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FOREWORD 

Generally speaking, the quasidifferentials for a quasidifferentiable function in the 
sense of Demyanov and Rubinov are not unique. Therefore, it is difficult to  study the 
continuity of quasidifferentials. Does there exists a kind of kernel for the quasidifferentials 
of a quasidifferentiable function a t  a point? If so, what kind of structure does it possess? 
The main purpose in this paper is to explore ways and means of finding the kernel 
quasidifferentials in the sense of Demyanov and Rubinov for a certain class of 
quasidifferentiable functions. The results given here indicate that  there exists a kind of 
kernel - the so-called star-kernel for quasidifferentials, which is defined through a star- 
equivalent bounded subfamily of a quasidifferentiable function a t  a given point. A direc- 
tional subderivative and superderivative of a quasidifferentiable function are proposed 
here that  are unique. The continuity of the kernel is also studied briefly. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



ABSTRACT 

This paper at tempts t o  explore ways and means of finding the kernels of 
quasidifferentials. The  results here show tha t  there exists a kind of kernel called @ - ker- 
nel for the quasidifferentials, with a @ - equivalent bounded subfamily, of a 
quasidifferentiable function a t  a point. The  directional subderivative and superderivative 
of a quasidifferentiable function are proposed. The  continuity of the kernel also is men- 
tioned in this paper. 

Key words: Quasidifferentiable function, quasidifferential calculas, convex analysis, gen- 
eralized gradient, upper and lower semicontinuous. 
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THE @ - KERNEL FOR A 
QUASIDIFFERENTIABLE FUNCTION 

Z.Q. Xia 

1. INTRODUCTION 

It is well known that  for any quasidifferentiable function in the sense of (21 its direc- 

tional derivative can be expressed as the form of sum of a pair of sublinear operator and 

superlinear operator, or the one of difference of two sublinear operators, [ 2 ] ,  [3], [ 5 ] .  This 

sort of structure of derivatives of quasidifferentiable functions brings on that  a 

quasidifferential of a quasidifferentiable function, called bidifferential also in [4],  is not 

unique, but the quasidifferential equivalent class of a quasidifferentiable function is 

unique. Therefore, it is difficult to study the continuity of a quasidifferential mapping and 

other problems concerned. Recently a new result has been obtained in [ 5 ] .  

We observe a convex function f defined in Rn. Obviously, the directional derivative 

of f a t  z in a direction d  E Rn can be expressed as 

f ' ( z : d )  = max <v, d >  
v E a f ( z )  

If the convex function is regarded as a quasidifferentiable function, then the expression 

( 1 . 1 )  may be converted into 

f '(z:  d )  = max <v, d >  + mjn < w ,  d >  . 
v E B f ( z )  w E a f ( z )  

From ( 1 . 1 )  and ( 1 . 2 )  we have 

The expression ( 1 . 2 )  is more complicated than ( 1 . 1 ) .  This shows that  it is possible for a 

simple problem to  become a quite complicated one when it is treated by quasidifferentials, 

even if in the case where a continuously differentiable function fcl is treated as a 

quasidifferentiable one, i.e., 



But it seems that  (1.3) and (1.4) may be used to explore a kind of intrinsic character of 

the quasidifferentials of a q.d. function a t  a point z, although they are more complicated 

than (1.1). It  is easy to be seen that  if the following forms are investigated 

corresponding to (1.3), and 

corresponding to (1 .4) ,  then it would be found that  

where the intersections are taken with respect to the quasidifferentials of f a t  a point z.  

Similarly, 

It is reasonable from (1.7) and (1.8) that  [af (z) ,  0] is regarded as a kind of kernel of the 

quasidifferentials of a q.d. function f a t  z in the case where f is convex, and [V f (z) ,  0] is 

regarded as a kind of kernel of the quasidifferentials for a continuously differentiable func- 

tion f a t  z. 

We are very interested in the question, that  is, if there is a kind of kernel for the 

quasidifferentials of a generally q.d. function f a t  z. If so, what kind of structure does it 

possess? The main purpose in this paper is to find a kind of kernel for a certain class of 

quasidifferentiable functions whose quasidifferentials have @ - equivalent bounded sub- 

families. Some of their properties are also represented in this paper. The space we will use 

in this paper is the n-dimensional Euclidean space Rn. 



2. DIRECTIONAL SUBDERIVATIVE AND SUPERDERIVATIVE 

Let f be a quasidifferentiable function defined on an open set S c R n  and z E S. 

We denote by Df(z) the class of all equivalent quasidifferentials of f a t  z ,  by _Df(z) the 

family of all subdifferentials of f a t  z ,  by Df(z) the family of all superdifferentials of f a t  

- - max < v ,  d> + min <w,  d > , V d  E R n )  , 
v ~ a f ( z )  w ~ a f ( z )  

Df(z) : = {a f (z)  I 3 a convex compact set gf(z)  : [i?f(z), gf(z)]  E Df(z)) , - 

Df(z) : = {gf(z) I 3 a convex compact set 3f(z)  : [2f(z) ,  gf (z) ]  E Df(z)) , 

where p(d)  is a sublinear operator and q(d) is a superlinear operator. According to the 

definition of quasidifferentiable functions, if f is a quasidifferentiable a t  z ,  then its direc- 

tional derivative a t  this point in a direction d E R n  can be represented as 

f ( z ;  d) = max <v,  d> + min <w, d >  
v E a f ( z )  w E a f ( z )  

or equivalently, 

- - max < v , d > -  mas  < w , d >  , 
v ~ B f ( z )  W E  - a f ( ~ )  

where both of p l (d)  and p2(d) are sublinear operators. Of the two expressions the latter, 

the expression (2.1), is convenient sometimes to be used. For instance, necessary condi- 

tions given in [6] can be obtained easily in terms of the form (2.1) and [7,  Sec. 131, similar 

to ones in 13, 8161. 

Let [2f(z) ,  gf (z) ]  E Df(z). Since 

It follows from properties of quasidifferentiable functions that  

e.g. [2]. Thus the expression (2.1) can be replaced by 

f ( z ;  d) = max <v,  d> - max <w,  d> 
V E B ~ ( Z )  + 3 f ( z )  w E 3 f ( z )  - 8f ( z )  



It is clear that  0 E a f ( z )  - a f ( z ) .  Hence, for an g f ( z )  E Bf(z)  the second term on the 

right hand side of (2.2), 

max <w, d> , 
w E 8 j ( z )  - 8 j ( z )  

is always nonnegative. One has 

Taking the infirmum to  the inequality above over D l ( % ) ,  we obtain 

f ( z ;  d )  5 inf max <v, d> . 
~ f ( z )  v E a f ( z )  + 8f (z )  

Define 

f  ( z ;  d )  : = inf - rnax <v,  d> 
~ f ( z )  v ~ a f ( z ) + s f ( z )  

The function - f  ( z ;  d )  of d E Rn is called the directional subderivative of f a t  z .  On the 

other hand, since 

max <w7 d> = max-  < v , d > - f ( z ; d )  
w E 3 j ( z )  - 8f(z)  v ~ _ a f ( z )  + a f ( 4  

2 - f ( z ;  d )  - f ( z ;  d )  , 

the set 

max - < w, d > 1 J f ( z )  E Df(z )  
w E - a f ( z )  I 

has a finite infirmum for every d E Rn. By r ( z ;  d )  we denote it i.e., 

T ( z ;  d )  : = inf max <w, d> . 
Df(z) w E 8f (z )  - 8f (z )  

It is called the directional superderivative of f a t  z .  Now the directional derivative of f a t  

z  in a direction d E Rn can be rewritten as 

f ( z ;  d )  = inf max <v,  d> - inf max < w ,  d> = 
~ f ( z )  v ~ a f ( z )  + aS(z) Df(z) w E 8 f ( z )  - a f ( z )  

= f ( z ;  d )  - T ( z ;  d )  . - 

For the convenience of simplicity, without confusion subderivative and superderivative 

will be often used instead of directional subderivative and directional superderivative, 



respectively, later on. 

It has been clarified tha t  for every d E Rn,  - f'(z; d )  and T ( z ;  d )  are finite and the su- 

perderivative is nonnegative. Furthermore, T ( z ;  .) is bounded on bd  B1 (0 ) ,  where B1(0)  

is the unit ball in Rn with origin as  the center. In fact, since 

0 < T ( z ;  b )  5 max <w, b> < 
W E  8 f ( z )  - 8f (z )  

_< max { I 1  w 1 1  I w E g f ( z )  - g f ( z ) ) ,  Vb E bd  B1(0)  

one has that  T ( z ;  a )  is bounded on bd B1(0) .  It  may be proved from 15, Prop. 1.1) tha t  

f ' (z;  a )  is bounded on bd  B1(0)  and Lipschitzian. Therefore, the subderivative - f ' (z;  - )  is 

bounded on bd  B1(0)  too. 

DEFINITION 2.1 [3, $91 Let A be an arbitrary set. A jamily { P A  I X E A ) ,  where p~ is a 

u.c.a. oj a junction f at z ,  is called an ezhaustive jamily of u.c.a.s oj j at z if 

inf p A ( d )  = f z ' ( d ) ,  V d E Rn , 
A E A  

where jz'(d) is the same as f ' (z;  d )  

DEFINITION 2.2 Let j be a quasidiflerentiable junction at z .  A family f such that 

f ' (z;  .) = inf * p  (.) - 
P E E  

is rejerred to as a subezhaustive jamily oj u.c.a.s oj j at z ,  and a jamily such that 

p c P:= max <w, -> 1 g j ( z )  E Df(z)  , 
W E  8 f ( z )  - 8 f ( z )  I 

T ( z ;  .) = inf * p ( - )  

is referred to as a superezhaustive family oj u.c.a.s oj j at z .  

PROPOSITION 2.3 For any quasidiflerentiable junction j at z there ezist a subezhaus- 

tive family of u.c.a.s _P oj f at z and a superezhaustive jamily of u.c.a.s P o f f  at z ,  such 

that 

f ( z ;  -) = inf p l ( . )  - inf - p a ( - )  
PI Ef  P ~ E P  



The Theorem 9.1 in [3] pointed out that  for a directionally differentiable function f 

at  a point z if the derivative f ' ( z ;  a) is continuous then the function f has exhaustive fam- 

ilies of u.c.a.s a t  z.  Contrary, if there exists a bounded exhaustive family of u.c.a.s for a 

directionally differentiable function f a t  z then f ' ( z ;  .) is continuous. It can be proved. 

But we will give another proposition below for our purpose. 

PROPOSITION 2.4 Suppose a function f is quasidiflerentiable at z .  If there ezists a 

bounded subezhaustive family of u.c.a.s of f at z included in f; then the sub derivative 

function - f ' (z;  .) is Lipschitzian, and if there ezists a bounded superezhaustive family of 

u.c.a.s o f f  at z included in F ,  then the superderivative function T ( z ;  a )  is Lipschitzian. 

PROOF Given a d E Rn. Let P c _P be a bounded subexhaustive family mentioned in 

this proposition. We will prove that  - f ' ( z ;  d )  is Lipschitzian in directions. We choose se- 

quences { $ i } y  c 2 and {ei > 01100 such that  

lim d i ( d )  = i n f e p ( d )  = 
;-too P €_p 

= inf p ( d )  = 
PEL' 

and for any i 

Consider the difference f ' ( z ;  d + q) - f ' ( z ;  d ) ,  where q E Rn. Since - - 

one has from (2.3) that  



On the other hand, we make an investigation of the difference f ' ( z ;  d )  - J ( z ;  d + q )  - 

since for any sublinear operator p 

p ( d )  5 P ( d  + q )  + P ( -  q )  7 

the following inequality holds 

Combining (2 .4 )  and ( 2 . 5 ) ,  we get 

Let M be a bound of 2. Thus 

The inequality above holds for any 2 ,  so for any q  E R n  one has 

Hence, j ' ( d ;  .) is Lipschitzian. As for T ( z ;  -) the proof of the second assertion is the same 
- 

as the one of f ' (x;  -). - 

COROLLARY 2.5 If there exists a bounded subexhaustive family of u.c.a.s of f at z in -  

cluded i n  _P (or if there ezists  a bounded superezhaustive family of u.c.a.s of f at z included 

in P) ,  t hen  J ' ( x ;  -) (or - f ' ( x ;  .)) 2s Lipschitzian. 



Suppose j is defined on Rn and is quasidifferentiable, then a necessary condition for 

a solution z* E Rn of the extremum problem 

min j (z)  
z E R n  

is well known that  for any d  E Rn it must be satisfied 

Assume, furthermore, that  one of the subderivative and the superderivative of j a t  z is 

continuous. It follows from 15, Prop. 1.1.1 that  the other is also continuous. They are non- 

negative because of 

Thus the two derivatives - j '(z'; .) and F(z';  .) are nonnegative continuous and positively 

homogeneous. It follows from a theorem, due to  [3] or 181, that  there exist two star - 

shaped sets 4 and fi such that  - f (z*, -) and 7(zi; .) are the gauge functions of 4 and fi, 
respectively, i.e., 

where 2 = {u I - j ' (z*;  u) < 1) and fi = {u 1 F(z * ;  u) 5 1) and 

( d l ,  = inj{X I X > 0, d  E Xe) , 
- 

i.e., the Minkowskian gauge function. The necessary condition (2.7) can be converted into 

the following condition 

According to  the properties of gauges one has 

Finally, it is easy to  know that  if the one of - j ' (z t ;  - )  and F(z* ;  -) is continuous, then for 

unconstrained optimization the two necessary conditions 



and 

ncf i  - 

are equivalent. Furthermore, if one of sets 4 and fi is convex, then one has 

n  c fi c 2 f ( ~ * )  + G(x*) - 

v [ 2 f ( x i ) ,  3 f ( r* ) ]  D f ( x t )  ) 

and 

n  c fi c a j ( ~ * )  - a(.*) - 

v ~ ] ( z * )  E Df(x*)  . 

In other words, 

in/[ 1 II ( ( x i )  - ( x ) )  n 
~ I ( z * )  E Dl(z+) 1 [ ~ ~ ~ ( Z * ) , ~ ~ ~ * : ~ ~ E D f ( z * )  2 + Q ( ~ * ) ) I  1 i 0 

3. A @ -KERNEL FOR Df( z )  WITH A @ -EQUIVALENT BOUNDED 

SUBFAMILY 

Let D/(z )  be a subfamily of Df( z ) .  B / ( z )  is said t o  be a @ -equivalent bounded sub- 

family if the following conditions are satisfied: 

( C I )  there exists a positive number M such tha t  

where B M ( 0 )  denotes the Euclidean ball in R n  with the center a t  origin; 

( C 2 )  the subfamily { 3 f ( z )  + Q ( x )  I [ 2 / ( x ) ,  g f ( z ) ]  E B f ( z ) >  and the subfamily { g f ( x )  - 
- 

3 f ( x )  I 3 f ( x )  E 8 f ( x ) ,  where B f ( z )  = { 3 f ( z )  1 3 8 f ( r )  : [ 8 f ( x ) ,  a f ( z ) ]  E b f ( z ) ) .  form 

a subexhaustive family and a superexhaustive family of u.c.a.s of f a t  x ,  respectively, 

1.e.) 

f ( x ;  - )  = inf - max < u ,  .> = 
Df(z) u ~ a f ( ~ ) + s f ( z )  

= inf max - < u ,  .> 
&(z) u E B / ( ~ )  + af (z)  



and 

r ( x ;  .) = inf rnax - < u ,  .> = 
D/(z) u E 3f(z) - a/(z) 

= inf m ax <u;> . 
B/(z) u E 3/(z) - 3/(z) 

For the convenience of discussion without loss of generality assume tha t  the subfami- 

ly 

is a @ -equivalent bounded subfamily of Df(x), i.e., let 

Some notations and definitions will be introduced below in order t o  find a @ -kernel 

for Df(x). To begin with, define two sets of sequences for any (u ,  x) E R n  x R n  as fol- 

lows, 

and 

Define 

u, E Arg ma? < u ,  di> , 
u E Ll,/(z) + ai/(z) 

< u ,  d>  = lim <u i ,  di> = f ( x ;  d) 
- i - t w  

and 

3 {la,f(x) ,  J i f (~) l} l"  c D M ~ ( X )  3 {di> c nn 
d , - d € R n , a s i - m ,  

{ ";I F' u , - + u € R n , a s i - m ,  

U , E  Ar ma? < u , d ; > ,  
uE a i R )  - aid.) 

< u ,  d>  = lim <ui ,  d,> = T ( x ;  d) 
;--+a 



Let u0(z)  and UO(z) be the smallest equivalent subsets of _U;(Z) and 0 i ( z ) ,  respectively, 

where "equivalent" means that ,  for instance, 

and "smallest" means that ,  for instance, for any equivalent subset _~ ; (z )  of ~ ; ) ( z )  one has 

~ ( z )  and U(z) are defined by convex hulls, of _ U ~ ( Z )  and Uo(z) respectively. It is obvious - 

that  for any d E R n  there ex!st vectors E ~ ( z ) ,  ii E 0 ( z )  such that  

and 

because of the boundedness of D M f ( z ) .  Hence, ~ ( z )  and U(z) are nonempty, bounded and 

convex. The following new functions are necessary to  be introduced. The new functions 

p(- @- -) and p(. @- .) (simply, @ -operation) are defined as follows. - 

represented by 

4. O d) = - inf lim inf max < u ,  d> 
{ i i , } ~  E C x , ~ ( u , ,  Z)  6, + u U E  CXilaijj(z) + 5 , , j ( ~ ) ]  

u =  CAiui.mi~ u o ( z )  ( u j €  E ~ , ~ ~ , , j l z I +  ~ ~ , , j ( ~ l l l  
EA,= 1.Ai>O 

V (u ,  d) E _u(z) x  Rn (3.3) 

and 

represented by 

p ( u  @ d) = inf - lim inf max < u ,  d >  
{I?,} E C X i L ~ ( u i , z )  6 ,  u  U E  C ~ , l F ~ j ( z )  - ai,j(z)] 
u = E A ~ U , .  ',E u;~(z) ( t i j ~ c x i l a .  :I . j ( t ) - B i , j ( ~ ) I ]  

EA,=l.A,>O 

V(u,  d) E U(z) x R n  . (3.4) 

Define - p ( u  @ .) = - co if u 6 ~ ( z ) ,  and ~ ( u  @ .) = - co if u 6 U(z). Obviously, 

p ( u  @ -) and p ( u  @ .) are positively homogeneous, i.e., p ( u  @ X -) = X p ( u  @ .) and 
- - - 



~ ( u  @ X -) = X p ( u  @ .), where X > 0 .  For the convenience of writing the form 

< u  @ d> 

will be used insLead of the forms - cp(u @ d )  and @(u @ d )  from time to  time. 

LEMMA 3.1 <- @) d >  is convez i n  ~ ( z )  and U ( z ) ,  respectively. 

PROOF Let a, P 2 0 ,  a + P = 1. Suppose u1 and u2 are  in ~ ( z ) .  Let u = a u l  + pu2.  

Since 

one has 

a T l  + P T 2 = '  

< - inf 1. . .] = 
{ G j ) E a T 1 + P T 2  

- inf lim inf 
{ I i j ) € a T I + P T 2  q + u  

a C X,!_v(ui', 2 )  + u1 = C A f u; ,  u; E g o ( z )  

u2 = C q u ; ,  u; E ~ ~ ( 2 )  

pc X?_v(U i " ,  2 )  cxf = l , X f  2 0  

= 1 , x ;  > 0 

max < u ,  d> = 
€ a x  i ~ ! ( a h f ( z )  + 8 , f ( z ) )  +PC I x ? ( a $ f ( ~ )  + + , f ( ~ ) )  

7 (3.5) 

In other words, 

< ( a u l  + pu2)  @ d> 5 a < u l  @ d> + p<u2 @ d> , 

< u @ d> is convex in ~ ( z )  and U ( z ) .  



LEMMA 3.2 For a n y  u E ~ ( z )  the relation 

i s  always true .  

PROOF Since in (3 .3)  the inequality 

max < u , d > > < i ; i , d > , V j ~ { 1 , 2  ,... ) V d € R n  
u E C Xi[a,,/(z) + &,/(.)I 

is always true and lim il, = u ,  one has 
j-+m 

This is what  we want. 

LEMMA 3.3 For a n y  d E Rn we have 

f ( x ;  d )  = min < u  @ d> 
- 

u EU(z) 

and 

PROOF Since for any 

{Gj ) l "  E C A,U(u,,  2 )  

such tha t  u = C A;u,, u ,  E g 0 ( z ) ,  C A ,  = 1 ,  A, 2 0, we have 

- a i j f ( 4  + 3,,f(4 E L?f(x) , 

i t  follows from the properties of quasidifferentiable functions tha t  

A,[B,f(.) + a,r(z)l E L?f(x) . 

Therefore for any d E Rn 

in f [lim inf max < u ,  d>] 2 
{ ~ , ) f =  E c . . x,J(u,, z) q--' u U E C X ~ [ ~ ~ , / ( Z )  +ai, ~ ( z ) ]  

2 inf [lim inf - f ( x ;  d ) ]  = 
{Cj)y E C XiCJ(ui, Z) (?J.+ u 



d,, (it can be replaced by b,,, where bij ~ b d  B 1 ( 0 ) )  converges to d,, as i -+ oo. Taking a 

sequence {r i  > 0 )  1 0 ,  for each u,, one can choose an element u$ such that 

<uk .  '17 dk.> t~ > - - / ( z ;  dk.) > <uk.  dk.> - r,, k > i , 
t l  - 'I' ,I 

k k u,, E Arg ma? < u ,  d,,> 
u E a$f(z) + a:.f(z) 

uk .  -+ u . ,  as i -+ oo 
,I I 

Thus 

k k  lim <ui,, d,,> = lim / ( z ;  d$) . 
i - + m  i+m- 

It follows from Prop. 2.4 that 

Finally u can be represented as 

where u, E u 0 ( z ) .  This shows that u 0 ( z )  and U o ( z )  are closed. Because our discussion is 

confined within Rn, u 0 ( z )  and U O ( z )  are compact. 

From the lemmas given above we obtain the following theorem. 

THEOREM 3.5 For any quasidifferentiable function f define don some open set S with 

a @ -equivalent bounded subfamily there ezists a pair of nonempty compact convez sets, 

~ ( z ) ,  U ( z ) ,  at each point z E S such that - 

f ' (z;  d )  = min <u @ d> - min <u @ d> , 
u E u ( z )  u E U(2) 

where <- @ d> are convez functions i n  u ( z )  and U ( z ) ,  respectively. 



The expression of the directional derivative (3.9) of f and z in a direction d E Rn 

can be represented as a form of the Euclidean inner product. In fact, let 

where u E ~ ( z ) ,  and let 

* i ( u ) : =  co 4 - 

where u E U ( z ) .  It may be checked that for each u E ~ ( z )  one has 

3 { w k ) Y 3  b Ebd B 1 ( 0 )  : 

w = lim wk , 
k+cO 

w i Rn 1 < w ,  b> = - cp(u @ b )  , 
w, E Arg max - < u ,  b> in(3.3) 

UE C AiI!!ij/(z) + aij/(z)] 
I 

M ( u ) : =  co 

c p ( u ~ d ) = < w , d > =  max < w , d > , V d € R n  
- 

(3.10) 
wElY(u) 

Y 

and for each u E U ( z )  one has 

3{wk) ,003b ~ b d B ~ ( 0 ) :  I w = klimm wk , 
w E Rn  

< w ,  b> = cp(u @ b)  , 
W ,  E A_rg max < u ,  b> in(3.4) 

UE C A:[a:j/(z) -gij/(z)l 
i 

Thus (3.9)  can be converted into 

7 

f ' ( z ; d ) =  min max < w , d > -  min mgx < w , d >  . (3.12) 
UEU(Z) w ~ M ( u )  UEU(Z) w ~ M ( u )  

It tuns out that  f ' ( z ;  d )  may be decomposed as a difference of two minimaxes. 

DEFINITION 3.6 ~ ( z )  and U ( z )  are called the @ -subkernel and @ -superkernel of 

quasidiflerentials of f at z ,  denoted, respectively, by d @ f ( z j  and d @ f ( z ) .  The pair 

[ d B  f ( z ) ,  d @ f ( z ) ]  is referred to as the @ -kernel of quasidiflerentials o f f  at z ,  denoted by 

( D  O f ) ( z )  or D O f ( z ) .  

We  now have that 

f ' ( z ; d ) =  min < u @ d > =  - 
uEa@f(z) 

- - min mgx <w,  d> . 
uEa@/(z)  W E  M(u) 



and 

f ' ( z ; d ) =  rnin < u @ d >  
u  E  a@ f(2) 

- - rnin rngx <to, d> 
U E ~ @ / ( Z )  W E  M ( U )  

EXAMPLES 3.7 Some ezamples could be referred to in /9/.  

PROPOSITION 3.8 Let f l  and f 2  be quasidiflerentiable at z with @ -equivalent bound- 

ed subfamilies, X be  a scalar. Then 

z . e . ,  

D o (11 + f z ) ( z )  = D O fib) + D o f Z ( 4  > 

and 

a @ ( X f l ) ( z )  = x a @ f l ( z )  , 

COROLLARY 3.9 Let f = C X i  f i .  Then one has 

D O (Exi f , ) ( . )  = E I xi  I D O ((sign x i ) f i ) ( z )  - 

REMARK 1 For each _u E a @ f ( z )  and each ii E a @ f ( z ) ,  the functions - p(g @ .) and 

~ ( i i  @ -) are Lipschitzian. 

2 For each d E R n  the functions - p ( .  @ d )  and p(. @ d )  are proper upper sernicon- 

tinuous. 



3  The conditions 

< u ,  d> = .lim <u,, di> = f ( z ;  d)  , 
1 4 0 0  

- 

<u,  d> = lim <u,, di> = f ( z ;  d)  
i + o o  

in (3 .1 )  and (3 .2 ) ,  respectively, can be omitted and the sequence { d , )  convergent to d  can 

be replaced only by d. But in this case it is necessary that 

u ( z )  = co  u 0 ( z ) ,  U ( z )  = co Uo(z)  - 

are replaced by 

respectively. 

4. OTHER RESULTS 

The function of d  E R n  

f ( z ;  .) - T ( z ;  .) - 

is directional differentiable a t  origin and 

( f  ( 2 ;  -1 - f ( 2 ;  - ) ) ' ( O ;  d )  = 

K ( z ;  Ad) - 7 ( z ;  Ad)] - K ( z ;  0 )  - f ( z ;  0 ) ]  

Let z* be a minimum point. Since f ( z ;  -) and T ( z ;  .) are Lipschitzian and 
- 

where ( -  . .)O(0; d)  means the generalized directional derivative a t  origin in a direction 

d  E R n  in the Clarke's sense [ I ] ,  one has 



where a,/ is the Clarke's generalized gradient of f.  Thus 

a , , (~*;  - ) (o)  n a c f  ( z * ;  .)(o) # (d . 

For any ( u ,  d )  E a g f ( z )  x Hn we have 

1 
p ( u  @ - ) ) ' (O;  d )  = lirn - [ p ( u  @ Ad)  - p ( u  @ 0 ) ]  = (- A10 A  - - 

Since for any ( u ,  d )  E a @ f ( z )  x Rn 

p ( .  O d )  I ( $ 4 ~  O - ) ) O ( o ;  d )  = - - 

1 
= lirn sup - [ p ( u  @ ( d '  + A d ) )  - p ( u  @ d ' ) ]  = 

? l o  A  - - 

n - 0  

1 
=l irnsup- [  rnax < w , d ' + A d > -  max < w , d ' > ] <  

4 1 0  A  W E & ( U )  n - 0  
w € M ( u )  

1 I l imsup- max < w ,  Ad> 5 
? l o  A  w € & ( u )  

n - 0  

5 rnax < w , d > =  
w € M ( u )  

= - $ 4 ~  O d )  , 

one has 

We now have the following theorem. 

THEOREM 4.1 Let z* be a  local m i n i m u m  point for a n  unconstrained problem. T h e n  

(4.1) holds, and furthermore for a n y  _u and a n y  ii such that 

p ( u  @ d )  = rnin p ( u  @ d )  = 
- 

u €  a @ f ( z )  - 

- - min rnax < w ,  d> 
u c a o f ( z )  w ~ a , p ( u o . ) ( o )  

and 



cp(r @ d )  = min ~ ( u  @ d )  = 
u E a@f(z) 

- - min max <w,  d> , 
U E  a@f(~) w €3, y(u@ .)(o) 

the inclusion relation 

holds, i.e., 

M(u) n . 6 ( ~ )  # @  

holds. 

The following lemma is easy to be deduced in terms of Lem. 3.3, (3.10) ,  (3.11) and 

the definitions of -operations. 

LEMMA 4.2 Suppose u E Rn. This lemma consists of: 

1 u E d @ f ( z )  if and only i f  

and u E d@ f ( z )  i f  and only i f  

fi ( u )  # @, i.e., d C p ( u  @ - ) ( 0 )  # @ ; 

2 u E do f ( z )  i f  and only i f  

u E & ( u ) ,  i.e., u E dccp(u @ . ) (0)  , 

and u E d@ f ( z )  i f  and only i f  

u E .6 ( u ) ,  i.e., u E dccp(u @ . ) ( 0 )  ; 

3 w E & ( u )  (or d C p ( u  @ .)(O)) i f  and only if for any d E Rn the inequality 

holds, and w E .6 ( u )  (or d c @ ( u  @ . ) ( ( I ) )  i f  and only i f  the inequality 

cp(u@ d )  2 < w ,  d > , V d r  Rn 



holds; 

4 u E d B  f ( 2 )  i f  and only i f  

f ( z ;  d )  5 rnax 
- 

w E M ( u )  

- - rnax < w ,  d>,  Q d  E Rn 
w E a,p(u @ . ) (o)  

and u E a@ f ( z )  i f  and only i f  

- - max < w ,  d>,  Q d  E Rn 
W E ~ , P ( U @ . ) ( ~ )  

By - p ( z ,  u @ d )  we replace - p ( u  @ d )  when z varies. p ( u  @ d )  is used in the case 

where our discussions concerned is restricted a t  a point. As for & ( z ,  u )  the use is the 

same as that  of - p ( z ,  u @ d ) .  

PROPOSITION 4.3 Suppose - p ( z ,  u @ d )  is  upper semicontinuous i n  

( 2 ,  u )  E S x do  f ( z )  for each d E Rn. If D M f ( z )  is  bounded uniformly i n  a neighborhood 

of 2, N,(6), then d O f ( . )  i s  upper semicontinuous i n  N,(6). 

PROPOSITION 4.4 Suppose - f ( z :  d )  i s  lower semicontinuous i n  z E S for each d E Rn. 

I f  D M f ( z )  is  bounded uniformly i n  a neighborhood of z ,  N,(S), and & ( z ,  u )  is  upper sem- 

icontinuous i n  ( 2 ,  u )  E S x do  f ( z )  for each d E Rn, then do f ( - )  i s  upper semicontinuos 

i n  N ,  (6 )  . 

For d @ f ( . )  we have similar assertions. Given an interval [ z ,  y] c Rn, where z # y ,  

a Mean Value Theorem can be obtained: there exists ~ E ( O ,  1) such that 

where _u E d B / ( %  + c ( y  - 2 ) )  and ii E d @ f ( 2  + ( ( Y  - x ) ) ,  or 

Let 2 ( u ,  d )  and $ ( u ,  d )  be the functions 

p ( u  O 4 1  u E a @ f ( z )  
rk(u,  d )  = - + oo , otherwise 



holds; 

4 u E d O f ( z )  i f  and only i f  

f ( z ;  d )  < max < w , d >  = 
- w € M ( u )  

- - max <w,  d > , V d  E Rn 
w E a,p(u O . ) ( O )  

and u E d @ f ( z )  i f  and only i f  

- - max <w,  d > ,  V d  E I t n  
W € ~ , F ( U O . ) ( O )  

By c p ( z ,  u @ d )  we replace - p ( u  @ d )  when z varies. - p ( u  @ d )  is used in the case 

where our discussions concerned is restricted a t  a point. As for & ( z ,  u )  the use is the 

same as that of - p ( z ,  u @ d ) .  

PItOPOSITION 4.3 Suppose - p ( z ,  u @ d )  is  upper semicontinuous in  

( z ,  u )  E S x d o f ( z )  for each d E Rn. If DMf( z )  is bounded uniformly i n  a neighborhood 

of Z ,  NZ(6) ,  then d O f ( - )  is upper semicontinuous in  Nz(6) .  

PROI'OSITION 4.4 Suppose f ' ( z :  d )  is  lower semicontinuous in  z E S for each d E Rn. 

If DMf( z )  is  bounded uniformly i n  a neighborhood of z ,  ~ , ( 6 ) ,  and & ( z ,  u )  is  upper sem- 

icontinuous i n  ( z ,  u )  E S x d g f ( z )  for each d E I t n ,  then d g f ( . )  is  upper semicontinuos 

in  N ,  (6 ) .  

For d @ f ( - )  we have similar assertions. Given an interval [ z ,  y ]  c Rn, where z # y ,  

a Mean Value Theorem can be obtained: there exists ( ~ ( 0 ,  1 )  such that 

where _u E d O f ( z  t ( ( y  - 2 ) )  and ii E d @ f ( z  + ( ( y  - x ) ) ,  or 

Let g ( u ,  d )  and @ ( u ,  d )  be the functions 

cp(u O 4 ,  u E d @ f ( ~ )  
* ( u ,  d )  = - + oo , otherwise 1 - 



P ( u  @ d l ,  E a@f(.) 
rk(u, d )  = + oo , otherwise , 

respectively. 

REMARK Let s = R n  and z E Rn. The  functions *(u, d)  and f (u ,  d )  are closed 

proper convex functions for each d E Rn. Their conjugate functions are 

\II*(ut, d) = sup{<u ,  u * >  - *(u,  d) )  - 
u 

and 

rk*(u, d) = sup{<u ,  u * >  - @(u,  d) )  , 
U 

respectively. I t  is enough t o  discuss *(-, d) and % * ( a * ,  d). The  minimum set of *(-, d) is 

a non-empty bounded set. According t o  the T h .  27.1 in [7], one has 

0 E int (dam%*(-, d ) )  . 

Ln addition, all of the cluster points of a sequence {ui) such tha t  

are in the minimum set of - p ( -  @ d) ,  17, Corol. 27. 2.1.1. Since for u* = d we have 

SIIP{<U, u k >  - \II(u, d ) )  = max { < u ,  u t >  - *(u, d ) )  = 
u uE Rn 

where u is such tha t  _U E aO f (z )  and 

< ? , d > = p ( g @ d ) =  - min p ( u @ d ) =  
u E 8 , / ( ~ )  - 

= min *(u, d)  = f'(z; d)  , - 
uE Rn 

one has 

u* = d E a*(., d ) (g )  , 

(7, T h .  23.51. Since \II(., d) is closed, the relation 



holds, Moreover we have 

u E a**(-*, d)(O) . - 

It is clear that 

a**(.*, d)(o) c a2*(-*, d)(d) 

because of the minimum set of 9(-, d) being ak*(-*, d)(O), and 

0 E a*(., d)(_u) . 

Therefore 

107 dl E a*(-, dl(!!) . 
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