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Second-Order Expansions for a Class of
Quasidifferentiable Functions

Z.Q. Xia and Zhao Chunjun

1. INTRODUCTION - SOME RESULTS IN [5]

Some results concerning the second-order expansion for ¢1-1 functions which
are continuously differentiable and whose gradients are locally Lipschitzian.

Several results given in [5] are listed as follows:

Definition 1.1. [Def. 2.1]. Let 7 € C11(S) and let z € S, where S is an open

set in R"®. The generalized Hessian matrix of f at z is defined by

co fMEfzi {5 = = such that Hf(zt) existand M = tlimh'f(zi)!

where Hf (z; ) denotes the Hessian matrix of f at z. By & f(z) one denotes the gen-
eralized matrix of f at z.

The generalized Hessian matrix of f at z is a nonempty compact convex set of

symmetric matrices. The set-valued mapping z 3 azf (z) is locally bounded, i.e.,

sup (M| | ¥ € *r (N} s K

where V is a neighborhood of z and X is a positive constant. The mapping bzf(~) is
an upper semicontinuous (closed) set-valued mapping in the sense of sequences.

Theorem 1.2. [Th. 2.1. and Th. 2.2.]. Let f € CY(S), F = (f,,....f,p, ) where
Ji € cli(s), ¢:S” CR™ - R where S’ is an open set and F(S) ¢ S’. Then

f°°(z;u,u) = Hm‘sup%[<7f(z’ +Au),v>—-Vfr(z),v>], z €S ; (a)
r ' +»x
o)
(pe F)%=z;u,v)= f} —aﬂ(F(z)).fi“(z:u.v) (b)
{=1 9%

+ @%(F(z).JF (z)u JF(z)v) ,
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and the equality holds whenever either f; € C%(S) for all i, or ¢ € Cz(S’) and

m =1;

m
8%(¢ +F)(z)u < Z%ﬁm(z»azf,(z)u ©)
i1=1 i

+ JTF(2)8%(F (z ))JF(z)u

for all w €R™.

Theorem 1.3. [Th. 2.3]. Let f € Clland z + A\d €S where A >0 and z €S.
Then there exists a C € (0,A) such that

2
Sz +Ad) =S(z) + A<VSf (z),d> + ->é—<Mcd.d> )

where M, € 8%f(z + cd).
Theorem 1.4. [Th. 3.1]. Let * be a minimum point for
min f(z) overall =z
Then for each d € R™ there exists a matrix 4 € 8% f (z*) such that

1

<4d,d> =0

In this paper some similar results for quasidifferentiable functions will be

derived.

2. QUASI-JACOBIAN MATRICES AND SECOND-ORDER QUASIDIFFERENTIALS

Suppose A is a mapping, a vector-valued function,
HR" »R™
defined by
zh H(z) = (h(x)ho(x)hy ENT
where h;(z),2 =1,...,m, are quasidifferentiable functions defined in R". Define
JpH = LIpH, JpH] ,

where
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m

JpH :=( X 8r)HT |
i=1

- m _ T

JpH := ( X Bhy)
i=1

Proposition 2.1. Suppose X is a quasidifferentiable mapping (R® -»R™), [3],
[4]. Then JpH(z) is one of quasidifferentials of the mapping # at = €eR™,

Proof. In a finite dimensional space R™ we have

H'(z:d)i=lim—[H(z + \d) - H(z)]
A0 A
1
= (1;.137[’1,1(: + Ad) - hl(Z)],..-.

1
—limL[hp @ +Ad) = Ay (2)DT

Thus

max <Vd>+ min <W,d>= max <V, d>+ min <W,d> ,
VedH(x) WebH(x) VelpH(z) WelpH(x)

i.e., for any d € R™ one has
BH(z) — JpH(z) = JpH(z) — BH(x)

Since JpH(z), .7911 (z) are nonempty compact convex sets, it follows from the defini-

tion of quasidifferentiable functions that
JpH(z) = [pH(z), JpH(z)]

is a quasidifferential of H at z. U

It is easy to be seen that

JpHE): if m >1

D@ =V the), it m=1,

where
JEH(z) := EH(z), JJH(=)] |

[71.
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Remark. In the case where A is Lipschitzian the relationship, generally

speaking,
m
{lech,t (z) =08, H(z)

= J H(z)

is not true, but in the case where H(z) is quasidifferentiable the pair
m m _
X 8h,(z), X 8h,(z
[ X 2hy (@), X Ohy(2)]

is really a quasidifferential of # at £ € R™, where 8, denotes the Clarke’s gen-

eralized matrix or generalized Jacobian matrix, [1], [R].

Definition 2.2. Jpf(z) is called a quasi-Jacobian matrix of the quasidif-
ferentiable mapping #. Jpf (x) is called sub-Jacobian matrix, and ipl‘] (z) is called
super-Jacobian matrix, [7].

Definition 2.3. Suppose f is a differentiable function defined in R™ and its
gradient is a quasidifferentiable mapping, vector-valued function. A quasi-
Jacobian matrix of its gradient J,Vf (z) is called a second-order quasidifferential
of f at z €e R". The sub-Jacobian matrix is called a second-order sub-
quasidifferential. The super-Jacobian matrix is called a second-order super-
quasidifferential. They are denoted by D%f (z), _Ozf (z) and Ezf (z), respectively,

i.e.,
DEf(z) = [fpVr (z), Jp¥r(z)] ,
21 (z) =dpVf (2), L (z) = JpVS (z)

Theorem 2.4. Suppose f is a differentiable function defined in R™ and its

gradient is quasidifferentiable. Then



2L () _ o
‘_f (z|d ,d )
8d,8d, 172

= max (d{7V- dl'TW)d2
Veg®f (z)
ves©f (z)

(2.1)
+ min (@{TW -d{Td,

Vedqf(z)
'd{! (=)

= max(d; T9%7 (z) —a {707 (2))d,

+ min(d T8 r(z) —d{ T (z)d,

where d, = d; — d,.d{ and di are defined, respectively, by

dyg . dyg 20,
+ _(mt + -
di =(@1dasx1» %11 = |0, d, <O,

and

dy =(didnx G = {—dn , dyy <0.

Proof. Since

82153:2 .
=f'"(z:dy.d3p)
8d ,8d, 1=
= &irg—i—[(Vf (z +Adp.dy> — <Vf (2),d;>]

¢

1
= 1A113<T(Vf (z +Adyp) = V/(z))dy>

n

. i
= gggi‘é‘l—)\—(v.f (z + Adp) = VS (z))1d4

n
= d,;,[ max <y, ,d,> + min <w,,d,>] .
¢2=1 1 i e8(Vf (2 ) 12 wEB(VS (T ))g 1

one has
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f'"(z:dy,dy) = §) [d max <v;,d,> +dS  min <w, ,d»>]
1@2 z 1, cacvri, re2 “w{ea(vf(::)){ 1:@2

+[-dy; max <v;,dp,>—dy; _min <w;,d>]}
1 WEHVSf (TN 12 uw{EB(Vf (T

Therefore,
Fzidydy) = max <VTd} -wld o .d,> (2.2)
E55
veles z)

+ min <V +wld.d,>
Ved®f (x)
veFr )

The (2.1) can be obtained immediately from (2.2). O

By < we denote an operation as follows:
d ©[4,8]:=[dT o, [4,81.adT ©,[4,B]]
where
dT ©,[4,B1:=d*T4 -a TR
and
dT ©,[4.B]1:=d*TB -a7 T4 ,

here d is a vector in R®, 4 and B are matrices or sets of matrices. Using the no-

tations given above, we may write f'(z;d,d,) as follows:
f(z:d,.d,) =max d] o, D?f(z)d, + mind] <, D%f(z)d,
Note that generally speaking, |
d] o, D% (z)d, #df o, D*r(z)d,. i =12
Proposition 2.5. The following relation holds
d] ©D%f (z)d, + df ©,0%7 (z)d, = af (87 (z) + &1 (z))a]

Proposition 2.6. Suppose f,; and f, are differentiable functions defined in

R"™, and their gradients are quasidifferentiable. Then
D¥af, + Bf;) = aD?f, + BD?r, @)

where a and # are any scalars. And
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Dz(fl'fz)=f1'Jva2+f2'Jpr1 (b)
+Vf1®JDf2+Vf2®JDf1

=D, + £D% + 9, @077, + V7, @D 1,

where the operation ® means that
V7 ®Jpsy = [(V1)1/ps 2

Proof. The proof of (2) will be given below. Since
Dy L) =D Vo + 12V )

it is enough to prove that one of the terms in the last expression given above, say,
the first term Jp(f Vs ;) can be obtained. Since

Jp(flvfz) =Jp f1(v:.f2)¢ ,

one has

DU = KBTI . iU = X B0(F)
Consider the Jg(f 1(Vf2);). According to the definition of T we have
JEU (VL 2)) =D (£ 4(Vf 2)1)
= (V1) DF  + 11D(VF )
= (VP Bl + 115V ),

From the above one has

Jp(P1(Vr2)) = (Vf)ydpfy + L 10p(VS ), (2.3)

Similarly, we can get

Jp(fg(vfl)i) = (VfydpS, + f0p(VF)y - (2.4)

The proof of (2) can be completed immediately from (2.3) and (2.4). O



3. SECOND-ORDER EXPANSION

To begin with, we give the following lemma, Cauchy’'s Mean Value Theorem, in

order to deduce second-order expansions.

Lemma 3.1. (Cauchy’s Mean Value Theorem). Suppose f,9:R"™ —R are

quasidifferentiable and for an interval [z,y] CR"
0& <8g(§) +09(f), y —=> ¢€(z,y) . (3.1)
Then there exists an 1 € (x,y ) such that

) =r(x)  <8r(m) + 8r(m.y-—=> 3.2)
g(¥) —gx) <dg(n) + dg(My—-=z> )

Proof. The proof can be made along the lines of a process used in the proof
of Cauchy's Mean Value Theorem in the elementary calculus. According to [7, Th.

2], the fact g (z) = g (v) is true. Thus we can construct an auxiliary function

F(g) =1 - LBL=T @) 0

g(y) —gx)

Without loss of generality, assume that

L) ~rx) _ 0
g(¥) —gx)

It follows from [7. Th. 2] that there exists an n € (z,¥) such that
F(y) —F(z) € <8F(n) + 8F(n),y —z>
We now have to find DF(n). From the rules in quasidifferential calculus one has

DF(n) =Df (n) = LYL=LE) by

g(y) —g(x)
- _ L) =r(=z)
Lar (m g(y)_g(z)ﬁy(n) '
- LW —r@ 5
af (n) (W) —9(z) dg (m] .

[3], [4]. It is easy to learn by directly calculating F’ that
F(y)—-F(z)=0

Thus we have

A _Lw) - f(=z) A _
0€<dr(m +or(n 0 (V) —g(z) (Gg(n) +8g(m), ¥y —z>
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The proof is completed immediately from the hypothesis of this theorem (3.1).
O

Remark. Let 4 and B be subsets in R. The quotient set 4/8B = % is defined

as
A/B={%|a. €A4,b €B) (3.3)

where a /b can be treated as a usual quotient of two real numbers when & # 0, but
as a symbol a /0 when & =0. Using the notation (3.3), the hypothesis (3.1) in the

theorem given above may be omitted.

Theorem 3.2. Suppose a function f defined in R™ is differentiable and its
gradient is quasidifferentiable. Then for any z € R",d #0,d € R™ and A > 0, one

has the following second-order expansion (Taylor's expansion of second order)

2
f(xz +Ad) € f(z) + A (z:d) +Az—dT@2f(z + ¢d) (3.4)

+ 8f (z + ¢d)1d
where £ € (0,\), or an alternative expression

2
A dTw +w)d (3.5)

S(z +Ad) =f(z) + ANf'(z:d) + 5

for some V and W, where

V e 8f(z + £d)

and
WeFr(z +ed), £e@ON)
Proof. Making auxiliary functions
@) =F(z +Ad) —F(z +td) — (A ~£)f"(z + td;d)
and

Y(t) = (A —t)*
We have from the rules of quasidifferential calculus [3] that

De(t) = =D, f(z +td) — f'(z + td;d)D,;(A —t) (3.6)
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= (A =t)Df'(z + td;d)
and
DY) =2\ —t)D(A —t) , (3.7)

where D,f means a quasidifferential of f with respect to t. We now evaluate every

term on the right-hand-side of (3.6). For the first term it can be expressed as
Dif (z +td) =[<af (z +td),d>, <Bf(z +td),d>] . (3.8)
Since f is differentiable in R", one has
Dif(z +td) =[f'(z +td;d),0] . (3.9)
The second term is
f'(z +td;d)[0,1] . (3.10)
In the third term we have from the Proposition 2.5. that
D f'(z +td;d) = [dT oD% (z + ta)dT, dT o, D?r(z + td)aT] . (3.11)

From the Cauchy’s Mean Value Theorem given above it follows that there exists a
£ € (0,A\) such that

e\ = @(0) _ <8p(&) + Bp(£).,A>
V) —¥(0) © W) + BUO.A> 3.12)

where
#(A\) =0, 9(0) = f(z + Ad) = f(z) = A\ (z;d), ¥(A) =0, ¥(0) = A?
From (3.6), (3.8), (3.9), (3.10) (3.11) and (3.7) one has
De(6) +0p(8) = dT(A — O[2% (z + £d) + Ff (z + £d)]
BY(E) + BY(H) = 2(\ — &)
It follows from substituting the expressions above into (3.12) that

2 +2d) = f(z) ~N"(=id) _ A =8aT[&r(z +¢d) + Bf (= + ¢d)]d
A? 2 -8 '

and hence

2
£z +2d) € £ (@) + A (zid) + 2-aT (0% (z + £a)
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+8f(z + ¢d)]d

where £ € (0,)A). 0

Corollary 3.3. Under the assumptions given in the above theorem, for any

A > 0 small enough there existsa ¥ € (0,A) such that
f(x +Ad) =f(z)+ A (z:d) + A9 "(z:d,d) +o(A%) . (3.13)
Proof. From the above theorem and the Mean Value Theorem we have
Sz +9did) — £ (@id) = 2TV + W (3.14)
where ¥ € (0,A\) and

Vedf(z +&d), Webr(x +&d), £ € (0,0

Taking limits to (14)/ A as A ¢ 0, we obtain

limf’(z +Ad;d)—f'(z;d)

A
=lim & T[==( + w)]®
A0 v )Hg [219( 2

Since f''(z;d,d) existsand ¥ » 0* as A ¢ 0, the following equalities,
1, '
lim=[f'(z + 9d;d) — f'(z:d)]
A0V
1., '
=lim—[f'(x +Ad;d) — f'(z;d)]
A0 A
=f'"(z:d.d) ,

hold. Thus

A% r T _ v
?d W +wW)d’ =A0f"(z;d,d) + AVt , (3.15)

where £ +0as A +0, 0 <19 <A. The (3.13) can be deduced immediately from (15).
[

EIUO CONDITION (the condition of exchangeability of intersection and union

operations) is defined as follows:

Let C be a family of nonempty compact convex set and 4 be a nonempty com-
pact convex set. We say that C and 4 satisfy the EIUO condition if the following

condition holds
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U NlZ=-al=n ylZ-a] . (3.16)
a €AZeC ZeCa €l

Lemma 3.4. If for some [U;,U,] € D?f (z) the family i_a_zf (z) + 32f (z){ and
set U, satisfy the EIUO condition, and also iﬁzf (x) - Bzf ()} and U, satisfy the

EIUO condition, where D?%f (z) denotes the class of quasidifferentials of f at z,
then

[ M (Vi +V2), M Vg = V3] € D?f (z)
ViVl €D®f (x ) [V, VeleD®f (z)

Remark. If [V,.V,] € D%f (z), then [V, + V,,V, — V,] € D?f (z).

Proof of the Lemma. It is clear that

N W, =, =vpl
[Vy,Vel€D®f (x )

is a nonempty compact convex set as inasmuch 0 € ¥, — V¥, and

U, c M Wy =, -Vl
[VyVeleD®f (z)

Since [U,,U,].[V,.V,] € sz (z) and the foregoing remark, we have

N Wy =, —V))= N [V, +Vp) —=U,] . (3.17)
[vag] EDgf () [vag] EDef (x)

From this the right hand side of the above expression is a nonempty compact con-

vex set. According to the EIUO condition

18%f (z) + B%f (z)

and U, satisfy the equality,

N Vy+ V) = Uz = N [(V, +Vp) = U,l (3.18)
[Vy,V21€D®f (x) [Vy,Vel €D3f (x)
since
N Vi +V) ~Uz= U [ N (Vy +Vp) —E]
[V11V2J EDgf (x) EEUB [Vl»Vg] Esz (x)

=un, +V, —E)

and
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N Vi +V,-Up = N U (Vy +V, —E)
V1.Vl D% (x) [V,.Vo1€D?f (z YE €U

Similarly, one has

[V1.V21€Df (z) [V.V2l€D®f (z)

It can be asserted from (17), (18) and (19) that two intersections

N Vy +Vy)
[Vy,VeleD3f (z)

and

r\ (Vz - Vz)
[V1.VeleD % (z)

are nonempty compact convex sets, and

V1. VeleD®f (z) [V1.VeleD®f (z)
Hence the lemma is true. O

By sz (z) and 52]’ (z) we denote the

[V1.Vel€D®f (z) [V1.Vel€D®f (z)

respectively, when the conditions in the foregoing lemma are satisfied.

Theorem 3.5. Suppose conditions indicated in the foregoing lemma are satis-

fied, and assume furthermore that mappings sz (z), defined by

z 3D%f(z) = M Ve + Vo)
[Vy,Vo1€D2f (z)

and D?f (z), defined by

z 3D ()= N V-V
[VpVgEsz (z)

are upper semi-continuous in a neighborhood in a direction d # 0. Then for any
€ > 0 there exists a X small enough such that one has a Taylor’'s expansion of

second-order as follows:

2
F(x +Ad) € F(z) + \f'(z:d) + %dT@zf(x) + D%r (z))d (3.20)
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+ A2ead TR

where A € [0,A],82™(0) is a unit ball in R*",

Proof. The proof of this theorem can be done in terms of Theorem 3.2, Lemma

3.4 and upper semi-continuity of sz (z) and D-zf (z) in the sense of the above lem-

ma. O

4. SECOND-ORDER QUASIDIFFERENTIALS OF A COMPOSITION

We will deduce a formula for second-order quasidifferentials of a composite

function in this section.

Definition 4.1. {([4]. [8]). Let X and Y be Banach spaces, and # be a map-
ping: 0 - Y where Q1 is an open set in X. The mapping ¥ is called uniformly direc-
tionally differentiable at this point and if for any d € X and ¢ >0 there exist
numbers 6 > 0 and a, > 0 such that the inequality

H(z + av) —H(z) —aH'(z;v)| < a&
holds forall v € Bg(d), a € [0,xy], where
B§ (@) = tulld — vl < &}

H is referred to as uniformly quasidifferentiable at z if # is uniformly directional-
ly differentiable and quasidifferentiable at z.

Lemma 4.2 [4]. Let X,Y and Z be Banach spaces, and Q;.Q, and Q, be open
sets, respectively, in X,Y and Z. A mapping H: X + Y is directionally differenti-
able at a point X € Qy, and a mapping G: Y » Z is uniformly directionally differen-
tiable at H(x). Then the mapping F' = G « H is directionally differentiable at z and

F(z:d) =G'(H(z); H' (z:d))

= (C'gry *H'z)(d)

wvd €X @1)

Theorem 4.3. Let f: R" +R™ where f = (fl,...,fm)T and ¢: R™ »R". Sup-
pose f and ¢ are continuously differentiable in some neighborhoods, respectively,

of z and f(x), and assume furthermore that the gradient of z,Vf (z), is quasidif-

ferentiable in that neighborhood of z, and th gradient of ¢ is uniformly quasidif-
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ferentiable in that neighborhood of f(z). Then (¢ ) is twice quasidifferentiable

at £ and the following formulas hold:
(9f) (@il d) = (P py*S "z + ¢ pzy 2 D(@1dr) (4.2)
where
rpKdydy): = z(dy), Sz (dy))

= (f'(z;d1)’ f'(:U;dz)) ,

and
D¥g+f)z) = Vo (z)) D21 (z) (4.3)
+ 771 (z) «DE(r ()7 ()
where
D%r,
D%f:=| : ,
D3f .

ITr @)DFe(f (2)f (z) = [T 7 () « 83 0(F (@))F (2) |
ITr (2)(BFo(f (2)))dF ()]
Proof. Since
(¢+r)(zidy) = TP (@) V(U (2))dy>

¢+ f is twice directionally differentiable at z. We now calculate the second-order
directional derivative at x. To begin with, it follows from the definition of direc-

tional derivative that

’?r 3 1
(p 1) (zidy dp) = LimsH{<V(p e f)@ + Adg)dy>
(4.4)
- <V(g «f)x),d4>]
1
=lim--<[Jf (z + Adp) =Jf @)1 Vp o (= + Adp).dy>

+ Ui Tr @)V 90 & +Mdp) = Vr ol @))dy>

The first limit in (4.4) equals
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A

im 5 [|-2€- +Ad
kfg1§1 8sy U 2))

m
=3 M?PJ%U"(Z + Adgidy) — 1 (z:d)]
1

=1 afi
m
=y iﬁgﬁiﬁf’q (:d,.dz)
{=1

= (‘P'f(;) 'f":)(d1-d2)

We have obtained the first part of the right hand side of the expression (4.4).

The second limit on the right hand side of (4.4) can be developed as follows. [t

can be rewritten in the following form:

Um[¢'p ( (2 + M) @)dy) = ¢4 0 @)lF @)dp)]

=lims <(Vp9) +S)@ + Adp) = (V)  1)(@)JF (2)dy>
From the lemma 4.2 the above expression becomes
(V@Y p @y o5 @) IF (2)dy >
= (V@) (2)if (@)d ). Jf (2)d 1>
Let v = Jf (z)d, and u = Jf(z)d,. then the expression turns to
(V@) O (x)iu),v> = (¢ p(2)(V)) f(z)(W)
=¢"'r(f(z)iv,u)
= ¢ (f (2):Jf ()d 1.Jf (2)d )
= (¢ p @y " 1o )(d g8

This is what we want for the second limit in (4.4).

The demonstration of (4.3) will be done below. Since
() (zidy.dy) = ¢ (F(x)if"(x:d,.d5))

+¢"(f ()i Jf (z)dy.Jf (2)dp) .

(4.5)

(4.6)

4.7

one has to calculate the two terms on the right hand side of (4.7),
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¢(f(z): f''(z:dy,dp) and ¢ (f (z):Jf (z)d,,Jf (z)d,), respectively. Let
=0¢
N =50 @)
We have
¢ (@)f " (z;dq.dp) = <Veo(f (z)).f"(z:idy,d5)>

=2 %.%(f(z))f”i (:d;.d,)

- .
= Z (A f) (z:dy.dy)
i=1 .
m
=( Z A Sy) (zidy.dy)
i1=1
We now calculate the second term on the right hand side of (4.7). Since

¢’ (f(x):idf (z)dy,Jf (x)dp) =

= lin- <V ¢(7 (&) + M (2)d) = Vo @)).JF (2)d 1>

=lim- <77 @) V00 @) + M (@)d) =71 @) - Vp e (@Ndy>
one has from the hypotheses in this theorem that
9" (f (z):Jf (z)d,.Jf (z)dy) = <Tr(z). Veo) U (z)Jf (x)dp,dy >

Since

VT @) Vo) (f (2)idf ()dp)

= max Vedf(z)d, +  _ min WeJf(z)d,
VelpWTf )V e(f (z))) WelpJTf @)Vpe(f(x)))
= max d, + min Wed,

- 2
VeTf (x)JpVys ¢(f @NIF () WeITf (@)JpVy o(f @NIS (@)

= max Vd, + _min wd, |,
VesTf (x)dfef @NJf @) WelTf )Bfe(f (x NS (z)

one has from the proof of Theorem 2.4 that letting

VY(z:dq.dy) = ¢ (f(2)Jf (z)dy.Jf (z)dy)

(4.8)
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we have
Diy(z) =JTf (z) «Dfe(f (2)) < Jf () . (4.9)

Combining (4.8) and (4.9), we obtain (4.3). The proof has been completed.
-

S. NECESSARY CONDITIONS FOR UNCONSTRAINED PROBLEMS

Theorem 5.1. Under the assumptions given in the Theorem 3.9, suppose z isa
local minimum point to minimize f(x).zx € R". Then for every nonzero d €R"

there exist V e_sz (x)and W € 52f (z) such that
aTwv +w)yd 20 , (5.1)
or
dTHd 20 |,

where H € 8%f (z) + 8°F (z).
Proof. Suppose for any V.V’ € _sz (z)and W,W’ € Bzf (z).
d*Twv+wdd —dT(W +V)d <0
Then exists a nonzero d € R™ such that
S (z:d,d) = max min [d+T(V +W)d - d"T(W +V)d] <0

Ved®f (z) V' €8 (x)
"d{f(s) f (2)

Since f is differentiable, the gradient of f at z equals zero, i.e., Vf(z) =0. In
other words f’(z;d) = 0. According to (3.13) we have

J(z +Ad) —f(z) =A0f"(x:d,d) +o(N) ,
where ¥ € (0,A). Thus for A > 0 small enough one has
f(x +2Ad)~-S(xz)<0 . (5.2)

The (5.2) shows that x is not a local minimum point. This leads to that there exist

Ve azf(z) and W € '52_]’(::) such that
TV +w)yd —dTw +v)d 20

V(' W) € D%f () = (9% (2),8°f (z)]
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holds. Taking V' =V and W' = W, we have
dT(W +w)d 20

The proof is completed. ]

Theorem 5.2. Under the assumptions given in the Theorem 3.2, suppose z is a
local minimum point to minimize f(x),2 € R". Then for each pair of V 692 f (z) and

W e 32f (z) there exist vectors g4,9, € B4(0) such that

ofv —glw e gTo%r (@) —9lr(z) . (5.3)

where
91 = XN 9o = TN e T
d, €bdB,(0), i =1,....m ,
A 20,i=1,..m
XA =1
Remark. The expression (5.3) can be rewritten as
OV A ZEN O WY ALl S (5.4)
(T Aa DEs (@) — (Tr e DE @)
or
YN df o) € Y a a7 oD% ()

Proof. From the proof of the above theorem one has that for any d € R?, the

following holds
S (z:d,d) =71"(z:d)

= min max [T +w)-d T +w)laTl
V?:J (x) V" €g?f (x)
vel<y(z) vVeles(z)

= min max @*Tv —-d Twnhd =0
Veg_?mv'enz (x)+W
Yeicf(z) V'eBef(z)+V

It follows from this that

min  min max @*Tv' —dTw)Hd =20
ldl=1 VegPf (z) Vg% (x)
Vel (z) Velor(z)
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A closed convex set depending on VV and W can be constructed as follows:
QW.W): =coQ (V,W)
=cofu =d*TV —adTw' |V € d?r(z) + W, (5.5)

W € ®r(z) +V|d| =1}

Hence
min min max <u.T,d>20 ,
fai=1 ng:f () u QW)
ve¥es (z)
i.e.,

min max <uT,d> =0 ,
lal=1 u €@V, W)

for each pair of V €d*f(z)and W € 52)’ (z). According to [6, Lemma 1] or [3], we

have the following assertion:
OecQWVwW) . (5.6)

The (5.6) shows that there exist d;, €bdB4(0),i =1,...,m,
A, 20,i =1,...,m,)A; =1such that

0e PN @ T@ @)+ W) —a T@Fr@)+ )

ie.,

0e(Xna W — XA, W + Y (A4, T8%7 (z))

-Ta TEr ()

Since A, d;*T and ), d, T are nonnegative, one has

ECrae, W — (et hw € (Cr e ha%r @)

—(Trna HEFr ()
Letting
91 =XNdft, g=YNd

we obtain the form (5.3). The proof is completed. O
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