ N DR (t,q)(—1) # @

Since the transpose A(t)*q is upper semicontinuous with compact convex
images, Theorem 2.1 will imply that R* enjoys the viability property.
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Let § ¢ H'(0,7;X) be the set of solutions to the differential inclusion
'(t) € A(t)=(¢).

We denote by ~, the linear operator from H'(0, T'; X) to X associating
with every z its value v,z := z(7) at 7 € [0,T|. To say that R enjoys the
invariance property means thatforall 0 < s <¢ < T,

w(S N~ 'R(s)) < R(t)
By polarity, we deduce that

RH* c (w(SN7HRE))T = %7 (SN (R(9)T
We deduce from Frankowska [1986a] that

(SNA'R(s))” = S™+7R(s)"

Hence, for all ¢, € R(t)* and for all s < ¢, there exists q, € R(3)" such
that ~¢q; — v,9, belongs to S*. Always by Frankowska [1986a], there exists
a solution p,(-) to the adjoint inclusion on the interval [s,¢]

(22) —p,(1) € A(7)p.l7) & p.(t)=¢

which satisfies

ps(s) € R(")"L

By replacing ¢t by s and s by 0, we can extend the solution p,(-) on the
whole interval [0,¢]. We now let s converge to ¢. Since Dom(A4(t)) = X, we
know that
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O’(A(t)'p, '.l:) = _‘7(‘4(”3” -p)

Hence the lower semicontinuity of (¢,p) — o{A(¢)z, —p) implies the
upper semicontinuity of o(A{t)*p, ), and thus, the upper semicontinuity of
(¢.p) — A(t)*p. (See Aubin-Ekeland, [1984], Theorem 3.2.10). Therefore
for all € > 0, there exists # > 0 such that, forall 7 € [¢t—7,t] and p € ¢+ B,
we have

A(r)'p € A(t)"q+€B

The set of solutions p,(-) to the adjoint inclusion being contained in a
compact set of C(0,T; X}, a subsequence (again denoted) p,(-) converges
uniformly to a solution po(-) to the adjoint equation.

Hence there exists a < n such that, for all 7 € [t — «,¢t], and for all s,

“P,,(T) = 4t ”
Therefore

Va, Vre[t—a,t], A(7)"ps(r) € A(¢)"¢+€B
By integrating (22) on the interval [t — A,¢] with s = — kb < o, we
deduce that
e t;,hA_' = Japi_p(r)dr
=L A(r)'pa(r)dr C —7o(A(t) ¢ + ¢B)
4(t) g+ ¢B

I m;’
I"Ir—l ”

This subset being compact, a subsequence v, converges to an element
vE A(t)"¢. Since

¢ +hv, = pep(t—h) € R(t—h)"

for all A > 0, we deduce that v belongs to DR*(¢t,¢)(—1). O

9 Examples of viability tubes

Let us consider two closed subsets C and D of X := R" and a differentiable
map ® from a neighborhood of [0,T] x C x D to X.
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We consider tubes of the form
(23) P(t) = %(t,C.D)

Proposition 9.1 Let us assume that for alI t <T, for all £t € P(t), there
ezists (y,2) € C x D satisfying ®(t,y,2) = x and there ezists (u,v) €
Toxply, z) such that

(24)’ i) dft<T, ¥ty z)u+®,(t.y,z)v € Flt.x)— B(t,y.2)
i) if t=T, ¥ (T,y,2)+ ¥,(T,y,2)v € F(T.x)

Then the set-valued map P defined by (£23) is a viabslity tube of F on [0,T).

Proof We observe that Graph(P) is the image of [0.T] x C x D
under the map ¥ defined by

\Il(t’y’z) = (t’Q(t7y7 :))
By Proposition 7.6.2, p. 430 of Aubin-Ekland [1984],

V'(t,y,2)Torixcxnlt, 9,5) C Tgraphp)(¥(t,y.2))

so that the assumptions (24) imply that P is a viability tube. O
When C and D are closed and convex, we can characterize viability
tubes of the form (23) through dual conditions.

Proposition 9.2 Let us assume that the values of F are compact and
convez and that the subsets C and D are closed and convez. If for any
t €[0,T], Vz € P(t), there ezists (y,z) € C x D satisfying B(t.y.z) =«
and for all

pE Tt y, 2 Nel(y) N &'(t,y,2)" Np(z)

we have

Vi<T, <p&(t.y.s) > +o(F(t,B(ty,2)) —p) > 0

(25) I9)
| it) for t=T, o(F(T,®(T.y,2)),-p) = 0

then the set-valued map P defined by (£23) is a viability tube of F on [0, T).

Proof When C and D are convex, T, ply,2) = Tc{y) x Tplz), s
that conditions (24)i) and ii} can be written
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1) (F(t,x) — Bt y,2)) N (R (¢, y,2)Tc(y) + D¢, yw)To(Z)) # 9
1) F(T,x) N (®,(T,y, )T~(y)+<1>’ (Tyy,2)To(z))

The separation theorem shows that they are equivalent to conditions
(25).

Corollary 9.1 Let us assume that C and D are closed convez subsets and
that the values of F' are conver and compact. Let ¢ : R. — R, be a
differentsable function satssfysng esther one of the following equivalent con-
distions: For anyt > 0, ¥ z € P(t), there ezist y € C,z € D such that
r=y+ &(t)z and esther

(26)] ) ElLy+o():) = 2)N (T
i) (F(T,y+¢(T)2) N (Te(y

or,Vp € Ncly)NNp(z),

N(Toly) +Tolz)) # 8 if t<T
)+To())¢0ft T

1) ¢'(t)anlp) +a(Flt,y+o(t)z,—p) 2 0¢ft<T
i) o(F(T,y+6(T)z,—p) 2 0if t=T
Then the set-valued map P defined by

(27)

(28) P(t) := C+o(t)D
is a viabslity tube of F on [0,T].

Let us consider the instance when C = {¢} and when 0 belongs to the
interior of the closed convex subset D.
We introduce the function a, defined by

J' ag(t,w) :=
(29) ] SUP.cp SUPpeNp(a), opip)=1 infocpitcrws < pov>
. SUP.ep lnfUEF'(f,c+w:) Suppé.’\’o(.r),og(p)=l <p.v>

(The last equation follows from the minimax theorem.)
Let us assume that there exists a continuous functiona: R. xR, — R
satisfying a(¢,0) =0 for all ¢ > 0 and

22



V(t,W)€R+ x R+v a(t,w) ZGO(tsw)
Let ¢ be a solution to the differential equation

(30) F(t) = alt,6(t)) & #(0) =¢y given
satisfying

a(T,9(T))=0
Since ap(p) > 0 for all p # 0, we deduce that for all : € D and all
pPE ND(‘Z)7

¢ (t)op(p) = alt,8(t))on(p) = aolt, (t))op(p)
2> UD(P,] SUDyeF(t,c+p(t)s) < —O_D%,U >
= _U(F(,ta c+ ¢(t)2), —p)
Hence, condition (27)i) is satisfied. We also check that
-1
op(p)

o(F(T,e+ ¢(T)z),—p)

0 = a(T,¢(T)) geqao(T,8(T)) 2

Then the tube defined by P(t) := ¢+ ¢(t)D is a viability tube of F.
O

For instance, if D := B is the unit ball, then o3(p) = ||p|| and ¥Vp(z) =
Az for all z € § := {x|||z| = 1}. Hence, in this case we have

ag(t,w) := sup inf <v,z>
(lzjl=1 veF (t,c+wz)
In other words, the function ao defined by (29) conceals all the infor-
mation needed to check whether a given subset D can generate a tube P.

O
Remark When a is non-positive and satisfies a{¢,0) = 0 for all

t > 0, then there exists a non-negative non-increasing solution ¢(-) to the
differential equation (30).

When T = oo, we infer that [;° a(r,6(7))dr is finite. Let us assume
that for all w, € R.,
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Im a(t,w) = a.(w.)

t—oo,w—w,

Then the limit ¢. of ¢(t) when t — oo satisfies the equation

a*(¢*) =0

Otherwise, there would exist ¢ > 0 and T such that a.(é.) + ¢ < 0 and
for all ¢t > T, a{t, ¢(t)) £ a.(¢.) + € by definition of a..
We deduce the contradiction

8() = (1) = [ alr,()dr < (6= T)(au(62) +0)

when ¢ is large enough.
Example
Let us consider the case when F' does not depend upon . We set

31 := sup inf (Aw — aq(w
(31) Po ,\elll) w>0( o(w))

Assume also that A € R achieves the supremum. We can take v (w) :=
Ao — po.

If py > 0, the function

2(1—exp(Aoft =T) if Ao # 0

(32) orit) —po(t = T) if A =0

is such that P(t) := {¢ + ¢7(¢)D} is a tube of F such that P(T) = {¢}.
If po <0 and Ay < 0, then the functions

b(t) - Aio(po — )

are such that P(t) := ¢ + ¢(t)D defines a tube of F on [0,00[ such that
P(t) decreases to the set P :=c+ 2D. O
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