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Viability tubes and invariant tubes of a differential inclusion are 
defined and then used to  build "bridges1" between an initial set 
K and a "targetn C that  a t  least one trajectory (respectively 
all trajectories) follows for leaving K and reaching C in finite 
or infinite horizon. (This is the target or K - C problem). We 
study some asymptotic properties of these tubes ( i t  is shown 
in particular that  targets are necessarily viability domains) and 
viability tubes are characterized by showing that  the indica- 
tor functions of their graphs are solutions to the "contingent 
Hamilton-Jacobi equationn. Some examples of viability tubes 
are provided . 
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 h his terminology is been used by the Russian School of  Sverdlovsk. In another neigh- 
boring context, tubes are called fimnels, again by Rllssian math?mstic:ians 



1 Introduction 

Let X be a finite dimensional vector space and F : 10, m [ x X  - X a set- 
valued map which associates with any state z  E -Y and any time t the 
subset F ( t ,  2 )  of velocities of the system. The evolution of the system is 
gwerned by the differential inclusion' 

( 1 )  ~ ' ( t j  E ~ ( t ,  ~ ( t ) ) ,  Z ( O )  = zo 

We consider now itubesn, i.e., set-valued maps t  .L, P( t )  from (0 ,  m[ to  .Y. 
We say that  a solution t I- 2 ( t )  E ,Y is %ablen (in the tube P )  if 

.A tube P enjoys the viability property if and only if, for all t o  > 0  and 
zo E P(to) ,  there exists a t  least a solntion zt.) t o  the differential inclusion 
( 1 )  which is viable. 

Remark A simple-valued tube t .u { z ( t ) )  enjoys the viability 
property if and only if z(.)  is a solution to the differential inclusion ( I ) .  So it 
is legitimate to regard a tnbe having the viability property as a "multivalued 
solutionn to  the differential inclusion ( 1 ) .  [7 

The knowledge of a tube enjoying the viability property allows to  infer 
some informations upon the asymptotic behavior of some solutions to  the 
differential inclusion ( I ) ,  as we do with Lyapunov functions. They also 
share the same disadvantages: the dynamics F being given, how do we 
construct the tubes of F ? 

We shall begin by characterizing such tubes as %ability tubes". For 
that  purpose, we need an adequate concept of derivative of set-valued map, 
the 'contingent derivativey " . 

'Examples of differential inclusions are provided by concml problems. ~pecially by 
control problems with a priori feedbacks, which can no longer be parametrized in a smooth 
way, or by differential games, or  by systems evolving under uncertainty. See Aubin-Cellina 
ilQ8-41 for further motivations. 

31t is d e h e d  as follows: If z f P ( t ) ,  u belongs to D P ( t , z ) ( l )  if and only if 
P ( t f h ] - r  liminfh-o+ d ( u .  , ) = 0 



Viability tubes are those tubes satisfying 

We can regard (2) as a 'differential equation for tubes", which provides 
another approach than the 'funnel equations" to  study the evolution of 
tubes. 

A first application of these tubes can be made in control and differential 
games, for 'guiding" a t  least one solution from an initial set K to a target 
C. In the finite horizon case, we look for tubes P satisfying the boundary 
conditions P(0) = K and P(T) = C. This the reason why Russian math- 
ematicians called them bridges. In infinite horizon, we need to study the 
asymptotic properties of P(t )  when t + m. 

We prwe in the third section that the 'Kuratowski upper limit" when 
t + oo of a viability tube P(t )  is a viability domain: hence targets of a 
differential inclusion are necessarily viability domains. We construct in the 
fourth section the largest viability tube 'converging" to a given target. 

We also provide in the fifth section a surjectivity criterion which is useful 
for solving such problems. 

We can also characterize viability tubes P(t )  by the indicator functions 
Vp of their graphs, defined by: 

We thus observe that  P is a viability tube if and only if Vp is a solution to 
the 'contingent Hamilton- Jacobi equation4" 

This issue relating this new approach to classical concepts is the topic of 
the sixth section. 

lwhere 
V ( t  + h , r t h v l )  - V ( t : t )  

Dl V ( t ,  z ) ( l ,  v) := lirn inf 
h-+O+,o'-+w h 

is the 'contingent epiderivative,, of V  a t  ( t ,  z) in the direction (1, v) 



We then investigate in the seventh section tubes enjoying a dual prop- 
erty, the invariance proper ty:  for all to 2 0 and s o  E P ( t o ) ,  all solutions 
t o  the differential inclusion are viable. We just& in section 7 the claim that  
viability tubes and invariant tubes are in some convenient sense 'dudn. 
When F ( t ,  z) := A(t)z is a "set-valued linear operatorn (called a closed 
convex process), we can define its "transpose". Therefore, we associate 
with the 'linear differential inclusionn 

its 'adjoint" differential inclusion 

We show that  if a tube t - R(t) ,  the values of which are closed convex 
cones, enjoys the invariance property (for the original system), its polar 
tube t - R(t)+,  where R(t)+ is the positive polar cone to R( t  ) , is a viability 
tube of the adjoint differential inclusion. 

We end this exposition of viability tubes with one family of examples. 
In section 9, we investigate "finite horizonn tubes of the form P ( t )  := 
+(t,G, D) where +(O,C, D) = C and +(T, C, D) = D. which 'carry" a 
subset C to  a subset D. 



2 Viability Tubes 

Let X be a finite dimensional vector space. We consider a setvalued map 
F : [0, T ]  x X .u X which associates with every (t , z )  the subset F (t , z )  of 
velocities of the system a t  time t when its state is z E X. We shall study 
the differential inclusion 

( 4 )  
for almost all t E [0, TI, z'(t) E F(t ,  z )  

I t  will be convenient t o  regard a set-valued map P from [O,T] to  ,'L' as a 
"tube". 

Definition 3.1 We sag that a tube P enjoys the viability property if 
and only if for d l  to E [0, TI, zo E P(to),  there cziata a solution z( . )  to (4) 
which is 'viable" in the sense that 

Recall that  a subset K has the %ability propertyn if and only if the 
'constant tube" t .u P(t) := K does enjoy it. For time independent 
systems, we know how to characterize closed subsets K which enjoy the 
viability property (see Haddad [1981], Aubin-Cellina [1984]).  For that  pur- 
pose, we introduce the  'contingent cone" TK(3)  t o  K a t  z,  the closed cone 
of vectors v  E X such that  

lim inf d(z + hv,  K )  
h 

= 0 
h-+O+ 

A subset K is said t o  be a viability domain of a set-valued map 
F : ,Y .u ,Y if and only if 

When F is upper semicontinuous with compact convex images, such 
tha t  IIF(z)II 5 (11x11 + I ) ,  Haddad's viability Theorem states that  a closed 
subset K enjoys the viability property if and only if it is a viability domain. 



Our first task is to  characterize tubes enjoying the viability property 
thanks to its 'contingent derivativen (see Aubin [1981], Aubin-Ekeland 
[1984]). We recall tha t  

(6) 
P ( t  + ~ ' h )  - x 

v E DP(t ,x ) ( r )  u liminf d 
h 

) = o  
h-+O+,rl+r 

We observe that  it is enough t o  know this contingent derivative in the 
only directions 1,O and - 1. In particular, we note that  

D P ( ~ ,  x ) ( l )  = {a E x I liminfn,a+,,~+~ d ( v ,  p(t+:y-I) = 01 ( 2) Tp ,.,, x) . .P,t,x),O) 

(Equality in (2)i) holds when P is Lipschitzean in a neighborhood of z). 
We observe tha t  the graph of DP( t , x )  is the contingent cone to the 

graph of P at (t, s). 

Definition 2.2 A tube P : [0, TI - X ie called a viability tube of a 
eet-valued map F : [0, TI x X .\.t X if ite graph ie contained in the domain 
of F and if 

A tube ie eaid to be closed if and only if its graph ie closed. 

Haddad's viability Theorem for autonomous systems and other results 
imply easily the following: 



Theorem 2.1 A s s u m e  tha t  the  set-valued m a p  F : [0, m [ x X  .L. ,Y sat is-  
fies: 

F u p p e r  s emi - con t inuous  w i t h  closed convez  values 
Is) { i!, ,,F(t,.,,, 5 a,,,.,, + 1) 

1. A necessary a n d  s u f i c i e n t  condi t ion  for a closed tube t o  e n j o y  the  
viability property i g  t h a t  it i s  a viability tube. 

2. There  e z i s t s  a largest closed viability tube contained in the  d o m a i n  of 
F .  

3. If  Pn i s  a sequence of closed viability tubeg, t h e n  t he  tube P def ined 
b y  t h e  Kura towsk i  upper l i m i t  

Graph(P) := lim sup Graph(Pn ) 
n-a,  

i s  also a (closed)  viability tube. 

Proof We introduce the set-valued map G from Graph(P) to  R+ x 
En defined by 

(1) x F(s, 3) if s E [O,T[ 
[0, 1] x F ( T ,  2) if s = T 
{ O ) x F ( T , x )  if s > T 

We observe that  (s(.), z(-)) is a solution t o  the differential inclusion 

starting a t  (s(to), z(to)) = (to, xo) if and only if .r(-) is a solution to the 
differential inclusion (4). We also note that  the tube P has the viability 
property if and only if its graph enjoys the viability property for G' and 
that  P is a viability tube if and only if its graph is a viability domain of G. 
It thus remains to translate the time independent results. 



3 Asymptotic properties of viability tubes 

We shall now study the behavior of viability tubes when t -. co. 

Theorem 3.1 Consider a set-valued map F from X to X ,  which is as- 
sumed to be upper sen?tcontinuous, convez compact valued and satisfies 

Then the Kuratoweki upper limit 

C := lim sup P(t ) 
t-+w 

ie a viability domain of F .  

Proof We shall prwe that  C enjoys the viability property. Let 
F belong to C .  Then < = lime, where (,, E P( t , ) .  We consider the 
solutions z , ( . )  to  the differential inclusion 

which are viable in the sense that V t > t n ,  z ,  ( t )  E P ( t ) .  The function 
y, (.) defined by yn ( t )  := x,  ( t  + t , )  are solutions to 

The assumptions of Theorem3.1 imply that  these solutions remain in a 
compact subset of C ( 0 ,  co; X). Therefore, a subsequence (again denoted) 
converges to  y ,  which is a solution to  

Furthermore, this solution is viable in C since for all t > O ?  y ( t )  is the 
limit of a subsequence of y , ( t )  = s,(t + t , )  E P(t + t n ) ,  and thus belongs 
to  C .  



4 The target problem 

We shall study the "target problemn 

A closed viability domain C of F being given regarded as a 
t a rge t ,  find the largest closed viability tube PC ending a t  C in 
the sense that  Pc(T) = C if T < + m  or limsup,,, PC (t) = C 
i f T = + m .  

Knowing such a tube PC, we thus deduce that  starting a t  time 0 from 
K := PC (0), a solution to the differential inclusion x' E F ( z )  must bring 
this initial state t o  the target. 

P ropos i t ion  4.1 The aseumptions are thoee of Theorem3.1. We can as- 
sociate with any cloeed viability domain C of F a largest viability tube PC 
ending at C. This tube ie cloeed if we aeeume, for instance, that for any 
compact eubeet K ,  the set S of solutions to 

ie compact in the Banach space B (0, m ;  X) of bounded functions. 

Proo f  The solution is obvious when T < +m: We take 

PC (t) := {x(t) (zl( t)  E F(x( t ) ) ,  x(T)  E C )  

It has the viability property: if (t, e) belongs to the graph of PC,  there exists 
a solution x(.) to  the differential inclusion x1 E F ( x )  such that  x( t )  = c and 
x(T) E C satisfying x(e) belongs to  PC (8) for aJl e 2 t by the very definition 
of PC. Hence it is viability tube ending a t  C. 

It is the largest one: if P is any viability tube, then, for all (t ,  [) E 
Graph(P), there exists, thanks t o  the viability Theorem, a solution x(.) to  
x1 E F ( z )  such that  x(e) E P(e )  for aJl e >_ t. Since x(T) E P(T) c C, so 
that  5 belongs to PC (t). 

The graph of PC is closed : if <, E PC (t,) and if (t,, En ) converges 
to (t, t) ,  we see that  (t, E) belongs to  the graph of PC. For there exists 
a sequence of solutions xn (a) to  z', E F ( z n )  satisfying xn (t,) = en and 
x, (T) E C. Since these solutions remain in a compact subset of C(0. T; X), 
a subsequence (again denoted) xn ( a )  converges uniformly to  a solution x(.) 
to the differential inclusion x1 E F ( x )  which satisfies x ( t )  = < and x(t) = 
limn,, xn (t) E C. 



We also observe tha t  

Those two subsets do coincide because x(.) is a solution to  x' E F ( x )  
if and only if the function y(.) defined by y( t )  := x ( T  - t )  is a solution t o  
y' E - F ( y )  such t h a t  y(0) = x ( T ) .  

Consider now the case when T = oc and denote by L the set-valued 
map  associating with any continuous function x(.) E C(0, m;S) i ts  limit 
set 

L(x)  := l imsup{z(t))  = (x([T,co[)  
t --. co T>O 

The same arguments as  those in t he  finite horizon case imply t h a t  the 
tube  PC defined by 

is the  largest viability tube  "convergingn t o  C. 
We have t o  show t h a t  it is closed. As in the finite horizon case, we 

consider a sequence ( t , , ~ , )  E Graph(Pc)  which converges t o  ( t , x )  and 
solutions x, (.) t o  

Since the  [, ' s belong t o  a compact K ,  t he  last assumption we made 
implies t h a t  the solutions z, ( a )  lie in a compact subset of B(0 ,  oo; ,Y). 

X subsequence (again denoted) x, (.) converges uniformly on [O. co [ t o  
a solution x ( - )  t o  x' E F ( x ) ,  ~ ( t )  = 6. 

We deduce tha t  i ts  limit set L ( x )  is contained in C from the fact t h a t  the 
set-valued map  L is lower semicontinuous: for if y belongs to  L ( x )  and if a. 
sequence x, ( 3 )  converges uniformly t o  x ( . ) .  then there e&ts y, E L (x, ) c C 
which converges t o  y, and which thus belongs to  C ,  which is assumed to  be 
closed. 



The lower semicontinuity of L follows from: 

Lemma 4.1 Let be the Banaeh epaee of bounded continuoue funetione. The 
set-valued map L  i s  lower semicontinuoue from B ( 0 ,  oo; .Y) to .Y. 

Proof Let [ E L(x)  and x n ( . )  E B (0. oo; X )  converge uniformly t o  
2(.) on [0, oo[. There exists t k  -, m such tha t  x ( t k )  converges t o  <. Further. 
for all c > 0, there exists iV such t h a t  

Hence (lzn ( t k )  - [)I 5 c for all t k  large enough. Since the dimension 
of X is finite, the subsequence zn(tb)  converges t o  a n  element (,, which 
belongs t o  L(xn)  and thus, II(, - (1) 5 26 for all n > N. Hence L  is lower 
semicontinuous. 



5 A surjectivity criterion for set-valued maps 

We propose now a criterion which allows t o  decide whether a compact 
convex subset C lies in the target of a differential inclusion. I t  belongs to  
the class of surjectivity theorems for "outward maps" (see Xubin-Ekeland, 
[1984]). The idea is the following. We consider a set-valued map R (the 
reachable map in our framework) from a subset K of a Hilbert space S 
to another Hilbert space Y. We want to solve the following problem (The 
K-C problem): 

For every y in C? find x in such that y belongs to  R ( x )  

(i.e. we can reach any element of the target C from K ) .  Assume that  we 
know how to  solve this problem for a "nicer" set-valued map Q from I{ t o  
Y (say, a map with compact convex graph). 

For every y in C? find x in K such that  i belongs to Q(x )  

The next theorem states how a relation linking R and Q ( R  is "outward with 
respect ton Q) allows to deduce the surjectivity of R from the surjectiviw 
of Q. 

Theorem 5.1 We assume that the graph of Q is eonvez and compact and 
that R ia upper semicontinuous with convez values. We yet 

If R is outward with respect to Q in the yense that 

then R ia sutjeetive from K to C fin the acnse that C c R ( K ) ) .  

Proof I t  is a simple consequence of Theorem 6-4.12 p.343 of Xubin- 
Ekeland [1984]. We replace ;Y by X x Y ,  K by Graph(Q) (which is conwx 
compact). A by the projection piy from -Y x E' to  Y and R by the set-valued 
map G from ,Y x Y to  Y defined by: 

G(x,  y) := R(x )  - yo where yo is given in C 



The outwardness condition implies that  the tangential condition : 

if satisfied. Since ;yo - y  belongs to  T:(y) (because yo E C ) ,  then 

We observe that  

so that  
0 E G ( r ,  Y )  f m ( T ~ ~ ~ ~ h ( ~ )  ( $ 7  Y)) 

Theorem 6.4.12 of Aubin-Ekeland [I9841 implies the existence of ( 3 , j j )  in 
the graph of Q, a solution to the inclusion 0 E G(z, g), i.e., to  the inclusion 
Yo E R(3). 

Remark The dual version of the "outwardness conditionn is the 
following: 

where iVc(y) denotes the normal cone to the convex set C a t  y and 

is the support function of R(z) .  



Remark By using the concept of a-selectionable maps introduced 
by Haddad-Lasry [1983] (see also Aubin-Cellina (19841, p. 235), we can 
extend this theorem to  the case when R  is o-selectionable instead of being 
convex-valued. We obtain: 

Theorem 5.2 We assume that the graph of Q is eonvez and compact and 
that R  i s  o-eeleetionable. If R  is "strongly outward with respect to Q" in 
the senee that 

than R  is surjective from K to C .  

Remark Other sufficient conditions can be proposed t o  guarantee 
the surjectivity of R. For instance, "inwardnessn condition 

implies the surjectivity condition when R  is upper semicontinuous with 
convex valued and 'strong inwardnessn condition 

implies the surjectivity condition when R  is only a-selectionable. 
To p rwe  these statements, we use the same methods applied t o  the 

set-valued map 
H ( x ,  y )  := R(x )  - yo 

6 Contingent Hamilton- Jacobi Equations 

We may regard condition (7)i) involved in the definition of \lability tubes 
as a 'set-valued differential inclusion", the solutions to which are "viability 
tubesn and condition (7)ii) as a "finaly condition. Actually. conditions (7)  
defining '%ability tubesn is a mudtivalued version of the Hamilton-Jacohi 
equation in the following sense. 



CVe characterize a tube P by the indicator function Vp of its graph 
defined by 

The contingent epiderivative DTV( t , x )  of a function V from R x X to  
R u {+m) a t  (t ,  x) in the direction (a, v) is defined by 

The epigraph of DtV( t , z )  is the contingent cone to the epigraph of V a t  

(t, x, V(t, 3)) .  
Hence, conditions (7) can be translated in the following way: 

Proposition 6.1 A tube P is a viability tube if and only if the indicator 
function Vp of its graph is a solution to the contingent Hamilton-Jacobi 
equation: 
(15) inf DTV(t ,x ) ( l ,v )  = O 

vEF ( t , t )  

satiufying the final condition @hen T < co): 

inf DrV(T,  2)(0, v )  = 0 
v E F ( T , t )  

Remark When the function C' is differentiable, equation (15) can 
be written in the form 

av av -+ inf - ( t , x ) v i  = 0 
a t  V ~ F ( ~ , Z )  a,, 

CVe recognize the classical Hamilton-Jacobi equation (see Aubin-Cellina 
[1984], Chapter 6). A thorough study of contingent Hamilton-Jacobi cqua- 
tions (for lipschitzean maps F ( t ,  x ) )  is carried out in Frankowska [1986]), 
where relations with viscosity solutions introduced by C r a n d d  8; Lions 
P.L. [I9831 (see also Lions P.L. [1982]) and generalized Hamilton-Jacobi 
equations (Clarke & Vinter [1983], Rockafellar [to appear]) are worked out. 



7 Invariant tubes 

We distinguish between viability tubes and invariant tubes in the same way 
as viability domains and invariant domains. 

Definition 7.1 We say that a tube P  enjoys the invariance property if 
and only i f  for all t o  and zo E P(to) ,  all the solutions t o  the differential 
inclusion (9.1) are viable in the tube P. 

We say that P  ie a n  "invariant tube" i f  

(17) { i ,  
V t e [ O , T [ ,  v x ~ P ( t ) ,  F( t , z )  c D P ( t , z ) ( l )  

ii) i f  T  <+w,  V x € P ( T ) ,  F(t ,x) c DP(t,x)(O) 

We obtain the following theorem. 

Theorem 7.1 Assume that F  : [0, T [ x  12 - X is  lipschitzean with respect 
t o  x in the sense that 

3 k(.) E ~ ' ( 0 ,  T )  I F(t,  x) c F(t, y )  + k ( t )  1 1 %  - yllB 

(B ie a unit ball). Let t .\A P(t)  c 12 be a cloeed tube: If P  i e  inaatiant, 
then it enjoys the inaariance property. 

Proof The theorem follows from the following lemma, an extension 
to a result from Aubin-Clarke [1977]. 

Lemma 7.1 Let P  be a cloeed tube and ~ p ( ~ ) ( y )  denote the set of best 
approzimations of y by elements of P( t ) .  

( lim infh+o+ h I inf=cr,,,,(,) d(u ,  DP(t, x ) ( l ) )  

Indeed, with any solution to the differential inclusion d ( t )  E F(t, x ( t ) ) .  
we can associate the function g ( t )  := d(z(t) ,  P ( t ) ) .  Let us choose y ( t )  E 
A P , ~ )  ( ~ ( t ) ) .  Inequalities 

imply that  g(t) is a solution to the differential inequality 

D,g(t)( l )  I k(t)g(t) & d t o )  = d(xo,P(to)) = 0 

Hence d(z( t ) ,P( t ) )  = g ( t )  = 0 for all t E [to.T[. 



Proof of Lemma 7.1 Let y  E P ( t )  and u  E D P ( t ,  y ) ( l )  be given. 
We consider sequences hn + 0+ and un + u  such tha t  

lim inf 
d ( y  + h n ~ n y P ( t  + hn) )  = 0 

n-OO h  n 

Hence, for all v  E X, 

which implies the desired inequality by letting hn > 0 go t o  0. 
Let us choose now y 4 P ( t )  and x  E P ( t )  such tha t  112- yll = d(y ,  P ( t ) ) .  

We observe that  

+ hv ,P ( t  + h ) )  - d ( y , P ( t ) ) ) / h  
I (Ily - 41 + 4% + hv ,P ( t  + h ) )  - d(y ,  P ( t ) ) ) / h  
= d(x  + hv,  P ( t  + h ) / h  

Since t belongs to P ( t ) ,  the desired inequality for x  implies the one for y 
since 

liminfh+o+(d(y + hu, P ( t  + h ) )  - d(y ,  P ( t ) ) ) / h  
< liminfh+o+ d ( x  + hv, Pi t  + h ) ) / k  - 
5 d ( v , D P ( t , x ) ( l ) )  

Remark This lemma implies that  if 

V t ,  V t E P ( t ) ,  F ( t ,  x )  c D P ( t ,  % ) ( I )  

and if 

V t ,  x  - F  ( 1 ,  X )  is lower semicontinuous, 

then 

where 

lim 
d ( y  + hv .P( t  + h ) )  

v  E C P ( t ,  x ) ( l )  - = 0 
h - + O + , y - p f t ) ~  h, 

This convergence is uniform with respect to v  E F ( t ,  x )  if this subset is 
compact. In particular, if x  - D P ( t ,  z)(l) is lower semicontinuous. then 



D P ( t , x ) ( l )  = C P ( t , x ) ( l )  

Remark If we assume t h a t  the condition 

V ( t , y )  EDom(F),  3 z E  r ~ ( ~ ) ( y )  such t h a t  F ( t , y )  c D P ( t , x ) ( l )  

holds true, then the  tube  P  is invariant by F: this knowledge of the  
behavior of F  outside the  graph of the  tube P  allows t o  dispose of the 
lipschitzean assumption. 

We can characterize the  indicator functions of the  graphs of invariant 
tubes in the following way: 

Proposition 7.1 A tube P  i s  invariant by F  if and only if the indicator 
function Vp of its graph i s  a solution to the equation 

sup  D t V ( t , z ) ( l , v )  = 0 
u E F ( t , r )  

satbfying the final condition 

( 1 9 )  If T  < +oo, sup DtV(T,x)(O,  v )  = 0 
UEF ( t . ~ )  

8 Duality relations between invariant and 
viability tubes 

Let us consider the  case when F ( t , z )  := A(t)x is a time dependent closed 
convex process A(t)  whose domain is the whole space ,Y. In t.his case, we 
look for tubes R the  images of which are closed convex cones. 



We associate with such a tube R its 'polar tube" R+ mapping any t t o  
the (positive) polar cone 

We also associate with A(t)  its 'transpose" A(t)* defined by 

We consider the 'linear" differential inclusion 

and its "adjoint differential inclusion" 

We shall prove that  the invariance of the tube R implies that  its positive 
polar tube R+ is a viability tube of the adjoint inclusion. 

Theorem 8.1 Let ue aesume that the domains of the closed convez pro- 
cessee are all equal to X and that 

I i )  the lipschitz conetants of .4(t) i e  bounded b y  k(.) E L'([o.T]) 
\ ii) V x E X, ( t ,  q) I+ u(A( t ) z ,  q )  i e  lower ecmicontinuoue 

Let R be a tube with cloeed convez cone values. If R  enjoys the viability 
property for A ( t ) ,  then the tube R+ i s  a viability tube of the adjoint dif- 
ferential inclusion and thus, enjoys the viability property in the senec that 
V t E [0 ,  TI, V q E R ( t ) + ,  there ezists a eolution q ( - )  to the adjoint inclueion 
such that q ( t )  = q and 

Proof We have to prove that  

Since the transpose A(t)*q is upper semicontinuous with compact convex 
images, Theorem 2.1 will imply that  R+ enjoys t'he viability property. 



Let S c H 1 ( O ,  T ; X )  be the set of solutions to the differential inclusion 
x'(t) E A ( t ) z ( t ) .  

We denote by 7 ,  the linear operator from H 1 ( O ,  T; X) to ,Y associating 
with every z its value 7 , s  := X ( T )  a t  T E [O,T]. TO say that  R  enjoys the 
invariance property means that  for all 0  5 s  5 t 5 T, 

rt ( s  n r,'R(,s)) c R( t )  

By polarity, we deduce that  

R ( t ) +  c ( ~ ( S n r ; ' ( R ( e ) ) ) +  = 7 ; - ' ( s n 7 ; l ( R ( s ) ) ) +  

We deduce from Frankowska [1986a] that 

( S  n r , 'R(s))+ = S+ + ~ , * R ( J ) +  

Hence, for all qt E R ( t ) +  and for all e 5 t ,  there exists q, E R ( s ) +  such 
that  rtqt - rag8 belongs to Sf. Always by Frankowska (1986a], there exists 
a solution pa( . )  t o  the adjoint inclusion on the i n t e n d  [ s ,  t ]  

which satisfies 

By replacing t by s  and s by 0, we can extend the solution p , ( . )  on the 
whole interval [0, t ] .  We now let 3 converge to  t .  Since Dom(A(t))  = S, we 
know that  



Hence the lower semicontinuity of ( t a p )  + a ( A ( t ) x ,  - p )  implies the 
upper semicontinuity of o ( A ( t ) * p ,  x ) ,  and thus, the upper semicont'inuity of 
( t a p )  + A ( t ) * p .  (See Aubin-Ekeland, [1984] ,  Theorem 3.2.10). Therefore 
for all 6 > 0, there exists 7 > 0 such tha t ,  for all T E [ t - q , t ]  and p  E q t+qB,  
we have 

A ( T ) * ~  c . 4 ( t ) * q t + c B  

The set of solutions pa( . )  to  t he  adjoint inclusion being contained in a 
compact set of C(0, T ;  X), a subsequence (again denoted) p , ( . )  converges 
uniformly to  a solution po(.)  to  the  adjoint equation. 

Hence there exists cr I 9 such that ,  for all T E [ t  - a, t ] ,  and for all e ,  

Therefore 

By integrating ( 2 2 )  on the interval [ t  - h, t ]  with a = t - h.  h 5 a. we 
deduce tha t  

This subset being compact, a subsequence vn converges to  a n  element 
v E 4 ( t ) * q t .  Since 

qt + hv, = pt-h(t - h )  E R ( t  - h ) &  

for a l l  h > 0 ,  we deduce t h a t  o belongs t o  D R +  ( t ,  qt ) (- 1 ) .  

9 Examples of viability tubes 

Let us consider two closed subsets C and D of S := Rn and a differentiable 
map @ from a neighborhood of [0, TI x C x D  to  ,Y. 



We consider tubes of the form 

Proposition 9.1 L e t  u e  a e e u m e  that for  all  t 5 T ,  f o r  all  x E P ( t ) ,  t here  
ez i e t e  (y, z) E C x D eat ie f y ing  @(t, y, a )  = x a n d  there  e z i s t e  ( u ,  a )  E 
Tc D ( y, t) e u c h  that 

T h e n  t h e  eet -valued m a p  P de f ined  b y  (23) i e  a v iab i l i t y  tube  of F o n  [O? TI. 

Proof We observe tha t  Graph(P)  is the image of [O,Tj x C x D 
under the map defined by 

By Proposition 7.6.2, p. 430 of Aubin-Ekland [1984], 

W ( ~ , Y , ~ ) T [ O , T X C X  ~ ( t ,  Y,;) c T ~ ~ ~ ~ h ( ~ ) ( * ( t , ~ . z ) )  

so tha t  the assumptions (24) imply tha t  P is a viability tube. 
When C and D are closed and convex, we can characterize viability 

tubes of the form (23) through dual conditions. 

Proposition 9.2 L e t  ua a s s u m e  t h a t  t h e  va lues  of F are c o m p a c t  a n d  
c o n v e z  a n d  t h a t  t h e  subse t s  C a n d  D are c losed a n d  c o n v e z .  If for  a n y  
t E [0, TI, V x E P ( t ) ,  t here  e z i s t e  (y, r )  E C x D sa t i s f y ing  @ ( b .  y. z )  = x 
a n d  f o r  all  

p E @;(t, y,i)*-L*\17(Y) n ~ ( t .  y , ~ ) n - L - ~ D ( 3 )  

we h a v e  

j i )  V t c T, c p, a:((, y, z )  > + a ( F ( t ,  @(t .  Y,  z ) ) ,  - P I  2 O 
(25) \ i i )  for t = T, a(F (T. @(T, y, z)) .  -P) 2 0 

t h e n  t h e  aet -valued m a p  P d e f i n e d  b y  (23) i e  a v iabi l i ty  t u b e  of  F o n  [O. TI. 

Proof When C a n d  D areconvex, T c , ~ ( y , z )  = T c ( y )  x T D ( z ) ,  so 
tha t  conditions (24)i) and ii) can be written 



The separation theorem shows tha t  they are equivalent t o  conditions 
( 2 5 ) .  

Corollary 9.1 Let us assume that C  and D are closed convez subsets and 
that the values of F are convez and compact. Let 4 : R+ -- R+ be a 
diflerentiable function satisfying either one of the following equivalent con- 
ditions: For any t 3 0 ,  V x € P( t ) ,  there ezist y € C,I  € D such that 
t = y +  +(t)r and either 

$ ' ( t )U~(p)  + U ( F ( ~ , Y  q(t)z ,  -PI _> 0 if 1 < T  
(27) { f !) u(F (T, y + d(T)r ,  -p) 2 O c f t = T  

Then  the set-valued map P  defined by 

i s  a viability tube of F on  [O,T]. 

Let us consider the  ins.tance when C  = {c)  and  when 0 belongs t o  the 
interior of the closed convex subset D. 

We introduce the  function a. defined by 

(The last equation follows from the minimax theorem.) 
Let us assume tha t  there exists a continuous function a : Rt x R, r R 

satisfying a ( t ,  0 )  = 0 for all t 2 0 and 



'# ( t ,  W )  E R, x a+, a ( t ,  w) 2 ao(tq w) 

Let 4 be a solution t o  the differential equation 

satisfying 

Since aD(p) > 0 for all p # 0, we deduce t h a t  for all s E D and all 
P E No(z) ,  

Hence, condition (27)i) is satisfied. We also check tha t  

Then  the tube defined by P ( t )  := c + +( t )D  is a viability tube of F. 

For instance, if D := B is the unit  ball, then a B ( p )  = ((pl( and lVB(z )  = 
A 3  for all z E S := (~111x11 = 1). Hence, in this case we have 

a o ( t , w )  := sup inf < v , z >  
l l z i != l  V E F ( ~ , C T W Z )  

In other words, the function a0 defined by (29) conceals all the infor- 
mation needed t o  check whether a given subset D can generate a tube P. 

Remark When a is non-positive and satisfies a ( t .0 )  = 0 for all 
t 2 0, then there exists a non-negative non-increasing solution $(.) t o  the 
differential equation (30). 

When T = m, we infer t h a t  Jr a ( ~ , ( 5 ( ~ ) ) d ~  is finite. Let us assume 
t h a t  for a l l  fu, E R,, 



lim a(t ,  w) = a,(,w,) 
t -m.w-+w.  

Then the limit 4, of + ( t )  when t + oo satisfies the equation 

Otherwise, there would exist E > 0 and T such that  a, (&)  + 6 < 0 and 
for all t > T ,  a( t ,  $ ( t ) )  5: a,(+,) + 6 by definition of a,. 

We deduce the contradiction 

when t is large enough. 
Example 
Let us consider the case when F does not depend upon t .  We set 

po := sup inf (A,w - ao(.w)) 
XER w'O 

Assume also that  A. E R achieves the supremum. We can take +(w) := 
Aow - Po. 

If po > 0, the function 

is such that  P ( t )  := { c  +qhT(t)D) is a tube of F such that  P ( T )  = {c). 
If po SO and A. < 0, then the functions 

are such that  P ( t )  := c  + c ~ ( t ) D  defines a tube of F on [0, m[ such that  
P ( t )  decreases to the set P, := c + E D .  CI 
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