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Second-Order Ekpamions for a Class of 
Quasidifferentiable Functions 

Z.Q. X b  and Zhao C h u n j u n  

1. INTRODUCTION - SOME BESULTS IN [S] 

Some resul ts  concerning the second-order expansion f o r  c'.' functions which 

are continuously differentiable and whose gradients are locally Lipschitzian. 

Several  resul ts  given in [5] are listed as follows: 

Definition 1.1. [Def. 2.1 3. Let f E c'.'(s) and let z E S ,  where S is  an open 

set in Rn. The generalized Hessian matrix of f at z i s  defined by 

ro [M (3 lzi 1: + z such tha t  Hf (zi)  exist  and M = lim Hf (zi) 1 
1 -+- 

where Hf (z i )  denotes the Hessian matrix o f f  a t  z .  By 82f(z) one denotes the  gen- 

eralized matrix of f a t  z . 

The generalized Hessian matrix of f a t  z i s  a nonempty compact convex s e t  of 

symmetric matrices. The set-valued mapping z #f ( z  ) is  locally bounded, i.e., 

where V is a neighborhood of z and K is  a positive constant. The mapping #f(.) is  

an upper  semicontinuous (closed) set-valued mapping in the  sense of sequences. 

Theorem 1.2. [Th. 2.1. and Th. 2.2.3. Let f E C1.'(s), F = Ul ...., I,)~ where 

fi E c'.'(s), p:S' c Rm + R where S' i s  an open set and F(S)  c S'. Then 



and the  equality holds whenever ei ther  fi E c2(s) fo r  all  i ,  o r  q E c2(s') and 

m =l; 

for  all  u c R n .  

Theorem 1.3. m. 2.31. Let f E c'" and z + Ad E S where X > 0 and z E S. 

Then the re  exists a C E (0,X) such that  

where Mc E sf (z + cd ). 

Theoran 1.4. [Th. 3.11. Let z* be a minimum point fo r  

min f (z) over all  z . 

Then for  each d E Rn the re  exists a matrix A E B2f (z*) such tha t  
L 

In this paper  some similar results fo r  quasidifferentiable functions wi l l  be 

derived. 

2. QUASI-JACOBIAN MATRICES AND SECONTSOEDER QUASIDIFFERENTIALS 

Suppose H is a mapping, a vector-valued function, 

H a n  +Rm 

defined by 

z l-* H(z) = (hl(z)lh2(z)s...shm(z))T s 

where hi (z),i = 1, ... ,m , are quasidifferentiable functions defined in Rn . Define 

JDH := CJDH, ~ D H ]  , 

where 



Propodtion 2.1. Suppose H is  a quasidifferentiable mapping (Rn + Rm),  131, 
141. Then JDH(z) is  one of quasidifferentials of t he  mapping H at z € R n .  

Proof. In a finite dimensional space Rm w e  have 

1 
H t ( z ; d )  i =  lim-[H(z + Ad) -H(z) ]  

xro A 

1 = (lim-[hl(z + Ad) - hl(z)] ,  ..., 
A l O  A 

1 - lim-[h, (Z + Ad) - hm (z)])' 
A l O  A 

Thus 

max < V , d > +  min < W , d > =  max < V , d > +  min <W,d> , 
VEBH (I WEBH(Z) VG!dr<z ) WEJdf(2) 

i.e., f o r  any d E Rn one has  

Since b H ( z ) ,  JDH(z) are nonempty compact convex sets ,  i t  follows from t h e  defini- 

tion of quasidifferentiable functions t ha t  

i s  a quasidifferential of H at z . 

I t  is  easy t o  b e  seen tha t  

where 



Remark. In the  case where H  is Lipschitzian the  relationship, generally 

speaking, 

is not t rue ,  but in the  case where H ( z )  is quasidifferentiable the  pair  

is really a quasidifferential of H  at z E Rn, where 8, denotes the  Clarke's gen- 

eralized matrix o r  generalized Jacobian matrix, [I], [2]. 

Definit ion 2.2. J D H ( z )  is called a quasi-Jacobian matrix of t he  quasidif- 

ferentiable mapping H .  & H ( z )  is called sub-Jacobian matrix, and & H ( z )  is called 

super-Jacobian matrix, [7]. 

Definit ion 2.9. Suppose j' is a differentiable function defined in Rn and its 

gradient i s  a quasidifferentiable mapping, vector-valued function. A quasi- 

Jacobian matrix of i ts  gradient JD Vj '  ( z  ) is called a second-order quasidifferential 

of j' at z eRn. The sub-Jacobian matrix is called a second-order sub- 

quasidifferential. The super-Jacobian matrix is called a second-order super- 

quasidifferential. They are denoted by ~'.f ( z  ),_~'j' ( z )  and sj' ( z  ), respectively, 

i.e.. 

Theorem 2.4. Suppose j' is a differentiable function defined in Rn and its 

gradient is quasidifferentiable. Then 



+ min ( d l T w  - d l T W 2  
v€dJ(r 1 

v f (= )  

where d l  = d  [ - d  ; , d  [ and d  ; are defined, respectively, by 

and 

Proof. Since 

n - max < v i , d 2 > +  min <wi ,d2>]  , 
- i ' =1 li [ui a ( v f  (r wi ~ ( v f  (Z )) i  

one has 



f " ( z ; d l , d 2 )  = l z [ d &  max <v, ,d2> + dl+f min <wi ,d2>] 
ui W V f  (Z ))i wi ~ S ( v f  (Z  ))i 

max < v i e d 2 > - d G  rnin <wi,d2>11 - 
+ [ d G u i a ( v f  (Z,,i wi E S ( V ~  (2 ))i 

Therefore,  

f t ' ( z ; d l , d 2 )  = max a T d :  - w T d ~ , d 2 >  (2.2) vP(Z, 
v I(=) 

+ min <-vTd; + wTd:,d2> . 
v q  (a(. , 

v a  I(=) 

The (2.1) can be  obtained immediately from (2.2). • 

By 0 w e  denote an  operation as follows: 

d  0 [A ,B]  := [ d T  O1 [ A , B ] , ~ ~  O2 [ A , B ] ]  

where 

d T  Ol [A.B] := d + T ~  - d - T ~  

and 

d T  0 2  [A,B] := d + T ~  - d - T ~  , 

he re  d  is  a vector  in Rn,  A  and B  are matrices o r  sets of matrices. Using the no- 

tations given above, we may write f " ( z ; d l , d 2 )  as follows: 

f t ' ( z ; d l , d 2 )  = max d f  o1 D 2 f ( z ) d 2  + min d r  0 2  ~ ~ f ( z ) d ~  . 

Note tha t  generally speaking, 

d f  0, D ~ J ( Z ) ~ ~  + O, D ~ J ( Z ) ~ ~  , i = 1,2 . 

Proposition 2.5. The following relation holds 

T 2  d f o l D 2 f ( z ) d 2  + d [ ~ $ ~ f ( z ) d ~  = d l @  f ( z )  + ? f ( z ) ) d :  . 

Proposition 2.6. Suppose f 1  and J 2  a r e  differentiable functions defined in 

Rn , and the i r  gradients are quasidifferentiable. Then 

where a and B are any scalars. And 



D 2 W 1 .  1') = I 1 .  J D V l z  + f 2 '  J D V f l  

+ O f 1  @ J D f z  + 9 1 ,  @ JDI1 

= j - 1 ~ Z f 2  +120221 + v f 1  m T f Z  + v f Z  @ ~ ~ f ~  . 

where the operation @ means that 

Proof. The proof of ( 2 )  will be  given below. Since 

it  is enough to  prove that one of the terms in the last expression given above, say, 

the first  term JD(J1Vf2)  can be obtained. Since 

one has 

Consider the ~ f i ~ ( v f ~ ) ~ ) .  According to  the definition of T we have 

JDTV 1 ( ~ f 2 ) i  = D  W 1(Vf2)C 

= ( V f z ) i D f l  + f 1 D ( V f 2 ) i  

= ( g l z > t ~ $ f l  + f l ~ $ ( ~ ~ 2 ) i  . 

From the above one has 

JD( . f1 (v f2 ) i )  = ( v f 2 ) i J D f l  + f 1 J D ( v f 2 ) i  

Similarly, w e  can get 

JDcP2(Vf1)i)  = ( V f l ) i  JDP2 + f z J D ( V l l ) i  - (2 .4)  

The proof of ( 2 )  can be completed immediately from (2 .3)  and (2 .4 ) .  



3. SECOND-ORDER EXPANSION 

To begin with, w e  give the  following lemma, Cauchy's Mean Value ?heorem, in 

o r d e r  to deduce second-orderexpansions. 

Lemma 3.1. (Cauchy's Mean Value Theorem). Suppose j',g : Rn - R are 

quasidifferentiable and f o r  an  interval [x , y ] c Rn 

Then t h e r e  exists an  7 € (x  , y ) such tha t  

Proof. The proof can  b e  made along the  Lines of a process  used in the  proof 

of CauchyBs Mean Value Theorem in t he  elementary calculus. According to [7, Th. 

21, t he  f ac t  g ( x )  + g ( y  ) i s  t rue .  Thus w e  can construct  an  auxiliary function 

Without loss of generality, assume tha t  

I t  follows from [7. Th. 21 tha t  t he re  exists a n  7 € (x #'I/) such that  

F ( y )  - F ( z  E <_BF(T) + %(TI),'I/ - z > . 

W e  now have to find DF(7). From the  ru les  in quasidifferential calculus one has  

[3], [4]. I t  i s  easy to learn by directly calculating F tha t  

F ( y )  - F ( x )  = 0 . 

Thus w e  have 



The proof is completed immediately from the  hypothesis of this theorem (3.1) .  

A  Remark. Let A and B be subsets in R. The quotient set A / B  = - is defined 
B  

where a / b can be  t rea ted  as a usual quotient of two real numbers when 6 + 0, but 

as a symbol a /O when 6 = 0 .  Using the  notation (3.3),  the  hypothesis (3.1) in the  

theorem given above may be  omitted. 

Theorem 3.2. Suppose a function f  defined in Rn i s  differentiable and i t s  

gradient is quasidifferentiable. Then f o r  any z E Rn ,d # 0.d E Rn and A > 0 ,  one 

has the  following second-order expansion (Taylor's expansion of second order )  

where t E @,A), o r  an  alternative expression 

x2 
f ( z  + Ad) = f ( z )  + A.f t ( z :d )  + T d T ( ~  + ~ ) d  , 

f o r  some V  and W ,  where 

and 

W E ? f ( z  + t d ) ,  t E (0.A) . 

Proof.  Making auxiliary functions 

~ ( t )  = f ( z  + A d )  - f ( z  + t d )  - ( A  - t ) f ' ( z  + t d ; d )  

and 

$ ( t >  = ( A  - t 1 2  s 

W e  have from the  rules  of quasidifferential calculus [3]  tha t  

Dq?(t) = - D t f ( z  + t d )  - f ' ( z  + t d ;d )Dt (A  - t )  



and 

where Dtf  means a quasidifferential of f  with respec t  t o  t . W e  now evaluate every 

term on the  right-hand-side of (3.6). For the  f i r s t  t e r m  i t  can be  expressed as 

D t f ( z  + t d )  = [W(Z + t d ) , d  >, < z f ( z  + t d ) . d  >] . (3.8) 

Since f  i s  differentiable in Rn , one has 

The second term is 

f ' ( x  + t d ; d ) [ O , l ]  . 

In the  third term w e  have from the  Proposition 2.5. tha t  

D t f t ( z  + t d ; d )  = [ d T ~ @ 2 f ( x  + t d ) d T ,  d T 0 2 D 2 f ( ~  + t d ) d T ]  . (3.11) 

From the  Cauchy's Mean Value Theorem given above i t  follows tha t  t he re  exists a 

C E (0,A) such tha t  

Q(A)  - Q(O)  < a ~ ( t )  +_ZP(~) .A> 
*(A) - * ( O )  _B*(#) + W(#),  A> ' 

(3.12) 

where 

(p(A) = 0 ,  ~ ( 0 )  = f ( z  + Ad)  - f  ( z )  - AJ"(x;d) ,  *(A) = 0 ,  *(0)  = A' . 

From (3.6), (3.8), (3.9), (3.10) (3.11) and (3.7) one has 

I t  follows from substituting the  expressions above into (3.12) tha t  

f ( z  + Ad)  - j ' ( x )  - A f ' ( x ; d )  T 2  ( A  - # ) d  M f ( z  + # d )  + Z f ( z  + ( d ) ] d  

x2 2 0  - 0 
I 

and hence 

x2 
f ( z  + Ad)  E f ( x )  + A J t ( z ; d )  + -d T @ 2 f ( ~  + # d )  

2  



where ( E (0, A). 

Corollary 3.3. Under the assumptions given in the  above theorem, f o r  any 

X > 0 s m a l l  enough the re  exists a IJ E (0,X) such tha t  

Proof. From the  above theorem and the  Mean Value Theorem w e  have 

where IJ E (0, A) and 

V E _ B ~ ~ ( Z  +.$d), W E ~ J ' ( Z  +.$d), .$ E (0.X) . 

Taking limits t o  (14)/ X as h r 0, w e  obtain 

Since j "(z ;d  , d )  exists and IJ -, 0' as X r 0, the  following equalities, 

hold. Thus 

where E -, 0 as X -, 0, 0 < IJ < A. The (3.13) can be deduced immediately from (15). 

Em0 CONDITION (the condition of exchangeability of intersection and union 

operations) is defined as follows: 

Let C be  a family of nonempty compact convex set and A be  a nonempty com- 

pact convex set. We say tha t  C and A satisfy the  EIUO condition if  the  following 

condition holds 



Lemma 5.4. If f o r  some [U1,U2] E 0'1 (z ) the  family u2.f (z ) + 3.f (z ) j and - 
set U 2  satisfy the EIUO condition. and also 12.f (z ) - $.f (z ) 1 and U l  satisfy the 

EIUO condition, where 0'.f(z)  denotes the class of quasidifferentials of .f at z ,  

then 

Bemark. If [Vl,V2] E D ~ . ~ ( z ) ,  then [Vl + V2,V2 - 1/23 E D ~ J ( z ) .  

Proof of the Lemma. It  is clear tha t  

is a nonempty compact convex set as inasmuch 0 E V2 - V2 and 

Since [U1 ,U2] ,  [V1,V2] E 0'1 ( z )  and the  foregoing remark, we have 

From this the r ight  hand side of the above expression is a nonempty compact con- 

vex set. According t o  the EIUO condition 

and U 2  satisfy the  equality, 

since 

and 



Similarly, one has 

It  can be  asser ted from (17), (18) and (19) tha t  two intersections 

and 

are nonempty compact convex sets,  and 

Hence the  lemma i s  t rue .  

By lJ2f  ( z )  and E2f ( z )  w e  denote the 

respectively, when the  conditions in t he  foregoing lemma are satisfied. 

Theorem 3.5. Suppose conditions indicated in the  foregoing l e m m a  are satis- 

f ied, and assume furthermore that  mappings _ ~ ' f  (I ), defined by 

and ~ ' f  (z  ), defined by 

are upper semi-continuous in a neighborhood in a direction d + 0 .  Then f o r  any 

E > 0  t he re  exists a small enough such tha t  one has a Taylor's expansion of 

second-order as follows: 

A2 
j'(z + Ad) E f ( z )  + A.t f (z ;d)  + - d T ( Q 2 f ( z )  + g f ( z ) ) d  

2 
(3.20) 



where h E [o, XI ,  @fn(0) is  a unit ball in R ~ ~ .  

Proof.  The proof of this theorem can be done in terms of Theorem 3.2, Lemma 

3.4 and upper  semi-continuity of _02j  ( z  ) and E2j ( z  ) in the  sense of the  above lem- 

ma.  

4. SECOND-ORDER QUASIDIFFERENTIALS OF A COMPOSITION 

W e  will deduce a formula f o r  second-order quasidifferentials of a composite 

function in this  section. 

Definition 4.1. (141. 181). Let X and Y be Banach spaces, and H be a map- 

ping: Q -, Y where R is an  open set in X. The mapping H is  called uniformly direc- 

tionally differentiable at this point and if f o r  any d E X  and e > 0 t he re  exist  

numbers b > 0 and a. > 0 such tha t  the  inequality 

((H(z + a v )  - H ( z )  - aHf(z;v)(I < a e  

holds f o r  a l l  v E B: (d  ), a E (0, ao], where 

H is r e f e r r ed  t o  as uniformly quasidifferentiable at z if H is  uniformly directional- 

ly differentiable and quasidifferentiable at z . 
Lemma 4.2 141. Let X,Y and 2 be  Banach spaces, and R, , Ry and R, be  open 

sets,  respectively, in X,Y and 2. A mapping H: X -, Y is  directionally differenti- 

able at a point X E Qx, and a mapping G: Y -, 2 is  uniformly directionally differen- 

tiable at H(z) .  Then the  mapping F = G H is  directionally differentiable at z and 

Theorem 4.3. Let j : Rn -, Rm where j = ~ l . . . . ~ , , , ) T  and p: Rm -, Rn . Sup- 

pose j and p are continuously differentiable in some neighborhoods, respectively, 

of x and j ( z ) ,  and assume furthermore tha t  the  gradient of x , V j  ( z  ), is  quasidif- 

ferentiable in tha t  neighborhood of z ,  and th gradient of p is  uniformly quasidif- 



ferentiable in that neighborhood of f ( z  ). Then (rp * f  ) is  twice quasidifferentiable 

at  z and the following formulas hold: 

where 

Proof. Since 

(rp *I ) ' ( z ;d l )  = a T f ( z )  * V f  rpV(z)).d1> I 

rp * /  is  twice directionally differentiable at  I. W e  now calculate the second-order 

directional derivative at  z .  To begin with, it follows from the definition of direc- 

tional derivative that 

The first limit in (4.4) equals 



W e  have obtained the  f i r s t  p a r t  of the r ight  hand side of the expression (4 .4 ) .  

The second limit on the  r ight  hand side of (4 .4)  can be  developed as follows. I t  

can be rewritten in the  following form: 

From the lemma 4.2 t he  above expression becomes 

<((Vf w ) ' ~  (,) * f ' x ) ( d 2 ) 1 J I ( ~ ) d l >  

= <(Vf ( P I ' C P  ( ~ ) ; J f ( z ) d ~ ) ~ J f ( z ) d ~ >  , 

L e t  v = Jf ( z ) d l  and u = Jf ( z ) d Z .  then the  expression turns to 

This is what w e  want f o r  t he  second limit in (4 .4 ) .  

The demonstration of (4 .3 )  will be done below. Since 

one has t o  calculate the  two terms on the  r ight  hand side of (4 .7) ,  



q t W ( z ) ;  f " ( z ; d l , d 2 ) )  and q " W ( z ) ; J f ( z ) d l l J f ( z ) d 2 ) ,  respectively. Let 

We have 

W e  now calculate the second term on the right hand side of (4 .7) .  Since 

1 = lim-wTf ( z )  l V f  (PW ( z )  + W f  ( z ) d 2 )  - J ~ ~ ( z )  l V f  q V  ( z ) ) . d l >  . 
xro h 

one has from the hypotheses in this theorem that 

Since 

- - max V  l Jf ( z ) d 2  + min w l J f ( z ) d 2  
V G D ( J ~ ~  ( 2  ) - v f  BU ( Z  ))) W ~ D ( J ~ ~  ( 2  )-v3 B C ~  ( Z  ))) 

- - max Vd2 + min W a d 2  
v d T f  ( z  ) J g V j  aCf ( z  ) ) J f  ( 2  ) w d T f  ( z  ) Jgvj aCf ( z  )) Jf  ( 2 )  

- - max Vd2 + min Wd2 
vdTf  ( Z  ) + f a C f  ( Z  )) Jf ( 2  ) w d T f  ( Z  ) 3 f a C f  (Z  ) ) J f  (2 ) 

one has from the proof of Theorem 2.4 that letting 



we have 

Combining (4.8) and (4.9) ,  we obtain (4.3) .  The proof has been completed. 

5. NECESSARY CONDITIONS FOR UNCONSTRAINED PROBLEXS 

Theorem 5.1. Under the  assumptions given in the Theorem 3.9, suppose z is a 

local minimum point t o  minimize f ( z ) , z  E R n .  Then f o r  every nonzero d E Rn 

t he re  exist V E 8'1 (z ) and W E z2f  (z ) such tha t  

where H E d 2 f  (z ) + 3 f  (z ). 

Proof. Suppose f o r  any V, V' E 4 9  (z ) and W ,  W' E 21 (z ), 

Then exists a nonzero d E Rn such that 

f t ' ( z ; d , d )  = max min [d  + T ( ~  + W')d - d - T ( ~  + V')d ] < 0 . 
va, ((r ) Y.$Y (z ) 

/ & I  /&I 

Since f  i s  differentiable, the  gradient of f  at z equals zero, i.e., V f ( z )  = 0 .  In 

o ther  words f ' ( z  ; d )  = 0. According t o  (3.13) w e  have 

where 13 E (0 ,  A ) .  Thus f o r  A > 0 s m a l l  enough one has 

f ( z  + Ad) - f ( z )  < 0 . (5.2) 

The (5.2)  shows tha t  z is not a local minimum point. This leads to tha t  there  exist 

V E a2f ( Z  ) and W E ?f ( Z  ) such that  



holds. Taking I/' = V and W' = W, we have 

The proof is completed. 

Theorem 5.2. Under the  assumptions given in the Theorem 3.2, suppose x is  a 

local minimum point t o  minimize j'(x),x E Rn . Then f o r  each pa i r  of V ElJ2j' (a:) and 

W E $j '(x) t he re  exist  vectors g1,g2 E B1(0)  such that  

where 

Remark. The expression (5.3) can be rewritten as 

( x  X~ q T v  - ( x  X~ d : q  w E 

( x  di+qlJ2f ( z  - ( x  At di-T)$f (z , 

Proof. From the proof of the  above theorem one has that  for  any d E Rn , the 

following holds 

- - min max [d+T(V' + W )  - d - T ( ~  + w')]dT 
v a J ( t )  P a J ( t )  

v r(=) v r(=) 
- - min max (d  + T ~  - d - T ~ f ) d  2 0 . 

v€g2 ( t )PES  ( t ) + W  4 Y Vdlj(r) V ' d j ( z ) + V  

It  follows from this tha t  

min min max (d  - d - T ~ f ) d  r 0 . 
) d ( = l ~ ~ g ~  ( z  ) me (z  ) d . r  v r(=) vare) 



A closed convex s e t  depending on V and W can be constructed as follows: 

Q(V, W ) :  = coQ'(V,W) 

= c o i u  =d+TV' - d d T ~ ' I V '  E ~ ~ ~ ( z ) + w ,  

W' ~ z f ( x )  +V,lldII = lj . 

Hence 

min min max < u T , d > 2 0  , 

min max < u T , d > 2 0  , 
(d (=1  u EQ(V, W )  

f o r  each pa i r  of V E a 2 f  ( x  ) and W E z2f (z ). According t o  16, Lemma 11 o r  131, we 

have the following assertion: 

The (5.6) shows that  t he re  exist  di E bdB1(0), i = 1 ,..., m ,  

Xi 2 0 ,  i = 1 ,..., m,CXi  = 1 such tha t  

i.e., 

0 E (C X i  dt+?W - (C Xi d i - 9 ~  + C ( X i  di+T_82f ( X  )) 

- C ( ~ , d , - V f ( x ) )  . 

Since Xi d t T  and X i  are nonnegative, one has 

( C h i  d i - 9 ~  - (C X i  di+')w E (C X i  dt'T)_82f (Z ) 

- ( C ~ , d i - ~ ) z f ( x )  

Letting 

g ,  = C X i d i + ,  gz = , 

we obtain the form (5.3). The proof is completed. 
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