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Foreword 

The author studies the problem of exact local reachability of infinite dimensional 

nonlinear control systems. The main result shows that the exact local reachability of a 

linearized system implies that of the original system. The main tool is an inverse map- 

ping theorem for a map from a complete metric space to a reflexive Banach space. 
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1. Introduction. 

Consider the following abstract control system 

where A is the infinitesimal generator of a strongly continuous semigroup of linear opera- 

tors. Let R(T) denote the reachable set of (1.1) at  time T (by the mild solutions of 

( I .  1)). Consider a mild solution Z and let fi be the corresponding control. 

We address here the following two questions: 

1. Does Z( T) E Int R( T)? 

2. Given a point y near Z(T) how much we have to change the control il in order 

the trajectory z corresponding to this new control satisfies z (T)  = y? 

We study the above via a linearization technique and an inverse mapping theorem 

for a map whose domain of definition is a complete metric space. 

Let us explain now what do we mean by linearization. In control theory lineariza- 

tion is usually understood as a substitution of the nonlinear system (1.1) by the linear 

system 

where the controls u belong to the space spanned by U .  To make use of such lineariza- 

tion it is usually required that ~ ( t )  E Int U or even that U is a Banach space (see for ex- 

ample [19]). 



Studying a particular trajectory Z we can not guarantee such property (unless the 

set U is open for example equal to a Banach space). Another linearization of (1.1) along 

(Z,ii) is given by the following linear control system 

Here we do not have any restrictions on the control ii and thus we can apply it to any 

trajectory-control pair ( ~ , i i ) .  

The two linearizations (1.2) and (1.3) are related in the following way: If 

a 
~ ( t )  E Int U then for every u, - f ( ~ ( t ) ,  ii(t))u E T , , n q q , q ( f ( ~ ( t ) , ~ ( t ) ) ,  where TK(z) au  
denote the tangent cone (of convex analysis) to  a convex set K at  z E K. 

The second linearization was used in 1221 to  get local reachability of a nonlinear 

finite dimensional control system via the local reachability of the linearized system. It 

seems that the result of [22] does not have yet its analogue in infinite dimensional spaces 

and we shall prove it here in Section 3. Namely we show that if zero is an interior point 

of the reachable set R L( T) of the linear system (1.3) a t  time T,  then 2( T) E Int R ( T), 

i.e. we obtain a sufficient condition to  answer positively the Question 1. We also show 

that 0 E Int RL(T)  implies the existence of L > 0 such that for every y near 5(T) ,  there 

exists a trajectory-control pair (z,u) satisfying 

where p denotes the Lebesgue measure. This second result seems to  be unknown even in 

the finite dimensional case. 

To prove the above, we need a very general inverse mapping theorem for maps 

whose domain of definition is a complete metric space. This will allow us to  avoid 

difficult constructions of "fixed point argument" type proofs. Let us explain briefly how. 

We assume that f is so that  t o  every admissible control u corresponds the unique mild 
G solution zu of (1.1). Consider the map Uad 3 u -+ zu( T). 

In 1934 Ljusternik [13] proved that if a c'-function G : U -+ X between two Banach 

spaces has a surjective derivative G'(ii) a t  a point ii E U, then for all 

h > 0, G(E) E Int G(Bh(ii)) (i.e., the open mapping principle holds true) and the set- 

valued map G-' is roughly speaking Lipschitzian at  ii. 



2. A n  Inverse F u n c t i o n  Theorem 

Consider a complete metric space (U,d), a reflexive Banach space X and a continu- 

ous map G : U -+ X is Gbteaux differentiable away from zero. For all u E U, h > 0 let 

Bh(u) denote the closed ball in U of center u and radious h.  Let ii E U be a given point. 

In this section we study a sufficient condition for: 

V G(ii) E Int G(Bh(ii)) (open mapping principle) 
h>O 

and the regularity of the  inverse map G-' : X -+ U given by 

on a neighborhood of (G(Q), K). 

We first recall the notion of Kuratowski's limsup: 

Let T be a metric space and A ,  c X T E T be a family of subsets of X. The Kura- 

towski limsup of A ,  a t  TO is the closed set defined by 

Def in i t ion  2.1. The contingent variation of G a t  u E U is the closed subset of X defined 

by 

In other words v E G(')(u) is and only if 

lim inf dist (v, 
G ( B h ( 4 )  - G(u) 

h 
) = O  

hdO+ 

or equivalently if there exist sequences hi -+ 0+,  vi -+ V such tha t  

G(u) + hiv, E G(Bh(u)) .  The word contingent is used because the definition reminds 

that  of the contingent cone introduced by Bouligand (see, for example, [2]). 

Clearly, G(')(u) is starshaped a t  zero closed set, i.e. 0 E G(')(u) and for all 

v E G1(u), A E [0,1], Av E G(')(u). Let Eo denote the closed convex hull and B the closed 

unit ball in X. 

Theorem 2.2 (Uni fo rm O p e n  M a p p i n g  Pr inc ip le ) .  Assume that  for some 

c > O , p > O  



Then for every U E  B ,  ( P )  and h E [0,5] we have 
- 
2 

2  

0 
G ( u )  + h ~ B  G(Bh(.)) 

0 
where B denotes the open unit ball in X. 

Proof. Fix u,h as above and assume that there exists y  E X satisfying 

Set 8' = [ y  - G ( u ) [ / h p .  Then 0 < 8 < 1. Applying the Ekeland variational principle 

[ 5 ] ,  (61 t o  the complete metric space Bh(u)  and the continuous function z  + I G ( z )  - yi 
we prove the existence of Z E Beh(u )  such that for all z  E B h ( u )  

Observe that Z E  In tBh(u )  and, by (2.2) ,  y  # G ( z ) .  Hence, by differentiability of the 

norm, there exists p E X* of l p [ =  1  such that for all h j  + 0+, v  - + v  we have 
I 

I G ( z )  + h jv j  - y l=  I G ( z )  - y(l + <p,hjvj> + ~ ( h , )  (2.4)  

where lim o(h , ) /h ,  = 0 .  Fix v  E G ( ' ) ( q .  Then from (2.3) ,  (2.4)  and Definition 2.1 we 
I--'oO 

obtain 

0 5 <p,h,v,> + Bph,  + o(h,) 

Dividing by h j  and taking the limit yields <p,v> 2 - 8 p  for all v  E G( ' ) (F) .  Hence 

<p,v> 2 - 8 p  for all v  E F O G ( ~ ) ( Z )  

Since d ( i , i i )  <_ d(Z,u)  + d(u , i i )  < 8 h  + 5 < 6, by (2.1) ,  pB c ZOG(') (Z) .  This i m p 1  i e s  
2 

t h a t  

- p  2 inf <p,v> > - 8 p  
VEFOG( ' ) (T )  

Since 0 < 8 < 1 and p > 0 we obtained a contradiction. Hence (2.2)  can not hold. 

Theorem 2.3. Under all assumptions of Theorem 2.2 for all 

u E B ,  ( P ) ,  z  E B ,  ( G ( u ) )  we have - - 
2 4 

1  dist (u ,G- ' (2))  <_ - I G ( u )  - zl 
P 



Remark. a) Inequality (2.5) means that  G is pseudo-Lipschitz a t  G ( ~ ) , i i )  with the 

Lipschitz constant p-L  (see [ I ] ,  [3] ) ;  b) Theorems 2.2 and 2.3 imply the main result of 

[31. 

Theorem 2.3 follows from Theorem 2.2 and the general inverse function theorem 

which we prove below. 

Theorem 2.4. Let G be a continuous map from a complete metric space (U,d)  to a 

metric space ( X , d X )  and let ii E U. Assume that  form some p > 0 ,  c > 0 ,  0  5 a < 1 and 

all u E B,(ii), h  E [0,c] 

dist (b ,G(Bh(u ) ) )  I aph 
b€~::&(uec(.)) 

Then for all h > 0 satisfying h / ( l  - a )  + 2ph 5 c/2 and all u E B ,  ( E ) ,  z  E B p h ( G ( u ) )  - 
2 

we have 

dist (u ,G- ' (2))  5 - l h  
l - a  

In particular, this implies tha t  for all u near ii and all z  near G(E) 

Remark. When X is a Banach space, assumption (2.6) can be formulated a~ 

G ( u )  + phB c G ( B h ( u ) )  + aphB 

and the conclusion (2.7) as 

dist (u ,G- ' (2 ) )  
1  

~ ( 1 - a )  
llG(u) - zll 

Proof. Fix h,u,z as above. We look for y E G-'(u) as the limit of a sequence we 

shall built. Set uo = u. By (2.6) there exists ul such that  

Assume that  we already constructed u,,i = 1, ..., n such that  

Then 



and 

"+lh By (2.6), there exists un+l such that d(un, u ,+~)  < a n h  and dX(G(un+l),z) <_ p a  . 

Observe that (2.8) implies that {u,) is a Cauchy sequence and that lim G(ui) = z. Let y 
'+00 

be the limit of {u;). Since G is continuous, G(y) = z and therefore yE G-'(Z). More- 

over, by (2.9)' d ( ~ , ~ )  < h/( l  - a ) .  . 

Remark. The method applied in the proof is due to Ljusternik [13] and Graves [lo]. 

Corollary 2.5. Let g: X + Y be a function between two Banach spaces. Assume 

that g is continuously differentiable at  some zo E X and 

0 E Int g'(zo)B (2.10) 

Then for all h > 0, g(zo) E Int g(Bh(zo)) and there exists L > 0 such that for all ( 2 , ~ )  

near (20, g(z0)) 

In particular if g(zo) = 0 then for all z E z0 + ker g'(zo) 

dist (z,g-'(0)) = o(Jz - zO() 

and this implies that the tangent manifold to g-l(0) a t  z0 coincides with z0 + ker gp(z0). 

Remark. We observe that the assumption (2.10) is verified whenever gf(zo) is sur- 

jective, i.e. 

Indeed g'(zo)X = U ng'(zo) B and, by Baire's theorem, for some n 2 1 the set nge(zo) B 
n> 1 

has a nonempty interior. Hence Int g'(zo)B # @ and, using that g'(zo)B = -g'(zo)B is a 

convex set we obtain 

O E  Intgf(zo)B c IntgJ(zo)B . 

Thus Corollary 2.5 extends Ljusternik's theorem [13]. 



3. Interior Points of Reachable Sets 

Let U be a topological space, X be a reflexive Banach space with the norm Gbteaux 

differentiable away from zero and f: X >( U + X be a continuous differentiable in the first 

variable function. We assume that  

a) f is locally Lipschitz in the first variable uniformly on U, i.e. for all z E X there 

exist L > 0 and c > 0 such that  for all u E U, f(.,u) is L-Lipschitz on B,(z): 

]f(z',u) - f(z",u)[ < LIZ' - z"!, for all z',z" E B,(z) 

a f 
b) For all u E U the derivative --(.,u) is continuous az 
c) For all z E X the set f (z ,  U) is bounded 

For all T > 0 a (Lebesgue) measurable function u : [O,T] -+ U is called an admissible 

control. Let QT denote the set of all admissible controls defined on the time interval 

[O,T]. Define a metric on Q T  by setting 

where denotes the Lebesgue measure. Then the space (QT,dT) is complete (see Ekeland 

I61 1. 
Let {S(t))llo be a strongly continuous semigroup of linear operators from X to  X 

and A be its infinitesimal generator, z0 E X. Consider the control system 

Recall tha t  a continuous function z : [O,T] + X is called a mild trajectory of (3.1) if for 

some u E QT and all 0 5 t <_ T 

We denote by z, the trajectory corresponding t o  the control u. Define the reachable set 

of (3.1) a t  time T > 0 by 

R ( T )  = { z ( T )  : z E C(0, T;X) is a mild trajectory of (3.1)) . 

Let z be a mild trajectory of (3.1) on [O,T] and fi be the corresponding control. In this 

section we provide a sufficient condition for 

z (T)  E Int R ( T )  



and for the regularity of the "inverse." Consider the linear control system 

and let R ~ ( T )  denote the corresponding reachable set of (3 .3)  a t  time T .  Let S,-(t;s)  

denote the solution operator of the equation 

where X,-(s;s)  = Id. Then 

Theorem 3.1. Assume that 0  E 1nt R L ( ~ ) .  Then z( T )  E Int R ( T )  and there exist 

6 > 0 ,  L > 0  such that for every control u  E QT satisfying dT(u, i t )  5 E and all 

b E B , ( z ( T ) )  there exists a trajectory-control pair ( z g , Q )  which verifies 

In particular for all b E B , ( z ( T ) )  there exists a control u  E QT such that 

and the trajectory z ,  corresponding to this control verifies z , ( T )  = b.  

Proof. Replacing t  by t /  T  we may assume that T  = 1 .  Set Q  = Q 1 ,  d  = d l .  For 

all u  E Q ,  let z ,  be the solution of (3 .1)  (when it exists on [0 ,1])  corresponding to the con- 

trol u.  

From the Gronwall inequality follows that for some 6 > 0  the map p ( u )  = z ,  from 

B2&ii) to C ( 0 , l ; E )  is well defined and is Lipschitzian. For all u  E B6(E) and s E (0 ,1 ] ,  let 

S, ( - ; s )  denote the solution operator of the equation 

Fix u  E B6(it) and v E U .  For all to E lo,].[ ,  h > 0  we consider the needle perturbations 

of controls 



v  t o - h < t < t o  

u ( t )  otherwise 

Let zh denote the solution of (3.1) corresponding to the control uh. It is well known 

that a t  every Lebesgue point to of the function f (zu( . ) ,  u ( . ) )  we have 

lim 
~ h ( l )  - zu(1) 

h+O+ h  = Su(l;to) ( f ( zu( to) ,v )  - f(z(to1, u ( t0 ) ) )  

(see for example Fattorini (71). Set V u ( t )  = f ( z , ( t ) , ~ )  - f (z , ( t ) ,u( t ) )  and define the 

continuous map G : B 2 6 ( ~ )  + X by 

Then, by (3.4),  for all u E B6(E),  and for almost all to E [0,1] and all v  E Vu( to)  

S u ( l ;  to)v E G(' ) (u) .  Therefore for all v  E B Vu(to) ,  S,(t; to)v E E O G ( ~ ) ( U ) .  Hence, by 

the mean value theorem, for all measurable selection v ( t )  E ~ o V , ( t )  

Let p > 0 be such that 

The Gronwall inequality implies that Su( l ; . )  -+ S J l ; . )  uniformly when u + ii and 

lim I H ( z  Vn( t ) ,  5 Vu( t ) )d t  = 0 
u 4 B o  

where H states for the Hausdorff distance. Since the right-hand side of (3.5) is convex 

and closed this yields that for some S' > 0 and all u E B6,(ii) 

Theorem 2.3 ends the proof. 

Remark. Recall that in infinite dimensions the linear system 

z ' =  A z +  Bu, U E U  (3? 

where U is a Banach space and B E L(U,X)  is not in general exactly controllable by 



Lp(0 ,T ;  U) controls p > 1) (see R. Triggiani 1201, [21], J.C. Louis and D. Wexler (141). 

Therefore, when U is a bounded subset of a Banach space we can neither expect (in gen- 

eral) the reachable sets of (3.3) to have a nonempty interior. The results from [4], (171 

give an idea of what has to be assumed about the semigroup S and the operator B to get 

the exact local reachability of (3.3) at  zero. They also indicate how narrow the class of 

such systems is. In the next section we apply Theorem 3.1 to a nonlinear problem of local 

exact reachability . 



4. A Local Reachabi l i ty  Problem 

Let X be a reflexive, E be a separable reflexive Banach space, A be the infinitesimal 

generator of a Co-semigroup S ( t )  E L ( X , X ) ,  t  2 0 ,  B  E L ( E , X ) .  Consider a topological 

space U and a continuous function j :  X  x U  -, E.  We assume that j  satisfies all the as- 

sumptions from Section 3. We study here the control system 

a f  Theorem 4.1. Assume that form E E U, j(0,E) = 0 ,  - ( 0 , ~ )  = 0  and that 
a2 

T 
inf J sug < B * S ( S )  * p ,  ~ ( o , u ) >  ds > O 

pEXf,lpl=l 0 U E  
(4.2) 

where T > 0  is a given time. Then for some L  > 0  and all zo near zero there exists a 

measurable control u ( s )  E U such that the corresponding trajectory zu satisfies 

Remark. Observe that for all p E X t  

Therefore, from [17, Proposition 2.21 we deduce that the function 

s  -, su < B * S ( S )  * p ,  j ( ~ , a ) >  is integrable. Hence the integral in (4.2) is well defined. 
U E  % 

Some corollaries are in order. 

a /  - Corollary 4.2. Assume that for some ti E U ,  j(0,E) = 0,-(0,u) = 0  and a z 

0  E Int S f ( 0 , U ) .  If 

then the conclusion of Theorem 4.1 is valid. 

Corollary 4.3. Under the assumptions of Corollary 4.2 assume that B is surjective 

and that for some to > 0 ,  S ( t o )  is surjective. Then the conclusion of Theorem 4.1 is valid. 

Corollary 4.4. In Theorem 4.1 assume that U is a bounded subset of a separable 

reflexive Banach space E and j ( z , u )  = g ( z )  + u ,  where g is c1 on a neighborhood of zero. 

If g(0) = O,ge(0) = 0 ,  0  E U and 



inf $ S U ~ < B * S ( S ) * ~ , U > ~ S > O  
p~X*,Jpl=l UE 

then the conclusion of Theorem 5.1 is valid. 

Proof of Theorem 4.1. By Theorem 3.1 we have to  show tha t  0 E ln tRL(  T),  

where R L ( T )  denotes the reachable set a t  time T of the linear system. 

The set ~ f ( 0 ,  U) being weakly sequentially compact, we know that  B ~ f ( 0 , U )  is a closed 

convex set. Hence e7i Bf(0,U) c B e7i f(0,U). Moreover B cof(0,U) c Eo Bf(0,U). 

Therefore we proved tha t  Fo Bf(0,U) = B Fof(0,U). Thus  the system (4.4) may be re- 

placed by the linear control system 

z' = Az + Bv, v E F?T f(0,U) 
z ( o ) =  0 

The admissible controls Uad( T)  are measurable selections of Fof(0,u) defined on the time 

interval [O,T]. By 1171 the reachable set R L ( T )  of (4.5) a t  tome T is weakly compact. 

Clearly R L ( T )  is convex. Thus, by the separation theorem, we shall end the proof when 

we show that  

inf sup{<p,z> : z E R L ( T ) )  > 0 
p€X*,IpI=l 

By [15], for all p E X 

and therefore (4.6) follows from the assumption (4.2). 

Proof of Corollary 4.2. Let 7 > 0 be such that  {v E E:lvllE 5 7) c Fof(0,U). 

Then su < B *s(s) *p, f(0,u) > > 1 1 ~  *s(s) *pi and therefore (4.3) implies (4.2). Theorem 
uE B 

4.1. ends the proof. 

Proof of Corollary 4.3. Since S(to) is surjective, by [14], S ( t )  is surjective for all 

t > 0 and therefore S ( t ) B  is surjective. Let 7 > 0 be as in the proof of Corollary 4.2. By 

a Banach theorem, for every t > 0 there exists p(t)  > 0 such that  



Indeed, by Corollary 4.2 and the assumption (4.9) we have to show that 

By [4, p. 581 there exists 7 > 0 such that for all p E X *  

On the other hand for some M > 0 and all p E X* of Ipl = 1 

This implies (4.10) and ends the proof of our claim. 
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