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Foreword

In this research, a simple model of forest insect pest outbreaks is successfui-
ly tested with data obtained from the North American eastern spruce budworm
forest system. The study is a collaborative effort amongst three scientists: Dr.
R.A. Fleming, a Canadian forest pest modeller who visited IIASA in July 1987; Prof.
M. Antonovsky, Chief Scientist of the IIASA Environment Program; and Dr. Y.
Kuznetsov, one of the 1986 Peccei Award winners who returned to IIASA in the sum-
mer of 1987 to take up his Award. In this connection, IIASA has again demonstrated
the important role that it plays as a facilitator of fruitful collaboration amongst
scientists from the East and from the West.

R.E. Munn
Head, Environment Program
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Abstract

The parameter values of a simple dynamical model of a non-even age forest-
insect ecosystem are estimated for the case of balsam fir forests and the eastern
spruce budworm. It is shown that, despite its extreme simplicity, the model can
reproduce time series of a real budworm outbreak and can be considered a com-
pact presentation of available forest data.

Strengths and weaknesses of the model are discussed and some directions for
further research proposed.
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INTRODUCTION

In the paper of Antonovsky, Clark and Kuznetsov (1987) the following system
of differential equations was proposed to describe non-even age forest-insect
dynamics:

z =py —7¥)x - Sz (1)
v =fx —hy —Ayz
z = —&z + Byz

where z and y are densities of "young' and "old"” tree ( i.e., numbers of trees per
square unit ), z is insect density. Parameter p is reproductivity of the trees; A
and f are death and aging rates. The function 7(y) represents a dependence of
"young' tree mortality on the density of ""old"” trees. It is supposed that some op-
timal value of "old" tree density exists for which ""young' trees survive most suc-
cessfully. In this case it is possible to choose 7(y) = a (y —b )2 + ¢. Parameter e¢is
a rate of natural mortality of pests. Term —-Ayz describes pest-induced mortality
of "old" trees, while term Byz corresponds to insect density growth due to old
tree destruction.

In addition to model (1), the paper of Antonovsky, Clark and Kuznetsov (1987)
deals with a model in which the pest attacks "young'" trees. Actually, the paper
mainly addressed the detailed analysis of this situation. In the present paper we
study only model (1), but attempt to estimate their parameter values for the case
of balsam fir forests in Canada where old trees are vulnerable to budworm.

PROPERTIES OF EQUATION (1)

By a linear change of variables, parameters and time, system (1) can be
transformed into the form:

z = py —-(y—l)z:c — sz
Y=z —hy —yz ()
z = —tz + Bzz ,

where the previous notations are preserved for new variables and parameters.
For example, the new parameters can be presented in terms of the old ones as:
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The system can have from one to four nonnegative equilibria:
E4 =(0,0,0), E1,2 = (:1.2»1/1'2.0)- Eq =(23.Y3.23)-
Equilibria E1,2 in the invariant plane z = 0 have coordinates
Y12 = 1+ ('% _3)1/2' Ti2*= hyqz-

and appear on line D; = {(p,h) : p = sh}.

On line D, = f(p,h) : p = (s +1)h{ equilibrium E; coalesces together with equili-
brium £, and becomes negative.

2
pEB £ BB —h)

Equilibrium £ 4 ((e—B)2+sBz "B (e—B)2+sBz
_L;

(e—B)Y+sB? "

Equilibrium £ 4 is always stable, but it could have either real or complex eigen-
values. Thus the character of the approach to E; by the system could be either
monotonic or oscillatory.

appears below line S = {(p,h) : A =

The parametric portrait of system (2) is shown in Figure 1. It depends on the ¢
to B ratio. Corresponding phase portraits are presented in Figure 2.

h

£ <2B

Figure 1: The parametric portraits of equation (2).

Let us consider in more detail the system behaviour in parameter region 3
where damped oscillations are possible. In the absence of pests (i.e. 2=0) the sys-
tem tends to equilibria £, with constant densities of "young"” and "old" trees. If a
small number of pests then invades the forest, an outbreak occurs and the system
moves to equilibria £4 with lower tree densities and a low density insect popula-
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Figure 2: The phase portraits of system (2).

tion. The maximum insect density reached during the outbreak exceeds that of
equilibrium £, .

A potentially unexpected system behaviour can occur if the system is at
equilibrium E 4 but the pest density then declines, perhaps due to pest control
operations, epidemic disease, or random variation. As can be seen in Figure 3, a
new pest outbreak results. Therefore, random declines in pest density may result
in repeated outbreaks.

PARAMETER ESTIMATIONS

Our goal here is to demonstrate how the model might be applied to a real
forest-pest ecosystem. This could lead to insight about the dynamics of the ecosys-
tem or to a determination of the range of applicability of the model for describing
the ecosystem's dynamics.

The eastern spruce budworm-forest system was picked as an appropriate can-
didate because of the availability of suitable information for many parts of the
model, because of the similarity of the main model features with some key aspects
of the budworm-forest system, and because previous models (e.g., Jones 1979,
Stedinger 1984) of the budworm-forest system have emphasized different elements




Figure 3: A small decrease in the pest density may result in an insect popula-
tion outbreak.

(e.g., foliage, insect predators, insect dispersal) of this system.

The eastern spruce budworm, Choristoneura fumiferana (Clem.), is a natur-
ally occurring defoliator of balsam fir (Abies balsamea [L.] Mill.) in the boreal
forests of eastern North America. Outbreaking populations kill their host trees
over wide areas. Outbreak cycles range from 26-40 years in length with outbreaks
lasting for 6-15 years. During outbreaks, insect numbers can increase over four
orders of magnitude in stands of mature and overmature balsam fir which are par-
ticularly vuinerable to attack.

In accordance with the simplistic nature of the model, which reduces the com-
plex budworm-forest system to a system of three differential equations, we take a
"broad brush" approach to parameter estimation. First we identify realistic
ranges for the parameter values and then we select from the range to see how well
the model can simulate the behaviour of the ecosystem.

We begin by estimating A, the natural mortality rate of old trees in equation
(1). MacLean (1985) gives the "annual net probability of natural mortality (before
outbreak)”" as 1-3.8%7 for balsam fir. Hence, if n, is the number of trees in a
n
< .038 .

-
cohort of old trees of age a, then n; .4 = n_ e ~h ,and .01 s —e__a+l
a

Hence Olsh =< 04yr1, 3)
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The parameter f represents the aging of trees in the model. However,
depending on how one defines '"old" trees, f can take on different values. For in-
stance, Bakuzis and Hansen (1965) report that balsam fir reaches sexual maturity
at 30-35 years; becomes moderately susceptible to attack at over 40 years of age
and becomes very susceptible at over 60 years of age. Moreover, stands are gen-
erally 40-60 years of age when established seedlings first appear. Thus we assume
that trees spend a mean duration of 30-70 years in the physiologically young age
group. If this duration has an exponential distribution with a mean of 30-70 years,
then

1/70sf <1/30

or

014 s f <.033 yr 1. 4)

The function 7(y ) describes the dependence of the natural mortality of young
trees on ¥, the density of old trees. MacLean (1985) suggests that natural tree
mortality might fall in the range .01 - .04 per year. Hence, since ¢ = minimum of
7(y ), we approximate

c =.01 yr -1, (5)

The increased mortality at low ¥ (old tree density) could be ascribed to competi-
tion with ferns, shrubs, and hardwoods (Bakuzis and Hansen 1965) invading sites
opened up by the removal of the fir overstory. Competition with older trees ac-
counts for the increase in young tree mortality at large yy. Assuming that the in-
terspecific competition is much less detrimental than the suppression by the older
age group, then b <y ...

Taking Ypa¢ 1 (in units of 103 trees / acre)

3

N 2.471 (in units of 10° trees / ha) ,

indicating a fairly good site (Bakuzis and Hansen, 1965, Table 90), we arbitrarily
set

b 1 Xypa,>.1 103 trees acre ! (6)
N 2471 (in units of 10°/ha) .

Then, since 7(v 44) ~ .4 (MacLean 1985),

Ymax = @ Ymax—0)? +¢ =~.04

Substituting with (5), (6), and then solving for a,

.037 acre? (103 trees)_z yr -1 (7
.00606 ha?(103 trees)_2 yr -1,

a
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At this point we have estimates for all the parameters of the forest section of
the model (1) except p, the rate of production of seedlings. This parameter com-
bines fertility, germination rate, and survivorship well past the first year of life
(i.e., into the middle of the range of ages of the 'young’ age group). Hence, it is a
difficult parameter to estimate.

Our approach is to solve the system (1) for p using reasonable £ and y values
for the equilibrium without pests. For instance, ¥ =0 in system (1) with z =0 when
z =yh/f. From y .. =~ 2.471, and from Bakuzis and Hansen (1965, Table 90) the
corresponding value of z lies in the range 4.94 - 7.42 103 trees/ha. Hence, if we
choose f = .017 yr -1 say (after equation (4)) and A = .04 yr 1 after (3), then the
value of = at the upper equilibrium (£, in Fig.2) is approximately

z = 5.81 103 trees / ha.

max

Since this is a reasonable value of z (Bakuzis and Hansen 1965 Table 90) we

max
adopt
f=.017yr1 (8)
and
h =.04yr1 9)

as reasonable initial guesses for these parameters.

For a forest equilibrium to occur near (zmax,ymax) ~ (5.81,2.47) requires that
the first equation in system (1) with z=0 also meet equilibrium conditions at this
point. Therefore, using (5), (6), (7) and (8)

p=.134 yr 1, (10)

This completes the estimation of parameters for the forest section of the
model and leaves only the parameters &, A and B to be estimated. These three
parameters represent the natural pest mortality and the interaction between the
forest and the pest.

First we estimate &, the instantaneous rate of pest mortality. After an out-
break there are often few mature and overmature balsam fir trees left. Hence, we
assume y is small after an outbreak, so the pest equation in model (1) becomes ap-
proximately z =~ —ez. This equation has the solution Zy 417 24 ~e & Thus, after
comparison it can be seen that & corresponds to the negative part of the vertical
axis of Royama’s (1984) Fig.B8. From the minimum of his smooth eye-drawn curve we

estimate

l<se=<15yr 1. (11)

Next consider A, the instantaneous rate of tree mortality caused per pest.
During outbreaks annual budworm-caused tree mortality peaks at 8 - 152 per year
(MacLean 1985). Hence, considering budworm-caused tree mortality in isolation,
v = —Ayz. Then, at the peak of the outbreak, Y1/ Yy e 2. Hence, in analogy
with the derivation of (3), .08 <1 —e Az < 15, Since z peaks on the order of

4 ~20 103 larvae / tree

max
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(Miller 1975), this reiationship becomes:
00417 < 4 <.0081 in 103 trees larvae 1 yr 1 (12)

The per capita rate of pest increase per tree, B, remains to be estimated.
When z is small and ¥ is near its equilibrium density, ¥ is relatively constant so
the pest equation in system (1) gives z;,./ 2; e BY -8 In analogy with the
derivation of (11), we note that (By —&) corresponds to the positive vertical axis
of Royama’s (1984) Fig.8. From the maximum of his curve we estimate

1=By —e¢=<2.

Since y R y ., > 1 and substituting (11)
0.8<B <1.42 10% ha tree 1 yr1 (13)

We thus arrive at the following table of parameters for the model:

Table 1.
parameter units range initial
guess
a ha® (103 t.r‘ees)2 yr -1 .00606
b 103 trees/na 247
c yr1 .01
p yr -1 .134
£ yr1 .014 - .03 017
h yr—1 .01 - .04 .04
P yr ! 1-1.5 1.5
A 10% trees larvae t yr ! .004 - .008 .004
B 103 hatree 1yr1 2-35 10.8
Table 2.
initial state units value
conditions: variable
Z (young trees) 103 trees/ha 5.81
Y {(old trees) " 2.47
Z (insect larvae) 103 1arvae/tree .005




DISCUSSION

The results of model (1), numerically integrated by a computer, are presented
in Figure 4. The parameters and initial conditions are chosen in accordance with
Tables 1 and 2. It can be seen that the chosen parameter values belong to region 3
on the right parameter portrait in Figure 2, so the outbreak is expected. An out-
break is calculated with characteristics resembling real forest data. The outbreak
length is equal to 15 years which coincides well with the observations of Royama
(1984). So the model, despite its extreme simplicity, could reproduce time series of
a real outbreak and can be considered as a compressed representation of avail-
able forest data.

There are two obvious differences between the computed outbreak shape and
real forest outbreaks. First, the time of intensive tree mortality is different. In
the model this takes place at the peak of the outbreak, while in the forest the mor-
tality of trees comes after the insect peak. It may be the result of non-inclusion of
a foliage role in equation (1). In reality the insects first defoliate trees and only
then do trees begin to die due to defoliation. Nonetheless, this distinction is
essentially a minor detail given the 'broad brush' treatment of the problem
employed here.

A more important problem with the model’'s behaviour as far as representing
budworm-forest dynamics is the inability of the modelled stand to fully recover
after the initial outbreak. For instance, in simulated years 50-60, the density of
old trees (y) peaks at about 3.4 of its original (t=0) value. This behaviour (damped
oscillation) is determined by the model's structure and parameter values which
place the system (1) in phase portrait #3 of Figure 2. An obvious question is
whether random variation within the given ranges of parameter values (Table 1),
as might occur with changes in weather from year to year, could occasionally move
the system into different phase portraits and thus maintain the oscillations.

Maintenance of the oscillations (perhaps as a limit cycle) might also be accom-
plished by a more accurate representation of the ecological processes considered
in equation (1). An obvious starting point here would be with the term py in equa-
tion (1). This represents the rate of seedling establishment as a linear function of
mature tree density. In fact, although a dense overstory of mature trees may pro-
duce many seeds, it can inhibit seedling establishment by limiting the available
light. Hence, forest reproductivity, p , may be better described by a saturating
function of mature tree density:

pPW) =t + Y/ (Zpe)] -

Thus p(y )y — py when ¥y is small,

— (Z,..x) Wheny is large.

Here (z ), a constant, is the upper limit to seedling establishment when y is

large.

Both the incorporation of random variation and the more accurate description
of forest reproductivity as described above, are potentially fruitful avenues for
further research. Another interesting direction is to analyze the propagation of
the outbreak through a spatially continuous forest.

max
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