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dynamical models. This report, that  develops approximation results for set-valued func- 
tions, provides stability criteria based on generalized derivatives. It also provides esti- 
mates for the region of stability. 
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STABLE APPROXIMATIONS OF 
SET-VALUED MAPS 

Jean-Pierre Aubin and Roger J-B Wets 

INTRODUCTION 

Let us consider two Banach spaces X and Y and a set-valued map F from X to Y. 

An element yo E Y being given, we consider a solution z0 E X to the inclusion 

We shall approximate such a solution z0 by solutions z, E X, to  the inclusions 

where X, and Y, are Banach spaces, F, are set-valued maps from X, to  Y, and y, are 

given. 

We extend Lax's celebrated assertion that "consistency and stability imply conver- 

gence" (see e.g., Aubin (1972)) still holds true for solving very general inclusions, since we 

assume only that  the graphs of the set-valued maps F and F, are closed. Namely, we 

prove that  if X,, Y ,  are approximations of X and Y, if y, "approximates" yo and if the 

F, are "consistent with F", an adequate "stability property" of the set-valued maps F, 

implies the convergence of some solutions z, t o  (*), to  zo. We shall also derive an esti- 

mate of the error between z, and zO, which is of the same order as the error between yo 

and y, and the consistency error between F and F,. 

In the process, we obtain an adaptation of the Banach-Steinhauss Theorem t o  closed 

convex processes, the set-valued analogues of continuous linear operators. 



The tool used to define the "stability" of the set-valued maps F, is the "contingent 

derivative" introduced in Aubin (1981) (see Aubin-Ekeland, (1984), Chapter 7). Stability 

of the Fn7s means, roughly speaking, that  the norms of the inverses of the contingent 

derivatives of the F, are uniformly bounded. The techniques used in the proof are the 

ones used for proving inverse function theorems for set-valued maps (Aubin (1982), 

(1984), Aubin-Ekeland (1984), Aubin-Frankowska (1987), Frankowska (1986)). They are 

based on Ekeland's Theorem. 

1. STABILITY AND CONSISTENCY IMPLY CONVERGENCE 

Let X be a Banach space. We consider a family of Banach spaces X, and operators 

p, E L (X,, X )  which are right invertible. We denote by r, E L (X,  X,) a right-inverse of 

p,. The family (X,, p,, r,) is a convergent approximation of X if 

I 2 )  I I  Pnrn II L(X, X) cste 
ii) Vx E X, p,r,z converges to  x when n -t w ' 

If a Banach space Xo is contained in X with a stronger topology, we denote by 

the "error function". The Banach spaces X, are supplied with the norm 

I I  xn IIn := I I  pnZn I I x -  
We then consider convergent approximations (X,, p,, r,) and (Y,, q,, s,) of the 

Banach spaces X and Y. 

We also consider set-valued maps F from X to  Y and F, from' X, to  Y,. We denote 

by @ (xo, yo; F,) the lack of consistency of F, a t  (xo, yo), defined by: 

We say that  F, are consistent with F at  (xo, yo) if @ (x,,~,, F,) --+ 0. 



As announced in the introduction, the definition of "stability" we suggest involves 

the concept of "contingent derivative". 

Let us begin by defining the concept of contingent cone to  K a t  z E K,  introduced by 

G. Bouligand in the 30's. 

We say that  v E X belongs to  the "contingent cone" TK(z) to K at  z if and only if 

lim inf 
d(z + hv, K) 

h 
= 0 

h-.O+ 

It is a closed cone (not necessarily convex), equal to  X whenever z belongs to the interior 

of K, which coincides with the tangent space when K is a smooth manifold and with the 

tangent cone of convex analysis when K is a convex subset. (See Aubin-Ekeland (1984), 

Chapter 7, for more details) 

When F is a set-valued map from X to Y, the "contingent derivative" DF(zo, yo) a t  

a point (zo, yo) of the graph of F is the set-valued map from X to Y defined by 

u belongs to  DF(zo, yo)(u) if and only if (u,  v) belongs 

to the contingent cone to  the graph of F at  (zo, Yo) . 

In other words 

Set-valued maps whose graph are cones are positively homogeneous: they are actual- 

ly called "processes" (see Rockafellar (1967), (1970)). Hence contingent derivatives are 

"closed processes". 

One can also prove that  v belongs to  DF(zo, yo)(u) if and only if 

I F(zo + hu') - yo 
lim inf d v, 

h h 4 O  

We are now ready to  define "stable families" of set-valued maps F,. 



DEFINITION 1.1 Let ( z o ,  yo) belong to the graph of F and suppose that the approzima- 

tions (X,, p,, r,) and (Y, ,  q,, s,) of X and Y are given. W e  say that a family of set- 

valued maps F,: X ,  + Y ,  is  stable around ( z o ,  yo) i f  there ezist constants c > 0 ,  q > 0 

and a E 10, I[ such that, for all (z,, y,) E Graph F,  satisfying 

for all v, E Y,, there ezist u ,  E X ,  and w, E Y ,  satisfying 

STABILITY THEOREM 1.1 Let X and Y be Banach spaces and 

(X, ,  p,, r,), ( Y,, q,, s,) two families of convergent approzimations. 

Let us consider set-valued maps F from X to Y and F,  from X ,  to Y ,  with closed 

graphs. 

Let zo be a solution to the inclusion 

Suppose the set-valued maps F, are consistent with F and stable around (20 ,  yo) .  If q,y, 

converges to yo, then there ezist solutions z, to the inclusions 

such that pnzn converges to zO. 

Furthermore, there ezists a constant 1 > 0 such that, for all y,, in and 2, E F ,  ' (6 , )  

satisfying q,y, + yo, qntjn + yo and pn2, + zo, we have 

In particular, we deduce that 



REMARK Stabi l i ty is  necessary 

When the vector spaces Xn are finite dimensional, condition (1.8) is actually 

equivalent to  the stability of the F,. Indeed, let vn E Yn be fixed and set y,: = fin + hv, 

for all h > 0. 

By (1 .8) ,  there exists zh E F, ' ( y n  + hv)  such that  ( ( z h  - in ( 1 ,  5 l ( 1  + ~ ) h  11 vn 11,. 

Hence uh :  = (z ,  - i$J/h is bounded by l ( 1  + E )  1 1  v ( 1 .  

Since the dimension of Xn is finite, a subsequence (again denoted) uh converges to 

some u ,  a solution to  vn E DFn(zn ,  yn ) (u )  and ( 1  u ( 1  < l ( 1  + c) ) (  vn 11,. Hence the Fn's are 

stable. 

REMARK By taking yn = snyo and Fn : = snFpn, we obtain the estimates 1 1  yo - qnyn 1 1  
- 
- 1 1  Yo - QnSnYo 1 1 ,  and 

The right-hand side converges to 0 when F is lower semicontinuous. 

REMARK F i r s t  Stabi l i ty C r i t e r i a  

The set-valued maps Fn are stable when, for instance, their contingent derivatives 

DFn(zn ,  y,) are surjective and when the norms of their inverse DFn(zn ,  yn)-' are uni- 

formly bounded. The norm of DFn(zn ,  yn)- ' is defined by 

1 ( Y ' I  = su inf I I  pnUn I I  . 
II R V n R =  1 t DF.(z., ~.)-I(u,) 

The question arises whether an extension of the Banach-Steinhauss Theorem could pro- 

vide stability criteria. 



For that  purpose we need to  introduce the set-valued analogues of continuous opera- 

tors, which are the set-valued maps whose graphs are closed convex cones (instead of 

closed vector spaces). They are called "closed convex processes". A map A with closed 

graph is a closed convex process if and only if 

Contingent derivatives are not always closed convex processes. When the spaces are finite 

dimensional, the lower semicontinuity of (z,  y )  H Graph DF(z,  y) a t  (zO, yo) implies that  

DF(zo, yo) is a closed convex process (see Aubin-Clarke (1977)). 

When the contingent derivative is not a closed convex process, we can consider 

closed convex processes contained in it. 

For instance, we could work with the asymptotic derivative, introduced by Fran- 

kowska (1983), (1985). If A is a closed process from X to  Y, the set-valued map A, from 

X to  Y is defined by 

Since the graph of A, is a Minkowski difference (or the asymptotic cone of Graph 

A), i t  is a closed convex cone. Hence A, is a closed convex process contained in A. Con- 

sequently, the "asymptotic contingent derivative" D,F(z, y )  defined by 

is a closed convex process contained in the contingent derivative. It also contains always 

the derivative CF(z ,  y), whose graph is the Clarke tangent cone to the graph of F at  

(z,  y), introduced in Aubin (1982) (see also Aubin-Ekeland, (1984), Chapter 7). 

In any case, let us consider a family of closed convex processes A, from X, to  Y, 

such that 

Graph A, c Graph DF,(z,, y,) 



UNIFORM BOUNDEDNESS THEOREM 1.2 Let us assume that the closed convez 

processes A, are surjective and satisfy, for all (z,, y,) E Graph A, n ((zO, yo) + 'I B), 

V v E Y, there exists u, E A, '(s,v) such that  sup 1 1  p,u, 1 1  < + oo . (1.15) 
n 

Then the family of set-valued maps F, is stable. 

PROOF We consider the functions p, and p defined by 

and 

Since A, is a convex process and s, is linear, we deduce that  p, is convex and posi- 

tively homogeneous (sublinear). Since each set-valued map A, 's, is a closed convex pro- 

cess whose domain is the whole space, the function p, is continuous, thanks to the 

Robinson-Ursescu's (Robinson (1976), Ursescu (1975)) theorem, an extension of the 

Banach Closed Graph Theorem. Then the function p is lower semicontinuous, convex and 

positively homogeneous. Assumption (1.15) implies that  it is finite. We thus deduce from 

Baire's Theorem that  i t  is continuous, and thus, that there exists a constant c > 0 such 

that  

i.e. that  for all v E Y, there exists u, E A; '(s,v) such that  1 )  p,u, ( 1  5 c 1 1  q,s,v 1 ) .  By 

taking v = gnun, we deduce that  the family of F,'s is stable. 

REMARK If the Banach spaces X ,  are reflexive, we do not need the Robinson-Ursescu 

Theorem, since i t  is easy to check that  the function p, is lower semicontinuous, and thus, 

continuous. 



We also mention another useful consequence of the Uniform Boundedness Theorem. 

THEOREM 1.3 Let us consider a metric space U. Banach spaces X and Y ,  and a set 

valued-map associating to each u E U a closed convez process u H A ( u )  : X + Y. Let us 

assume that the familly of convez processes { A ( u ) ,  u E U )  is  bounded, i n  the sense that 

V z E X, sup in f  I( y ( 1  < oo. 
U E  U Y E A ( Z )  

Then the following are equivalent 

i )  the set-valued map u H Graph A ( u )  i s  lower semicontinuous, 

i i )  the set-valued map ( u ,  z )  H A ( u )  ( z )  is lower semicontinuous. 

PROOF Condition ii) implies condition i ) ,  even when the family { A ( u ) )  is not bound- 

ed. For proving the converse, consider a sequence of elements (u,, z,) converging to 

( z ,  u )  and choose an arbitrary element y in A ( u )  ( z )  We have to  approximate it by ele- 

ments y, E A(u,) (2 ) .  

Since u t--+ Graph A ( u )  is lower semicontinuous, we can approximate ( z ,  y)  by ele- 

ments (Z,, in) E Graph A(u,). By Theorem 1.2, applied to the family { A  (u,)-'1, there 

exists a constant 1 > 0 such that  

Hence we can choose z, E A (u,) (2 ,  - 2,) such that ( 1  Z ,  1 1  < 111 2, - Z n l ) ( l  + 6 ) .  There- 

fore y, := ŷ , + z, does belong to  A(u,) (z,) and converges to  y because z, converges to  0 

and 6, to  y. 

REMARK Dual stability criteria 

Closed convex processes, as continuous linear operators, can be transposed. Let A be 

a set-valued map from X to  Y. Its transpose A* from Y* t o  X* is the closed convex pro- 

cess defined by 

p E A * ( q )  if and only if 



In other words, p belongs to  A*(q) if and only if (p, - q) belongs to  the polar cone of 

Graph A. (See Rockafellar (1967), (1970), Aubin-Ekeland (1984)). 

Many properties of transposition of continuous linear operators can be extended to  

closed convex processes. For instance, q belongs to  (Irn A)- if and only if 0 E At(-  q): 

(Im A)- =- A*-'(0) . 

Therefore, if the vector space Y is finite dimensional, A is surjective if and only if the ker- 

nel A * - '(0) of its transpose is reduced t o  0. 

We also check that  in this case 

where B, is the unit ball of Y* .  It is easy to  deduce from Theorem 1.2 the following 

COROLLARY 1.1 Let us consider closed convex processes A, contained in DF,(z,, y,) 

for all (z,, y,) in Graph F, n ((zo, yo) + vB).  Let us assume that their transpose A, 

satisfy 

ii) sup sup J l  s ign ) (  r, =: c < + 00 I 1 p. E A:-l(p;f) 

Then the family of F,'s is stable. 

REMARK Graph and pointwise convergence of set-valued maps. 

We consider now the case when X, = X and Y, = Y for all n. 

Let F, be a family of set-valued maps from X to  Y. We can define the convergence 

of the set-valued maps F, either from the convergence of their graphs (graph conver- 

gence) or from the convergence of their values F,(z,) (pointwise convergence). 



We recall the following definitions of the Kuratowski upper and lower limits of a se- 

quence of subsets K n  of a Banach space K n .  

lirn sup K n : =  n u ( K n  + E B )  
n - + w  E>O n > N  

N>O 

We denote by Ffl the set-valued map defined by 

Graph Ffl : = lirn sup Graph Fn 
n + o o  

and by F~ the set-valued map defined by 

Graph Fb : = lirn infGraph Fn . 
n A m  

The following relations follow directly from the definitions 

F I  ( z )  = lirn sup F n ( z n )  
z n + z  

It is also easy to  check that  

Fb ( z )  > lirn inf F n ( z n )  
zn+ z 

The Stability Theorem (applied to  the maps F q l  instead of the maps F,)  implies the 

equality of Fb and Ffl.  

PROPOSITION 1.1 Let us assume that the set-valued maps F q 1  are stable around 

( Y o ,  zO) E Graph F b .  Then yo belongs to  lirn inf F , ( z n ) .  
Z n  + 20 



This point of view, that leads to  replacing pointwise by graph convergence was al- 

ready found to be advantageous in the "epigraphical" setting, i.e., for the set-valued func- 

tions z ++ {(z) + R+ where f is an extended real valued function defined on the space X. 

The results reported in the literature are mostly of topological nature, cf. Salinetti and 

Wets (1976), Dolecki, Salinetti and Wets (1983); for more about epi-convergence and 

graph convergence consult Attouch (1984). In a subsequent paper, we develop the applica- 

tions of these results to  epigraphical maps, and show how they can be used to obtain ap- 

proximation and stability results of a quatitative nature for variational problems. 

2. THE LINEAR CASE WITH CONSTRAINTS 

We shall deduce the above theorem from a simpler statement. We consider two 

Banach spaces Z and Y, a continuous linear operator A E .L (2, Y) and a subset K of Z. 

We consider the problem (a linear equation with constraints) 

find zo E K a solution to  Ax = yo. 

REMARK By taking Z:= X x Y, K:= Graph F, A := rn Y, the projection from X x Y 

to Y, we observe that  inclusion (*) is a particular case of this problem . 

We approximate this problem by introducing 

I i) convergent approximations (Z,, p,, r , )  and (Y,, q,, s,) of the spaces Z and Y 

ii) subsets K, c Z, 

iii) continuous linear opertors A, E .L (Z,, Y,) 

We use the following approximate problems: 

find z, E K,, a solution to  Ax, = y, . (2.1) 

The "convergence" of y, to  yo, of K, to  K at  zo and of A, to  A is measured by the fol- 

lowing 

I iii) c(A , A,) := sup su ( 1  Ap,u, - q,Au, ) I  
n ~ ~ P n y n l ~  I 



DEFINITION 2.2 We shall say that these approximations (K,, A,) are "stable" i f  and 

only i f  there exist constants c > 0 ,  q > 0 and a E 10, I[  such that for all n ,  for all z, E K, 

satisfying I (  pnxn - zo 1 )  5 q and for all v, E Y,, there exist u,  E X and w, E Y ,  satisfying 

THEOREM 2.1 Let us assume that the subsets K,  are closed. Assume that the approzi- 

mations are stable. Then, if 1 1  yo - q,y, 1 1 ,  d(zo,  pnKn) and c ( A  , A,) converge to 0, there 

ezist solutions z ,  E K, to A,z, = y ,  which converge to zO. Furthermore, there ezists a 

constant 1 such that, for all 4, E K ,  such that p,zi, converges to zo, we have 

In particular, 

d ( 2 0 ,  ~ n ( A i  ' ( y n )  n Kn))  

5 I I  Y O  - qnyn I I  + c ( A ,  An)( I I  20 I I  + d ( 2 0 ,  pnKn)) + ( 1  + 1 I I  A II)d(zo, PnKn) . 

PROOF of THEOREM 2.1 Supplied with the metric d(z,, z,) := 1 1  p,z, - pnZn 1 1 ,  K ,  

is complete. We apply Ekeland's theorem to the continuous function V ,  defined on K, 

by 

Let c < ( 1  - a ) / c  be chosen. 



We take f n  E Kn such that  1 1  z0 - p n f n  1 )  converges to  0. 

Therefore, Ekeland's theorem implies the existence of Zn E Kn satisfying 

The first inequality implies tha t  

The error E,(n) converges t o  0 since 

and since 1 1  p n f n  1 1  5 1 1  z0 ) (  + 1 1  z0 - p n f n  1 1  < 2 1 1  z0 1 ) .  Consequently, for n large enough, 

the pnZn belong to  B(zo, 71). By the stability assumption, we can associate with 

v n  := yn - AnZn elements u n  E T K , ( Z n )  and w n  E Yn 

By the very definition of the contingent cone, we assign to  any h > 0 (which will converge 

to  0) elements 

where O(h) converges to  0 with h 



By taking such an xn, from the second inequality of (2.6), we obtain 

II qn(yn - An%) II = Vn(5n) 5 Vn(zn) + II PnFn - PnZn II 

5 II qn(yn - AnEn - hAnun - hAO(h)) II 

+ ~ h (  II Pnun II + II pnO(h) ll) 

5 (1 - h) II qn(yn - An%) II + h( IIqnwn II + II qnAO(h) II) 

+ th (  I I~nun II + II ~ n O ( h )  II ) 

This implies that 

By letting h converge to 0, we obtain 

Since a + E c < 1, this implies that En E Kn and = yn. 

Therefore, 

Since this inequality is true for any t < (1 - a ) / c  we can let t converge to (1 - a ) / c ,  so 

that 

By taking fn E Kn such that 1 1  xo - pnfn 1 1  < d(xo, pnKn) (1 + ,B) and letting ,B converge 



to 0, we obtain the estimate (2.5). 1 

PROOF of the STABILITY THEOREM 1.1 We take Z := X x Y, K = Graph F and 

A := ny, Z, = X, x Yn, K, := Graph Fn and A, := nyn. We observe that c(A, A,) = 0 

since, for all u, = (x,, y,), 

The stability of the set-valued maps F, is just the same as the stability of their 

graphs with respect to the projections n y  and n Yn. 

If (f,, 6,) is in the graph of F,, we deduce that 1 1  qnyn - qnAn(fn, g,) ( 1  = 

1 1  q,y, - q,$, 1 1 .  Finally, we can estimate the distance between (xo, yo) and the image of 

the graph of F, by p, x q, in the following way. 

Indeed, (pn x qn) Graph Fn = Graph (q,F,p, I ) ,  where the domain of qnFnp, is pnXn. 

On pnXn, one has q,F,p, lp,z, = qnFnxn. 

Hence Theorem 1.1 follows from Theorem 2.1. 



3. A STABILITY CRITERION 

We devote this section to  criteria implying that  a family of subsets K, is stable. For 

simplicity, we consider the case when Z ,  := Z, Y ,  := Y ,  p ,  := Id, q, := Id and A,  := A.  

It is time to  recall that  the Kuratowski lim inf 

is the set of z's such that  z = lim z,  where z, E K,. 
n+oo 

The stability assumption (2.3) implies implicitly that  zo belongs to the lim inf of the 

subsets K,. 

We consider now the lim inf of the contingent cones 

T ( z o )  := lim inf T K n ( z n )  = n u n 
K ,  3 z, + zo e>O N , q  n>N 

T ~ ~ ( z n + t B ) ,  (3.2) 

z ,EK, ,n(z+vB)  

and we address the following question: under which conditions does the "pointwise surjec- 

tivity assumption" 

imply the stability of the K,. The next result answers this question when the dimension 

of Y is finite, unfortunately. 

PROPOSITION 3.1 Assume that T ( z o )  is convez and that A T ( z o )  = Y .  Let us assume 

that there ezists a space H 3 Y such that the injection from Y to H is compact. There ez- 

ists a constant c > 0 such that, for all cr E 10, .I[, there ezist q > 0 and N > 1 with the fol- 

lowing property: 

there ezist solutions u, E TKn(zn)  and w, E Y to 

Au, = v + w,, 1 1  u, llz c 1 1  v 1 1  Y, 1 1  wn I ~ H  5 1 1  1 1  y 



- 1 7 -  

REMARK When Y  is finite dimensional, we can take H = Y .  

PROOF Let S denote the unit sphere of Y ,  which is relatively compact in H. Hence 

there are p elements v, such that  the balls v, + ( a / 2 ) ~ ~  cover S. Since T ( z o )  is convex 

and A T ( z o )  = Y ,  Robinson-Ursescu's Theorem implies the existence of a constant X > 0  

such that  we can associate with any v, E S an u, E T ( z o )  satisfying 1 1  u, I ( Z  5 A.  By the 

very definition of T ( z o ) ,  we can associate with a  E 1 0 ,  I [  integers N,  and q ,  > 0  such that  

V n 2 N,, V z, E K, n ( 2 ,  + q ,B) ,  there exist u i  E TK (z,) satisfying 

Let N  := max N,  and q  := min q,. We take n > N  and z, E K, n ( zo  + q B )  Let v 
I<i<p I<i<p 

belong to Y .  There exists v, E S such that  

Set v, = 1 1  v  ( 1  yuh and w, = v  - Av,. We see that  v, E TK,(zn), that  

(where c := X + 112 1 1  A ( l e ( Z , H ) )  and that  

This proves our claim. 



This result justifies a further study of the lim inf of contingent cones to  TKn(zn) .  

We introduce the cone C ,  ( z o )  of elements v such that  
Kn 

lim 
d(zn + hv, Kn) 

h  
= 0 

h+O+ 
Kn 3 2, - 20 

When all the Kn7s are equal t o  K ,  then lim inf Kn = K and C ,  ( zo )  coincides with the 
n+cu Kn 

Clarke tangent cone to  K a t  zO. 

It is clearly a closed convex cone: indeed, let v l ,  and v2 belong to C ,  ( z O ) ,  z ,  E K, a 
Kn 

sequence converging to  zo and h, -+ o+. There exists a sequence v l n  converging to  vl 

such that  z: := z, + hnvln belongs to  K, for all n .  Since z; also converges to  zo, there 

exists a sequence v2,  converging to  v2 such that  z,!, + h,v2, E Kn for all n .  Hence 

1 zn + hn(vln + van)  = zn + hnv2, E Kn for all n and vln + v2, converges to  vl + v2. 

Then vl + v2 belong to  C ,  ( z O ) .  
Kn 

A slight modification of a result of Aubin-Clarke (1977) implies the following rela- 

tions between T ( z o )  and C  , ( zo ) .  
Kn 

PROPOSITION 3.3 Assume that Z is reflezive and that the subsets Kn are weakly 

closed. Then 

lim inf TKn(zn)  c C ,  ( zO)  
K n 3 z h 4 %  Kn 

PROOF Let v belong to  lim inf TKn(zn) .  Then, for any E > 0 ,  there exists N such that 

d ( v ,  TK,(yn)) < E when n 2 N and yn E Kn n ( z O  + q B )  

Let us set gn(t)  := d(zn + t v ,  K,). By Proposition 4.1.3, p178 of Aubin-Cellina (1984), 

1 
lim inf- (dKn(zn + tv + hv) - dKn(zn + t v ) )  5 d(v ,  TKn(yn) )  
h+O+ h  



where yn E Kn is a best approximation of zn + tv .  Let zon E Kn denote a best approxi- 

mation of zo. Since 

when zn E ( zO + ( r l /2 )B)  n Kn and t  5 q / 4  11 u  ( 1 ,  we deduce that the function 

which is almost everywhere differentiable, satisfies 

g ' n ( t )  5 E for all n  > N and t  5 q / 4  1 1  v  I( 

By integrating from 0 t o  h, we deduce that 

f 0 r a l l h < ~ / 4 ~ ~ u ~ ~ , n 2 N a n d z ~ ~ K ~ n ( z ~ + ~ / 2 ~ ) .  

The converse is true when the dimension of Z is finite or when the subsets Kn are 

convex. More generally, we introduce the following "weak contingent cones" T g ( z )  define 

in the following way: 

u  belongs t o  T g ( z )  if and only if there exist a sequence hn + 0 + and a sequence wn 

converging weakly to  v  such that  zn + hnun belongs to  K  for all n.  

We see a t  once that  

and that  they coincide when the dimension of Z is finite or when K  is convex: indeed, in 

this case, T K ( z )  and T g ( z )  are the closure and the weak closure of the convex cone 

spanned by K  - z ,  which thus are equal. 



We then obtain the following trivial inclusion: 

PROPOSITION 3.2 Assume that Z is refleziue, then 

C, (z0)c  lim inf Tji, (zO) 
Kn K n 3 Z n 4 Z o  

PROOF Assume that  u belongs t o  C, (zo). Then, for all c > 0, there exist q > 0, N 
Kn 

and p > 0 such that ,  for all h < p, n 2 N and z, E K, n (zo + qB),  

Let us fix such an n 2 N and z, E K, n (zo + qB).  Let yk E K, such that  1 1  z, - yk + 
u 1 1  < 2ch and set uk := (y,h - z,)/h. Since 1 1  u,h - u 1 1  < 2c and since the space is 

h reflexive, a subsequence of u, converges weakly to  some u, E u + 26. Such a un belongs to 

Tgn (z,). Hence d(u, Tgn (z,)) converges to  0. 
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