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ABSTRACT 

This paper is  devoted to the  investigation of the  simplest mathematical models 
of non-even-age fores t s  affected by insect pests. Two extremely simple situations 
are aonsidered: 1) the  pest feeds only on young trees; 2) the  pest feeds only on old 
trees. I t  i s  shown tha t  an  invasion of a s m a l l  number of pests into a steady-state 
fores t  ecosystem aould resul t  in intensive oscillations of i t s  age  s t ructure .  Possi- 
ble implications of environmental changes on fo re s t .  ecosystems are also con- 
sidered. 



Software is available to allow interactive exploration of the  models described 
in this paper.  The software consists of plotting routines and models of the  systems 
described here.  I t  can be  run on a n  IBM-PC/AT with the  Enhanced Graphics 
Display Adapter and 256K graphics memory. 

For fu r the r  information o r  copies of t he  software, contact t he  Environment 
Program, International Institute f o r  Applied Systems Analysis, A-2361 Laxenburg, 
Austria. 
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THE I N ~ C E  OF PES~S ON mmsr AGE mmm DYNAYIICS: 
THE WTHEMATICAL MODEIS 

M.Ya Antonovsw, Yu.A. Kuznetsov, and W. Clark 

Introduction 

The influence of insect pests on the  age structure dynamics of forest systems 

has not been extensively studied in mathematical ecology. 

Several papers (Antonovsky and Konukhin. 1983; Konukhin, 1980) have been 

devoted to modelling the  age struoture dynamics of a forest not affected by pests. 

Dynamical properties of insect-forest systems under the  assumption of age and 

species homogeneity can be derived from the  theoretical works on predator-prey 

system dynamics (May, 1981; Bazykin, 1985). In the  present paper w e  attempt to 

combine these two approaches to investigate the  simplest models of non-even-age 

forests affected by insect pests. 

The model from Antonovsky and Konukhin (1983) seems to be the simplest 

model of age structure dynamics of a one-species system. I t  describes the  time evo- 

lution of only two age classes ("young" and "old1' trees). The model has the  follow- 

ing form: 

where t and y are densities of "young1' and "old" trees, p i s  fertility of the  

species, h and f are death and aging rates. The function y(y ) represents a depen- 

dence of "young1' trees mortality on the  density of "old" trees. Following Antonov- 

sky and Konukhin (1983) w e  suppose that there exists s o m e  optimal value of "old1' 

trees density under which the  development of "young1' trees goes on most success- 



fully. In this  case i t  is  possible to chose y ( y )  = a ( y  - b12 + c (Figure 1). Let 

s = j  + C .  

Model (A.0) serves as t h e  basis f o r  ou r  analysis. Let us  therefore  recall i t s  

properties.  By scaling variables ( z  , y  ), parameters ( a  ,b ,c , p , j , h  , s  ) and the  time, 

system (A.0) can be  transformed into "dimensionless" form: 

I 2 = py - ( y  - 1)22 - S2 

= z  - h y ,  

where w e  have preserved t h e  old notations. 

The parametric por t ra i t  of system (0.1) on t h e  (p,h)-plane f o r  a fixed s value 

i s  shown in Figure 2, where the  relevant phase por t ra i t s  are also presented. 

Thus, if parameters (p ,h )  belong to region 2, system (0.1) approaches a sta- 

tionary state with constant a g e  classes densities (equilibrium E2)  from al l  initial 

conditions. In region 1 between lines Dl and D2 the  system demonstrates a low den- 

sity threshold: a sufficient decrease of each age  class leads to degeneration of 

t he  system (equilibrium Eo). The boundary of initial densities tha t  resul t  in t he  de- 

gradation i s  formed by separa t r ices  of saddle El. Finally, in region 0 t he  station- 

ary existence of t he  system becomes impossible. 

Let us  now introduce an  insect pest into model (A.0). The two extremely simple 

situations seem to b e  possible: 

1 )  the  pests  feed only on the  "young" trees (undergrowth); 

2) t he  pests  feed only on the  "old" (adult) trees. 

Assume tha t  in t h e  absence of food the  pest density exponentially declines and 

tha t  forest-insect interactions can b e  described by bilinear t e r n  as in the  case  of 

predator-prey system models (e.g ., May, 1981; Bazykin, 1985). 

Thus, f o r  t he  case where the  pest feeds on undergrowth w e  obtain the  follow- 

ing equations: 



I .  2 = py -y(y)z -12 -Azz 

=fz -hy 

Z = -ez +bzz, 

while for the  case where the  pest feeds on adult trees 

1: z = P Y  -7(v)z -12 

i =fz -hy  -Ayz (A.2) 

Z = -&Z + h z .  

Here z i s  insect density, e i s  mortality rate of insect, and terms with zz and yz 

represent  t he  insect-forest interaction. 

The goal of this  paper  i s  t he  comparative analysis of m o d e l s  (A.O), (A.1) and 

(A.2). In t he  final p a r t  of t he  paper  w e  consider biological implications of t he  ob- 

tained resul ts  and outline possible directions f o r  elaborating the model.  The main 

tools f o r  o u r  investigation are the  bifurcation theory of dynmica l  systems and t h e  

numerical methods of this  theory. 

1. M t .  of the investigation of model (kl) 

By a linear change of variables, parameters and time the  system (A.1) can b e  

transformed into the  form: 

I 2 = #  - (y  -I)% -sz -22 

i = z  -hy  (1.1) 
z = -EZ + bzz , 

where the  previous notations are preserved f o r  new variables and parameters 

which have the  same sense as in system (0.1). 

In the  f i r s t  octant  

system (1.1) can have from one to four  equilibria. The origin Eo = (0,0,0) is always 

an equilibrium point. On the  invariant plane z = 0 at which the  system coincides 

with system (0.1) t h e r e  may exist  e i ther  one o r  two equilibria with nonzero coordi- 



nates. As in system (0.1),  the t w o  equilibria El = ( z l , y l , O )  and E 2  = ( Z ~ , Y ~ ~ O )  

where 

appear in system (1.1)  on the  line: 

On the  line 

equilibrium El coalesces with equilibrium Eo and disappears f r o m  R:. Besides the  

equilibria E, , j =0,1,2, system (1.1) could have an additional equilibrium 

c c p - s h  
E3 = ( -  - 

b ' b h '  h 

This equilibrium appears in B: to the right of the  line: 

passing through the plane z =O and coalescing on this plane with ei ther  equilibrium 

El or E2. Line S is  tangent to line Dl at point 

and lies under it. Line S is  divided by point M into t w o  parts: S 1  and S 2 .  Equilibri- 

um E3 collides on S l  with El  and on S 2  with E2. 

The parametric portrai t  of system (1.1) is  shown in Figure 3, while the  

corresponding phase portrai ts  are presented in Figure 4. In addition to the  

described bifurcations of the  equilibria, autooscillations can "emerge" and "van- 

ish" in system (1.1). These events take place on lines R and P on the  parameter 

plane, while the autooscillations exist in regions 5 and 6. 



Equilibrium E g  loses i ts  stability on line R due to the  transition of two com- 

plex conjugated eigenvalues from the  left  to the  right half-plane of the  complex 

plane. This stability change results in the  appearance of a stable limit cycle in sys- 

tem (1.1) (Andronov-Hopf bifurcation). 

There i s  also a line corresponding to destruation of the  limit cyales: line P on 

the  (p,h)-plane. On line P a separa t r ix  cycle formed by outgoing separa t r ices  of 

saddles E l  and E 2  does exist  (Figure 5). While moving to the  separa t r ix  line the  

period of t he  cycle inareases to infinity and at the  cr i t ical  parameter  value i t  

coalesces with the  separa t r ix  cycle and disappears. 

The point M plays a key role in the  parametric plane. This point i s  a common 

point f o r  all bifurcation lines: S 1 , S 2 , D l P 2 , R  and P. I t  corresponds to the  ex- 

istence of a n  equilibrium with two zero  eigenvalues in the  phase space of the  sys- 

t em.  This fac t  allows us to predict  the  existence of lines R and P. 

For parameter values close to the  point M t he re  is a two-dimensional stable- 

center  manifold in t h e  phase space of system (1.1) on which all essential bifurca- 

tions take place. The center  manifold intersects  with invariant plane z =O along a 

curve. Thus w e  have a dynamical system on the  two-dimensional manifold with the  

structurally unstable equilibrium with two zero  eigenvalues and the  invariant 

curve. This bifurcation has  been treated in general form by Gavrilov (1978) in con- 

nection with another  problem. I t  w a s  shown tha t  the  only lines originating in point 

M are the  mentioned bifurcation lines. 

The locations of t he  R and P lines were found numerically on a n  IBM-PC/XT 

compatible aomputer with the  help of standard programs f o r  computation of curves 

developed in Research Computing Center of t he  USSR Academy of Sciences by Bala- 

baev and Lunevskaya (1978). Corresponding numeriaal procedures are described 

in t he  Appendix. W e  have also used a n  interactive program f o r  the  integration of 

ordinary differential equations - PHASER (Kocak, 1986). On Figures 6, 7, and 8 the  



changes in system behavior are visible. 

2. Besulta of the investigation of model (k2) 

Model (A.2) can be  transformed by scaling into the following form: 

I: 2 = py - ( y  - 112z - sz 
y = z  - h y  - y z  (2 .1 )  
2 = -LZ + b z *  

where the  meaning of variables and parameters is the  same as in system (1 .1) .  

System (2 .1 )  can have from one to four equilibrium points in the f irs t  octant 

BQ : E,, = (0 ,0 ,0 ) ,  El  = ( z l , y l , O ) ,  E 2  = ( z 2 , y 2 , 0 )  and E 3  = ( z 3 , p 3 , z 3 ) .  Equilibria 

El and E 2  on the  invariant plane z = 0 have the same coordinates as in system 

(1 .1);  they also bifurcate the same manner on lines Dl and D2. AS in system (1 .1 )  

there  is an  equilibrium point of system (2 .1)  in RQ : 

~b L 2 - h I . 
= 1 ( -  + s b 2  b * ( E  -$ + s b 2  

This equilibrium appears in R: below the  line 

S = [ ( ~ . h )  : pb -h = O  . 
( E  - b12 + s b 2  1 

But equilibrium E 3  does not lose its stability. Autooscillations in system (2 .1 )  

are therefore not possible. That is  why the parametric portraits of system (2 .1 )  

look Hke Figure 9. Numbers of the regions in Figure 9 correspond to Figure 4. 

3. Dimcussion of the resalt. 

The basic model (0 .1 )  with t w o  age classes describes ei ther  a forest approach- 

ing an equilibrium state with a constant rat io of "young" and "old" trees 

( z = hy ), o r  the  complete degradation of the  ecosystem (and presumably, re- 

placement by the other  species). 



Models (1.1) and (2.1) have regions on the parameter plane (0,l and 2) in 

which their  behavior is completely analogous to the behavior of system (0.1). In 

these regions the system ei ther  degenerates or tends to the stationary state with 

zero pest density. In this case the pest is "poorly adapted" to the  tree species and 

oan not survive in the ecosystem. 

In systems (1.1) and (2.1) there  are also regions (4 and 3) where the  station- 

a r y  forest state with zero pest density exists, but is  not stable to s m a l l  pest "inva- 

sions". After a small invasion of pests, the  ecosystem approaches a new stationary 

state with nonzero pest density. The pest survives in the  forest ecosystem. 

The main qualitative difference in the behavior of models (1.1) and (2.1) is  in 

the existence of density oscillations in the  f irs t  system but not in the  second one. 

This means that  a small invasion of pests adapted to feeding upon young trees in a 

t w ~ g e  olass system could cause periodical oscillations in the  forest age structure 

and repeated outbreaks in the  number of pests (i.e., z,y , z  / y and z become 

periodic functions of time). It  should be mentioned that the existence of such oscil- 

lations is usual fo r  simple, even-aged predator-prey systems. 

In our case, however, the  "prey" is  divided into interacting age classes and 

the  "predator" feeds only on one of them. It is  important that the  pest invasions in- 

duce the oscillations in ra t io  z / y of the age classes densities. It  should be  men- 

tioned also that  in the case of model (2.1) the  pest invasion oan include damping os- 

cillations in the  age structure. 

When w e  move on the  parameter plane towards separatrix cycle line P ,  the  

amplitude of the  oscillations increases and the i r  period tends to infinity. The os- 

cillations develop a strong relaxation charac ter  with intervals of s low and rapid 

variable change. For example, in the  dynamios of the pest density z ( t  ) there  ap- 

pear  periodic long intervals of almost zero density followed by rapid density out- 

breaks. Line P is a boundary of oscillation existence and a border above which a 



small invasion of pests leads to complete degradation of the system. In regions 7 

and 8 a small addition of insects to a forest system, which was in equilibrium 

without pests, results in a pest outbreak and then tree and pest death. 

It can be seen that  the introduction of pests feeding only upon the  "young" 

trees dramatically reduces the  region of stable ecosystem existence. The ex- 

istence becomes impossible in regions 7 and & 

W e  have considered the  main dynamical regimes possible in models (1.1) and 

(2.1). Before proceeding, however, let us disauss a very important topic of time 

scufes of the  processes under investigation. It  is we l l  known that  insect pest 

dynamics reflect a much more rapid proaess than the response in tree density. It  

seems that  this difference in the  time scales should be modeled by introduction of a 

s m a l l  parameter p<U into the  equations fo r  pest density in systems (1.1) and (2.1): 

2 +b. But it  can be shown that  the  parametric portrai ts  of the  systems are 

robust to this modification. The relative positions of lines D1,D2 and S as w e l l  as 

the  coordinates of the  key point M depend on rat io E /  b  which is invariant under 

substitutions E + B /  p, b  +b / IL. The topology of the  phase portrai ts  is not affected 

by introduction of a s m a l l  parameter p, but in the  variable dynamics there  appear 

intervals of slow and rapid motions. Recall that in model (1.1) the  similar relaxa- 

tion charac ter  of oscillations w a s  demonstrated near  line P of separatrix cycle 

without additional s m a l l  parameter IL. So w e  could say that  w e  have an "implicit 

small parameter" in system (1.1). 

To demonstrate the  potential f o r  extensions of this approach, let us now con- 

sider the  qualitative implications of imposing on model (1.1) an effect of a tmos-  

pheric changes on the forest ecosystems. A s  i t  w a s  suggested in Antonovsky and 

Korzukhin (1983), an increase in the amount of SO2 or other  pollutants in the  a tmo-  

sphere could lead to a dearease of the growth rate p and an increase of the  mor-  

tality rate A .  Thus, an increase of pollution could result in a slow drif t  along some 



curve on the  (p,h)-plane (Figure 10). 

Suppose that  parametric condition has been moved f r o m  position 1 to position 

2 on the  plane but remains within the  region where a stable equilibrium existence 

without pests is possible. But if the  system is  exposed to invasions of the  pest i t  de- 

grades on line P. Therefore, slow atmospheric changes could induce vulnerability 

of the  forest to pests, and forest death unexpected from the  point of view of the  

forest's internal properties. 

4. Snarnrrry 

I t  is obvious that  both models (A.l) and (A.2) are extremely schematic. 

Nevertheless, they s e e m  to be among the  simplest models allowing the  complete 

qualitative analysis of a system in which the  predator differentially attacks vari- 

ous age classes of the  prey. 

The main qualitative implications from the  present paper can be formulated in 

the  following, to s a m e  extent metaphorical, form: 

1. The pest feeding the young trees destabilizes the  forest ecosystem more than 

a pest feeding upon old trees. Based upon this implication, w e  could t r y  to ex- 

plain the  well-known fact that in real ecosystems pests more frequently feed 

upon old trees than on young trees. It  seems possible that  systems in which 

the  pest feeds on young trees may be less stable and more vulnerable to 

external impacts than systems with the  pest feeding on old trees. Perhaps 

this has led to the  elimination of such systems by evolution. 

2. An invasion of a s m a l l  number of pests into an existing stationary forest 

eaosystem could result in intensive oscillations of its age structure. 

3. The oscillations could be ei ther  damping o r  periodia. 



4. Slow changes of environmental parameters are able to induce a vulnerability 

of the forest to previously unimportant pests. 

L e t  us now outline possible directions fo r  extending the model. It  seems natur- 

al to take into account the following factors: 

1) more than t w o  age classes fo r  the specified trees; 

2) coexistence of more than one tree species affected by the pest; 

3) introduction of more than one pest species having various interspecies rela- 

tions; 

4) the role of variables like foliage area which a r e  important fo r  the description 

of defoliation effeot of the pest; 

5) feedback relations between vegetation, landscape and microclimate. 

Finally, w e  express our belief that oareful analysis of simple nonlinear 

ecosystem models with the help of modern analytical and computer methods will 

lead to a better  understanding of rea l  ecosystem dynamics and to better  assess- 

ment of possible environmental impacts. 



Appendix: Numerical procedures for the bifurcation linemR and P 

1. Andronov-Hopf bifurcation line R . 
On t h e  (p,h)-plane t h e r e  i s  a bifurcation line R along which system (1.1) has  

a n  equilibrium with a pa i r  of purely imaginary eigenvalues All, = *i o (A, < 0). I t  

i s  convenient to calculate t he  curve R f o r  fixed o the r  parameter values as a pro-  

jection on (p,h)-plane of a curve r in t h e  d i rec t  product of t h e  parameter plane 

by phase space R: (Bazykin et al.. 1985). The curve r in the  5-dimensional space 

with coordinates ( p , h , z , y  , z )  i s  determined by the  following system of algebraic 

equations: 

py - ( y  - 1122  - sz z z  = 0 
z -hy = O  
-ez + bzz = 0 
Q ( ~ ~ h , z , y , z )  = 0, 

i 

where G is a corresponding Hurwtiz determinant of t he  linearization matrix 

Each point on curve  I' implies tha t  at parameter values (p, h ) a point ( z  , y , z ) i s  an 

equilibrium point of system (1.1) (the f i r s t  t h r e e  equations of (8) are satisfied) with 

eigenvalues Al12 = f i  o (the last equation of (8) is satisfied). 

One point on t h e  curve  r i s  known. It  corresponds t o  point M on t h e  parameter 

plane at which system (1.1) has  t h e  equilibrium ( f . l . ~ )  with XI = A2 = 0 (9.g.. 
b 

*i o = 0). Thus, t he  point 

t e e  (p ' ,h ' , z ' ,y ' , z ' )  = ( - - -,1,0 ) 
b ' b ' b  

lies on curve  r and can  be  used as a beginning point f o r  computations. The point- 

by-point computation of t he  curve  was done by Newton's method with t h e  help of a 

standard EQRTRAN-program CURVE (Balabaev and Lunevskaya, 1978). 



2. Separatrix cycle line P . 

Bifurcation line P on the  parameter plane w a s  also aomputed with the help of 

program CURVE as a aurve where a "split" function F for  the  separatrix mnneat- 

ing saddles E2,1 vanishes: 

F @ , h )  = 0. 

For fixed parameter values this function can be defined following Kuznetsov 

(1983). Let w2+ be the  outgoing separatrix of saddle E2 (the one-dimensional 

unstable manifold of equilibrium E2 in R?). Consider a plane z = 6 , where 6 is  a 

small positive number; note the second intersection of w2+ with this plane (Figure 

11). Let the point of intersection be X .  The two-dimensional stable manifold of sad- 

dle El interseats with plane z = 6 along a curve. The distance between this curve 

and point X ,  measured in the  direction of a tangent vector to the  unstable manifold 

of E l ,  could be taken as the  value of F f o r  given parameter values. This funation is  

we l l  defined near  its zero value and its vanishing implies the  existence of a separa- 

t r ix  cycle formed by the saddle El12 separatrices. 

For numerical computations separatrix W; w a s  approximated near  saddle E2 

by its eigenvector corresponding to X 1  > 0. The global par t  of W$ w a s  defined by 

the Runge-Kutta numerical method. Point X w a s  calculated by a linear interpola- 

tion. The stable two-dimensional manifold of El w a s  approximated near  saddle El 

by a tangent plane, and an  affine coordinate of X in the  eigenbasis of El w a s  taken 

for  the value of split function F. 

The initial point on the  separatrix has zo  = 0.005. The plane z = 6 was defined 

by 6 = 0.1 and the  integration accuracy w a s  lo-' pe r  step. The initial point on P 

w a s  found through computer experiments. A family of the  separatr ix cycles 

corresponding to points on curve P is  shown in Figure 12. 

Figure 13 presents an actual parametria portrait  of sysbn (1.1) fo r  

s = b  = l , t  =2.  
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Figure 1. The dependence d "young" tree mortality on the density of "old" trees. 

Figure 2. The parametric portrait of system (0.1) and relevant phase portraits. 



Figure 3. The parametric portrait of system (1.1). 



Figure 4 .  The phase portraits of system (1.1). 



Figure 5. The separatrix cycle in system (1.1). 
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Figure 6. The behavior of system (1.1): s = b = 1, E = 2, p = 6,  h = 2 (region 
3). The Y-axis extends vertically upward from the paper. 



Figure 7. The behavior of system (1.1): s = b = 1, c = 2, p = 6 ,  h = 3 (region 
8) - 

Figure 8. The behavior of system (1.1): s = b = 1, E = 2, p = 6,  h = 3.5 (region 
7)  - 



Figure 9. The parametric portraits of system (2.1). 

Figure 10. The probable parameter drift under SOZ increase. 



Figure 11 . The separatrix split function. 
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Figure 12. The separatrix cycles in system (1.1). 



B I F U R C R T I O N  CURVESs S = B = l  E = 2  

Figure 13. A computed parametric portrait of system (1.1). 


