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FOREWORD

The paper deals with a method for the approximation of rather general discrete-time
nonlinear filtering problems, which allows the evaluation of suitably chosen approxima-
tion errors. The particular Hermite polynomials expansion used for the approximation
provide error bounds which may often prove better than those obtained by similar tech-
niques.
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ABSTRACT

A finite-dimensional approximation to general discrete-time nonlinear filtering prob-
lems 1s provided. It consists in a direct approximation to the recursive Bayes formula,
based on a Hermite polynomials expansion of the transition density of the signal process.
The approximation is in the sense of convergence, in a suitable weighted norm, to the
conditional density of the signal process given the observations. The choice of the norm is
in turn made so as to guarantee also the convergence of the conditional moments as well
as to allow the evaluation of an upper bound for the approximation error.
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HERMITE POLYNOMIALS EXPANSIONS
FOR DISCRETE-TIME NONLINEAR
FILTERING

Giorgio Celant and Giovanni B. Di Mast

1. INTRODUCTION
We consider the following discrete-time partially observable process (z;, y;), z,
y; € R, with z; the unobservable and y; the observable components, given for t =0
1,..., T on some probability space (02, 7, P) by
ry=a(z) + vy 2= (1.a)
¥ = clz) + w3 Yo = o (1.b)
where {v;} and {w,;} are independent standard white Gaussian noises.

Given a measurable function f, we shall be concerned with the solution to the filter-
ing problem, namely the computation for each t = 1,..., T, assuming it exists, of the least

squares estimate of f(z;) given the observations up to time ¢, namely

E{f(z)| 77} | 2)
where 7}:=o{y,|s < t}.

The filtering problem can be more generally described in terms of conditional distri-
butions as follows. Given a Markov process z; with known transition densities p(z;|z;_,)
and an observable process y;, characterized by a known conditional density p(y;|z;), it is

desired to compute for each t=1,...,T the filtering density p(zt|yt) where
yt:: {yO) yll"'l yt}’

A solution to this problem can be obtained by means of the recursive Bayes formula

P(wla)p(zmly'™Y)
S p(yel z) p(z¢] 9* 1) dgy

P(zt| !It) =

_ p(vil =) [ p(ze] 2 y) p(ze 1| 9' 1) dzy_y
J eyl =) [ p(zel 2z 1) p(z_y |yt~ 1) dzy_ydgy

(3)
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However, there is an inherent computational difficulty with this formula due to the

fact that the integral

fp(xt|”t—1)l’(5t—1|!/t_l)dft—l

is parametrized by z; € R.

As it will be briefly reviewed in the next section (see also [5]), this difficulty disap-
pears in all those situations when p(z;|z;_,) is a combination of functions separated in

the two variables, i.e.
n
Pzl _y) = .20%‘(’3:) $i(zy 1) (4)
t=

and for such situations an explicit finite-dimensional filter can be provided.

In [5] the computational advantage resulting from (4) was exploited in order to ap-
proximate p(z;|y*) by means of approximating densities p,(z;|y!), » > 1, that could be
explicitly computed in a recursive way. Such p,(z;|y') were obtained by means of the re-
cursive Bayes formula (3) using approximations to p(z;|z,_,) given by suitable nonnega-
tive functions p,(z;|z;_,) of the form (4). Furthermore the approximation was such that
an explicitly computable bound could be obtained for an appropriate approximation error.

In addition, if f(-) does not grow more than exponentially, then also E{f(z;) | #}} could be

approximated by [ f(z;) pn(z| y') dz; with a corresponding error bound.

The practically important problem of deriving explicit error bounds for the nonlinear
filtering problem was also studied in (3] for discrete-time problems and later [4] the results
were extended to continuous-time problems (see also [2, 6] for different techniques that
however do not lead to explicit error bounds). While in [3] the approximation is obtained
by approximating the model (1), the method followed in [5] consists in a direct approxi-

mation to the solution to the recursive Bayes formula.

The aim of this paper is to study a particular case of the technique described in [5],
consisting in a Hermite polynomial expansion of p(z;|z;_,). This method provides an ap-
proximation to the nonlinear filtering problem with improved error bounds with respect
to those given in [5].

In the next Section 2 we shall review the results in [5| that will be needed in the
sequel, while in the following Section 3 the Hermite polynomial approximation will be ex-

amined in detail.
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2. GENERAL APPROXIMATION RESULTS

As mentioned in the introduction, the computational difficulty due to the parameti-

zation of the integrals in (3) disappears for transition densities of the form (4).

In fact, letting o denote proportionality, it is easily seen that when (4) holds

p(z;| y*) can actually be computed by means of (3) resulting in
n
plzly’) o« 3 di(v' " Dplylz)oilzy); t=1,..,T (5)
t=0

where the vector d(y'~!) of the coefficients in the combination can be recursively ob-

tained as
di(y°) = [ $i(z0) p(20)dz; ¢=0,...,n (6.a)
d(y") = d(y* "N B(y); t>1 (6.b)

with B(yy) = {b;(y0)}s,j=o0,...,n Where

bij(ye) = [ ¥i(ze) p(v¢] 7)) pi(zy) dzy (6.c)

In this section we shall show how a suitably chosen positive approximation p,,(z;|z;_ )
to p(z;|z;_,) produces, through the recursive Bayes formula (3), an approximation to
the filtering density p(z;|y?) as well as to the corresponding filter E{f(z,)|y'}, for which

explicit upper bounds to the approximation error can be evaluated.

To this end it will be convenient to provide approximations to p(z;|y’) in a suitable

weighted norm of the type.
l9lle:= [ a(z)| g(z) |dz (7)

In what follows we shall choose a(z) = exp [a@|z]], (@ > 0), as this will enable us to
approximate E{f(z;)| 7}} for all those f(-) for which |exp[— a]|z]||f(z)| <+ oo; in partic-

ular, it will allow the approximation of all the conditional moments, as long as they exist.

The general approximation results are given in [5] and summarized in Theorem 1

below, which is based on the following assumptions.

There exist a function V(y,;) and constants U, Q, Z, Z,, such that for all ¢:

Al i:fp(yth:t) > V(y) >0

sgpp(ytlrt) <U




A2  [inf p,(zy|24_,)dzy > W >0
Ity

A3 iup”pn(zt|zt—l)”a <Z
-1

Ad: :‘up”p(l‘tizt—l) = Palz| 7 1) o < 2,
-1
with Lim Z, =0 -
n— oo

We then have

THEOREM 1  Under A.1-A.4 we have forallt > 1

a)  lp(zely") = palz:]9") lla < 2, §t3 @UPV=2(y) W™ 12%)

s=1

b) | E{f(z)| 7} — [ f(z)) pu(zi| v")dz,| < M2, §t3 @UPV=2(y) W12%)° .

§=1

where M > 0 is such that | f(z)e= 7| < M. -

3. HERMITE POLYNOMIALS APPROXIMATION

In this section we shall provide an approximate solution to the nonlinear filtering
problem (1), (2), based on a nonnegative approximation p,(z;|z;_;) to p(z;|z,_,) of
type (4) and given in terms of a Hermite polynomials expansion of p(z;|z;_). For the
validity of the results of the previous section it is necessary to show that assumptions

A.1-A 4 are satisfied. To this end we shall need the following additional assumption on

model (1):

A.5: There exist constants A and C such that

Slip| a(z)| < A (8)
Sl;P| c(z)| < C (9)

Taking into account that, due to the normalization in (3), we can take p(y;|z;) =
exp — (y; — ¢(z;))?/2 we have that (9) implies A.1 with U=1 and V(y,) =
exp(|y| + C)*/2.
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We now recall some properties of Hermite polynomials that will be needed in the

sequel. Denoting by Hi(z) := (- l)kezz/z(dk/dzk) e~ %/2 the k-th Hermite polynomial

we have [1], [7]

P.1: Forall t and z

00 k
= Fl2= 3 Hya) 4
k=0 :

ko gk
_ i‘j g2 (=t dk o= 22/2
k=0 k! dz

P 2: For all z and positive integer k

_ [k/2] (_ l)m k—2m
Hy(z) = &! méo 2mm! (k- 2m)!

where [k/2] is the maximum integer not greater than k/2.
P.3: For all z and positive integer k
| Hy(z) | < IVET =/4
where [ is known as Charlier’s constant and ! ~ 1.0864.

P.4: For all z, y and positive integer k

E [k
Hy(z +y) = gol"J Hy_ pm(z)y™

The expansion in (10) suggests the following approximation

42 n—1 tk
et 3 Hyz) g
k=0 :
with corresponding absolute error
n—1 k
R, = |20 8 Ay | =
k=0 :

n n
:JinL— %e‘z—"/ﬂ,:g with 8 € (0, t)

(11)

(12)

(13)

(14)

(15)



Taking into account that

n n n . .
%eu—t?/z - ‘.’z]etan_j(t)(_ 1)i-n. e~ P/2 =
‘=0l

= (= 1) "Hy(t - z)e=m 72

where in the last equality P.4 has been used, we have, using P.3, the following upper

bound for the approximation error (15)

R, < JL!: eﬁz—02/21\/;ﬁe(0—z)2/4 _
n!

(16)
n
= %1601/2-02/4“2/4 with 0 € [0, ¢|

With the notation introduced above, the approximation p,(z;|z;_,) to p(z;|z,_ ;) which

will be used in the sequel is given by

o k
palel g ) = e F2S () 221 (17)
k=0 k!

where n is an odd integer. The reason for the choice of n odd is that in this case
Pn(z;| z;_) turns out to be positive. It is apparent from (17) that p,(z;|z;_) is of type

(4). Furthermore, as it can be easily seen, we have using (10)
a (xt—l) —A2 2— Alz |
2 Hy(z)— /2= Al (18)

so that

pnlze|zi_4) 2 e (AtlnD’/2 (19)

and consequently assumption A.2 is satisfied with W = 2(1 — ®(A4)), where ® is the stan-
dard normal distribution function. It remains now to show that assumptions A.3 and A .4
are satisfied. This will be done in Propositions 3 and 4 below, for which we need some

preliminary results.

LEMMA 1  For any real a and positive integer n

2 [a Vo - zg)
'£ \/a2 - 2y

e¥dy < Ay(n, a) (20)

where
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Amu®=efﬂﬁ2jaWAV—HaPﬂ*Vw—j+1) (21)
p=

PROOF Denoting by I the integral in the l.h.s. of (20) and using the change of variable

= a? — 2y we have

/2.'. (a—\/t) dt =

2 o?
e@?/2 n |nl . . o
— 3 [ al(—1)"=7 [ ¢(n=7 1)/24¢ =
2 j=0lJ 0
a?/2 S n—j —j+1 .
=23 | [(=1)" T|a|* "I /(n — 5 +1)
]:O J . u
LEMMA 2  For any real o and positive integer n
e T AN (22)
€ =A(n, a
- \/a2 — 2y y 2
where
n—]—l .
Ag(m, @) —62/2EI] %) E i Rk (23)

PROOF Denoting by I the integral in the l.h.s. of (22) and by the change of variables

a? — 2y = 24 we have

+ o0
I=¢22 | e+ Y2u)* —uy, =

0 V2u
. o [n] T n—j—1
e®/2 32 | | [ (2e) %2 e ¥du=
j=0 J 0
:e°‘2/zi naj[V§]n_J_1F n-j-1 +1
—alj 2 -
=0
LEMMA 3  For any real a and positive integer n
+ o0 5
[ ztex*— 7 12dz < A(n, @) (24)

0



where
An, @) = Ai(n, a) + Ay(n, ) (25)
with A (n, a), Ay(n, a) given by (21), (23).

PROOF Denoting by I the integral in the 1.h.s. of (24) we have

o + oo
I=[z"e**~ 2?/24g + f 2"e®2 7 /2dy
0 a

and by the change of variable y = az — z2/2 we obtain

————d pE————t
o2/2 [a s 2y] y a}/z [a +Va? — 2y y
I= —_— e¥dy + _— e¥dy
.(,; Vol - 2y — o0 Val - 2y
The result then follows from Lemmas 1,2. u

As an immediate consequence of Lemma 3 we have

COROLLARY 1  For any real a and positive integer n

+ o0 )
[ |z|reeld=#*/2dz < 2A(n, @) (26)
-0
where A(n, a) 1s defined in (25). =

LEMMA 4  For anyreala >0, 8,7

+ oo
J‘ e— (@2 +fz+7) g = \/ﬁae(ﬁ"’—‘iav)/‘ia (27)

PROOF Completing the square in the exponent and using the change of variable
y =z + B/2a we have

+ o0 +oo
J‘ e~ (@2 +02+17) gz = ((F% — 4a7)/4a f e—ayzdy
“oo -0

from which the result follows immediately. s



where
A(n, @) = Ay(n, a) + Ay(n, o)

with A\;(n, a), Ay(n, a) given by (21), (23).

PROOF Denoting by I the integral in the l.h.s. of (24) we have

a +co
I = fzneaz - 2%/24, + f ez —22/2 4,
0 a

and by the change of variable y = az — z%/2 we obtain

I= eVdy + [

/2 (o - N/a? ~ 29" /2 o + Va? ~ 29"

) Va? - 2y — o0 Va? - 2y

The result then follows from Lemmas 1,2.

As an immediate consequence of Lemma 3 we have

COROLLARY 1  For any real a and positive integer n
+ 00 ,
f | z|"ealzl = 2*/2dz < 2A(n, a)
— 00

where A(n, a) 1s defined in (25).

LEMMA 4 Foranyreala >0, 8,4

+co
f e~ (@z? +Pz+7) 4, = \/me(ﬂz—4a7)/4a
- 00

(25)

(26)

(27)

PROOF Completing the square in the exponent and using the change of variable

y = z + f/2a we have
+ 00
o0 —00

from which the result follows immediately.

+ 00
f e— (@2 +0z+7) gz = (8% — 4a7)/4a f e—ayzdy



COROLLARY 2  For any real a and B

+ oo
f ealzl + Bz — /24, < u(a, B) (28)
where
w(a, f) = V2r[elf+2)/2 4 (B-a)/2 (29)
PROOF

+ o0 +oo0 + oo
[ eclal+Bz—22/2gz = [ ~(F-a)z=2®/2q5 1 [ ((F+a)z—z/2q,
- 0 0

The result then follows from Lemma 4. =

We are now in the position to prove that with the choice made for p,(z;|z,_,),
given by (17), the assumptions required by Theorem 1 are satisfied so that it is possible to

evaluate the error bound provided there.
PROPOSITION 1  For any real o and positive integer n

| pp(zslzi_ 1) lla < 2 (30)

where

1 & L B2 Mk-2m,0) 31
Z= V2r kzz:oA mé:o 2™ 1mi(k — 2m)! (31)

with X defined in (25).

PROOF  With the notation z = z;, t = a(z;_,) and using (17) and (11) we have

_ 2
Pzl 2 1)l = a"'l 2 e~ P12 H(c Idz
k
L B L ety pon,

Using Corollary 1 and (8) we obtain the final result. -
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PROPOSITION 2 For any real a and positive integer n

lp(zel 20— 1) — pulzil 2 1) lla < 2y,

where
z, = \rzzi_;‘e/w ((Af2-a)? | a7
with | as in (12).
PROOF  Using as before the notation z = z;, t = a(z;_;) as well as (16) we have

+ oo
1 _ g2
Ip(ztl 2 -1) = pulml i) o= = [ eolel= /2 Ryl da <

+ oo
< L® L -@ep [ oufr+ 2 atald- 22
= Va! V2r oo

Using Corollary 2 and (8) we obtain the final result. =

The results of this section allow the evaluation of the error bounds given in Theorem
1. It could be easily verified that these bounds are in many instances better than those ob-

tained in [5].
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