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FOREWORD 

In the problem of combined filtering and parameter estimation one considers a sto- 
chastic dynamical system whose state zt is only partially observed through an observation 
process yt. The stochastic model for the process pair (zt, y t )  depends furthermore on an 
unknown parameter 0. Given an observation history of the process y t ,  the problem then 
consists in estimating recursively both the current state zt of the system (filtering) as well 
as the value 9 of the parameter (Bayesian parameter estimation). 

The problem is a rather difficult one: Even if, conditionally on a given value of 0, the 
process pair (zt ,  y t )  satisfies a linear-Gaussian model so that  the filtering problem for zt 
can be solved via the familiar Kalman-Bucy filter, when 9 is unknown, the problem be- 
comes a difficult nonlinear filtering problem. 

The present paper, partly based on previous joint work of one of the authors, makes 
a contribution towards the solution of this problem in the case of discrete time and of a 
(conditionally on 0) linear model for zt ,  yt. The solution that  is obtained is shown to  be 
robust with respect to  small variations in the a-priori distributions in the model, in par- 
ticular those of the disturbances. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



We consider a partially observable, discrete-time process {zt, 8,, y t )  over a finite 
horizon T. The unobservable components are {z,, 8,) and may be interpreted as state of a 
stochastic dynamical system, partially observed through {y,). Conditionally on { O f ) ,  the 
pair {zt), {yt) satisfies a linear model of the form (1) below; {Ot) itself evolves according 
to a given joint a-priori distribution p(Oo,. . ., 8 T). 

The purpose of the paper is to determine recursively the joint conditional distribu- 
tion p(zt,  8, 1 y t ) ,  ( y t  : = {yo,. . ., y , ) ) ,  or, more specifically, E{f(zt, B t )  1 y t ) ,  namely the 
(mean-square) optimal filter for a given j(zt, 8,). 

When O t  is constant ( O t  r 8) and can therefore be interpreted as an unknown param- 
eter, our problem becomes that of the combined filtering and parameter estimation. 

The optimal filter is computed for the ideal situation of white Gaussian noises in the 
model (1) below and it is shown that,  when this filter is applied to a more realistic situa- 
tion where the noises are only approximately (in the sense of weak convergence of meas- 
ures) white Gaussian and also { B t )  has only approximately the given distribution 
p(Oo,. . . , B T ) ,  then it remains almost (mean-square) optimal with respect to all alternative 
filters that are continuous and bounded functions of the past observations. 
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WHITE GAUSSIAN NOISE DIST'CTRBANCES 

Wolfgang J. Runggaldier and Cinzia Visentin 

INTRODUCTION 

We consider a process triple (zt ,  O t ,  y t ) ,  (zt E R n ,  0, E R q ,  yt E R m )  satisfying over 

a finite horizon t = 0, 1 , .  . ., T the model 

where (0,) is defined through its joint a-priori distribution p(Oo, ..., O T )  equivalent to  as- 

signing 

The processes {w,), {v,) (wt E R n ,  v, E R m ) ,  also defined through a joint a-priori distri- 

bution, are supposed t o  be independent of (0,). Furthermore, A, - Bt - Qt - 

C,(.), Dt(- ) ,  Rt(.) are given (matrix valued) functions of appropriate dimensions and 

Qt - R t ( - ) ,  are positive definite. 

We may think of the pair (z,, 0,) as the state of a dynamical system, partially ob- 

served through the process y,. The component 0, of the state evolves as a (nonlinear), not 

necessarily Markov process, conditionally on which the process pair (z,, yt)  satisfies a 

linear model. If, in particular, 0, is constant (0, = 0), then we may think of 0 as an unk- 

nown parameter in the linear model (1) for (z,, y,) with a given a-priori distribution p(6'). 

We shall interpret model (1) in the sense that  process y, is being observed starting 

from time t = 1 and that ,  a t  a generic time t ,  first a transition (2,- 0,- ,) + (z,, 0,) 

takes place and then an observation is generated according to  (1.b). 



Our problem consists in computing recursively for t = 1 , .  . ., T the joint conditional 

distribution p(zt ,  O f  I yf ) ,  given the observations yf : = {yl,.  . ., yt) ,  letting p(zo, Oo I yo) = 

p(zo, Oo) namely the joint initial distribution for (zo, 00) defined through ( l .c ) ,  (1.d). 

More specifically, given an integrable function f(z,  8), instead of considering the entire 

conditional distribution p(zt ,  O f  I yf) ,  we are interested in computing recursively 

namely the optimal filter for f(zt ,  O t )  in the sense of the minimal mean square error. In 

the case when O t  is constant, and therefore has the interpretation of an unknown parame- 

ter for model ( I ) ,  our problem becomes that  of the combined filtering and parameter esti- 

mation. 

We remark here tha t  the results to  be obtained below can easily be seen to  hold also 

if At-l(Bt- I ) ,  Bt- l(8t-  I ) ,  Q t -  , (of -  I ) ,  Ct(et), Dt(Bt), Rt(8t) in model (1) are allowed 

to  depend (continuously) on yf - l and p(Ot ( O t  - l , .  . . , Oo) in (1.d) are continuous functions 

also of y f -  l .  Since this more general assumption would make the notation much heavier 

and less transparent, we prefer to  present our derivations for the simpler model as 

described above. 

In the next Section I we shall assume that  {wt), {vt) are independent and standard 

white Gaussian and that  O f  takes only a finite number of possible values. In this case, in 

analogy t o  [2], we show that  the problem can be solved explicitly via a recursive pro- 

cedure that  becomes also finite-dimensional if O f  is a constant random variable. 

In the following Section 11, still retaining the white Gaussian assumption for {wt), 

{vt), we assume that  is absolutely continuous. In this second case, since an explicit 

solution is in general impossible, we derive an approximation algorithm along the lines of 

what is done e.g. in [3] for general nonlinear filtering problems. We discretize the process 

O t  t o  obtain a finite-state process 8jN) so that  the algorithm of Section I can be used t o  

compute exactly conditional expectations of the form 

The discretization will be such that  under suitable assumptions which essentially refer to  

the continuity of f (z ,  8) and of the coefficients in model ( I ) ,  one has for all t and all yt 

lim e j N ) ( t ,  y f )  = O,(t, yt) 
N+oo 



In the last Section 111, in analogy to [4] ,  [5], we assume more realistically that  {wt), 

{vt) are only approximately (in the sense of weak convergence of probability measures) 

white Gaussian and tha t  also fit is only approximately distributed according to  the given 

po(flo) and p(flt 1 fit - . ., do) of (1.d). In order that  an approximation argument can be 

used, we embed such a problem into a family of similar problems parameterized by a 

parameter s > 0. Instead of model (1) we then have 

where we assume that  

where =+ denotes weak convergence, {wt), {vt) are independent standard white Gaussian, 

{dl) has a given joint density and is independent of {wt), {vi). For such models it will in 

general be impossible to  derive an  analytical expression for p (z f ,  8; I (y')') or to  explicitly 

compute E{ f (zf ,  8;) 1 (ye)'). A natural approximate approach then consists in using the 

exact or approximate solution obtained for the ideal limiting model ( I ) ,  namely @,(t, yt) 

or @jN)(t ,  y') according to  whether fit is finite-state or not, and to  apply i t  t o  the physical 

model (5), i.e. to  compute @,(t, (ye)'), respectively @jN)(t ,  (ye)'), with the actual obser- 

vations yf replacing the yt of the ideal model (1). Under suitable assumptions, essentially 

those of the previous Section in addition to the boundedness of f ( z , 0 ) ,  we then show that  

for all w.p. 1 continuous and bounded functions F t ( ~ ' )  of the past observations 

y' = {yl,.  .., yt) one has for all t 

where the dependence on - and the limit with respect to  N can be dropped if fit is finite- 

state. Relation (6) says that  the approximate filter @IN)(t, (y')') is, for small s and large 

N, an  almost (mean square)-optimal filter for f ( z f ,  8;) with respect to  all alternative 

filters that  are continuous and bounded functions of the past observations. This can also 

be expressed by saying that  with respect to  the above alternative filters, the filter for the 

ideal model (1) is robust to  small variations in the a-priori distributions of the model. 



1. G A U S S I A N  W H I T E  N O I S E ;  0 ,  F I N I T E - S T A T E  

( E x a c t  s o l u t i o n )  

In this Section we assume that  the sequences { w t ) ,  { v t )  in model ( 1 )  are independent 

white Gaussian and that  B t  takes only a finite number of possible values. The result to be 

obtained here is given in Theorem 1.1 below that  makes it possible to  derive an algorithm 

for the exact recursive computation of ~ ( z ~ ,  O t  1 y t )  = C o d ( z t ,  e t  1 y t )  where 

e t : =  ( e  o , . . . , e t )  
From the recursive Bayes formula we have 

where a denotes proportionality and where, denoting by g ( z ;  p,  a 2 )  the Gaussian density 

with mean p  and covariance matrix a 2 ,  from (1 .b)  we have 

P ( Y ~  I z t ,  e t ,  y t- '1  = P ( Y t  I Z t ,  e t )  = d y t ;  Ct( f l t )z t  + Dt(e,) ,  ~ ~ ( e t ) )  

Furthermore, given the independence of { w t ) ,  { v t ) ,  {Bt )  from (1.a) we have 

p ( z t ,  et  I z t -1 ,  e t - l , y t - l )  = ~ ( z t l z t - 1 ,  e t ,  Y t - l ) P ( e t  I Z t - 1 ,  
e t - 1  t - 1  

,Y = 

= ~ ( e t  14'- ' ) p ( z t  I z t -1 ,  et - 1 )  = 

= p(et I et - l ) g ( z t ;  A ,  - ,  ( 4 ,  - 112, - , + B, - ,(et - 1 1 ,  Q?- (4  - 1 1 )  

Finally, from ( l . c ) ,  ( 1  .d) 

P ( ~ O , ~ O  I Y O )  = P ( Z O ,  40) = po(eo)g(zo; Bo(eo), Q ; ( ~ o ) )  

In what follows, given a generic nonsingular matrix M ,  we let 

jU-2:= ( M - 1  I ' M -  

denoting transposition by a prime. Extending a procedure in [2] we now have 

THEOREM 1.1 Under the current assumptions on model (1) we have for all t  = 0 , .  . ., T 

p ( z t ,  et I Y t )  a C 0 t - l P ( e t ) ~ t ( e ' )  



where 

~ ( 0 ~ )  = P O ( ~ O ) P ( ~ ~  Iflo) - - -  ~ ( 4  1 e t -  ') ( 12) 

and where,  letting 

:= ~ ~ ' - ~ ( e ~ - ~ ) ~ r - ~ ~ ( e ~ - ~ ) ~ ~ - ~ ( e ~ - ~ )  + ~ ~ - ~ ( e ~ - l )  . (13) 

the other c o e f i c i e n t s  are obtained recursively as 

'Pt(et) = 'Pt - l ( e t -  ')[(det Qt - 1(Bt - l))(det ~ ~ ( 8 ~ ) ) l - l  . (14.a) 

(det Nt(et - I ) ) -  'I2; '~o(eo) = (det Qo(eo))- ' 

REMARK 1.1 Using the matrix equality Q-' - Q-'A [A'Q-'A + M ] - ~ A ' Q - '  = 

(Q' + A M- 'A ' ) - '  and the positive definiteness of Q t  2(8t) it is easily seen by induction 

that Mt(et) ,  Nt(Ot - l) are positive definite. 



PROOF I t  suffices to prove that  p(zf ,  8'1 yi) p(8f)pf(8') exp {-  Z ~ M ~ ( B ' ) ~ ~  + 
x;ht(8', y') + kt(ei, IJ')) For simplicity we shall drop the arguments in the various ma- 

trices. We proceed by induction: From (10) it follows immediately that  the result holds 

for t = 0. Assuming then that  it holds for t - 1 2 0, we show it for t ,  using the recursive 

formula (7) with (8) and (9). The induction hypothesis and a straightforward "comple- 

tion of the square" lead to  

1: , 
exp - [ x ~ Q ~ ~ ~ A ~ - ~  - B ; - ~ Q L ~ ~ A ~ - ~  + h t - l ( e f - l ,  y f - l ) ]  

Multiplying this expression according to (7) by p(yt  ( x t ,  O f )  given by (8) and collecting 

terms we get the desired result. 

Theorem 1.1 immediately yields a recursive algorithm for computing p (z f ,  Of I yf):  It 

consists in computing recursively a t  each step t the relations (14) for each of the possible 

values of 8'. Notice that  the dimension of this procedure increases at  each step by a factor 

equal to the number of possible values of 8. If Of  is a constant parameter 8, the procedure 

becomes finite dimensional requiring the relations (14) to be computed a t  each step t only 

for the various possible values of 8. 

2. G A U S S I A N  WHITE NOISE; 0, A B S O L U T E L Y  C O N T I N U O U S  

( A p p r o x i m a t e  so lu t ion)  

In this Section we still assume that  the sequences { w t ) ,  { v f )  in model (1) are in- 

dependent standard white Gaussian, but we let B t  take a continuum of possible values as- 

suming, without sensible loss of generality, that  for all t its distribution has compact sup- 

port 8. The main result is the approximation theorem, Theorem 2.1 below, that  makes it 

possible to  derive an approximation algorithm for computing Q1(t ,  yf)  = E{f(zf, Of) 1 y'}. 



In the present case we can again use the recursive Bayes formula to  obtain 

with the same relations (8), ( 9 ) )  (10 )  except that  this time all quantities appearing in ( 9 ) ,  

(10)  represent densities. Theorem 1.1 also continues to  hold with Cot-, replaced by a 

(multiple) integral and with p ( e t )  representing the joint a-priori density of f l f .  Contrary 

to  the previous Section however, the recursions (14)  do not yield a computable algorithm 

as the possible 8' range over a continuum of values. It makes therefore sense to look for an 

approximation algorithm. 

We shall make the following 

ASSUMPTION A . l  The functions A t  - Bl - Qt - C,(.), D,(.), R,(.) as well 

as p(8') are continuous and f ( z ,  8 )  is a polynomial i n  z with coefficients that are continu- 

ous functions of e .  Furthermore, for all t ,  the distribution of 0' has compact support O. IJ 

Given an integer N > 0 consider a partition of the compact support O into sets 

( i  = 1 , .  . , ( N ) ;  lim r ( N )  = + oo) such that  ( l ( e i )  denotes the Lebesgue measure of 
N+co 

max l ( O i )  < 1 / N  (16)  
1 

Furthermore, for each i 5 r ( N )  let ei be a fixed element in O , .  Given the joint density 

p(0') = po(Bo)- - - p(Ot 18'- I ) ,  ( t  = 0, 1,  ... T )  define 

i i 
By its definition, p(N)(f?27.. . , 6''') represents, for each t and each N ,  a joint probability 

1 i 
distribution for the finite-valued discrete random vector ( B o o 7 . .  . , B t t )  (i,, . . ., it 5 r ( N ) ) .  

Let e l N )  denote the finite-state process with the joint distribution (17 )  and let 

e i  '( i - - 1 , .  . ., r ( N ) )  be its values. Furthermore, given y ' ,  let 4: 1 y t )  be the joint 

conditional distribution of z t ,  of,  assuming that  the process 0' in model ( 1 )  corresponds to  

el"'. 
As an immediate consequence of the previous definitions, as well as that  of a 

Riemann-Stieltjes integral, we can now state the following 



i i 
L E M M A  2.1 For all t ,  the discretized random vector ( 0 2 , .  . . , e f t )  converges weakly, as 

N -+ m, t o  the  cont inuous  r a n d o m  vector ( O o , . . . , O t ) ,  i.e. for all cont inuous  (and by as- 

sumpt ion  A . l  also bounded) functions \k(Oo,. . . , B t )  we have 

We are now in a position to prove our approximation theorem that  contains an addi- 

tional result to  be used in the next Section. 

T H E O R E M  2.1 Under  assumpt ion A . l  we have for a given f ( z ,  8 )  and all t and yt 

= J J f ( z t ,  e t ) P ( z t ,  et I Y t ) d z t d e t  = @ j ( t ,  Y t )  

Furthermore,  

@ J N ) ( t ,  Y ' )  and @ j ( t ,  y t )  

are cont inuous  functions of y t .  Finally,  given yt and a n  arbitrary sequence yfv converging 

to  Y t ,  

P R O O F  Let, with the definitions ( 1 4 ) ,  

* ,(t; e t ,  y t )  : = p t ( e L )  . 

From ( 1 4 ) ,  assumption A.l and the positive definiteness of M t ( e t )  we have that  

q j ( t ;  e t ,  y t )  is continuous in both et and yt and is bounded for each given value of yt.  

From Lemma 2.1 we then have for all t and y f  



Notice now that  for f ( z ,  8) - 1 the left- and rightmost terms in (21) are the (inverses of 

the) normalizing proportionality factors for relation (11) of Theorem 1.1 when applied to  

the processes 81Nj and Of  respectively. The first statement of the theorem now follows by 

using (11) of Theorem 1.1 and then applying (21) both for the given f(z,  8) and for 

f (z ,  8) = 1 (the latter for the convergence of the normalizing factors). 

Concerning the second statement of the Theorem notice that  by the continuity of 

of ,  yf )  and the fact tha t  8' takes values in a compact set, for y; and y; sufficiently 

close we have 

uniformly in of so that  for any probability distribution function p(ef)  also 

I $ *!(ti o f ,  y;)dp(ef)  - J *!(ti e f ,  ~ : ) d p ( e ' )  I < 

From here, recalling that  (for the given ~ ( 8 ' ) )  

we obtain the continuity of Of( t ;  yf);  analogously for @jN)( t ,  yf) .  

Coming to the last statment of the theorem we recall from [I;  Thms. 5.2, 5.51 that ,  if 

functions { h N ( ~ ) ) N E I N  and h(z) as well as probability measures {PN), P are such that  



N + w  
i) {z ( 3zN - z for which hN(zN) + h(z)} = qc5 

ii) hN, h are (uniformly in N) bounded 

iii) PN + P (weak convergence) 

then 

N - + w  
Given y', let then yfv - y' and define, with some abuse of notation, 

The continuity of @ !(t; o', y') then implies that  @jN)( t ,  a )  and @ !(t, .) satisfy i) and ii) 

above. Finally, let PN and P be the measures induced by the processes {elN)} and (0') 

respectively, for which by Lemma 2.1 also iii) above holds. Relation (22) then translates 

in to 

From here the result follows recalling that  

@ ,  Y = [ E @ ~ ( ,  ] -  { ( t ,  e ) }  ; 

analogously for @ jN)( t , y ') . 

From Theorem 2.1 we obtain the following approximation algorithm to compute 

@ !(t, y') = E{ f(zt ,  8') 1 y '} for a continuous function f(z,  8) that  is a polynomial in z: 

Step 1: Given po(Bo) and p(Bt I 0' - l , .  . . , Bo), compute according to (17) the joint a-priori 

distributions for the discretized finite-state process elN). 
Step 2: Compute p(zt ,  0f 1 yf) ,  (i = 1,. . ., r (N))  by means of the algorithm of Section I 

and determine @jN)( t ,  y'). 

Theorem 2.1 guarantees that ,  by taking N sufficiently large, the approximation of 

@!(t, y) by @jN)(t ,  y) is arbitrarily close. 



3. ROBUSTNESS WITH RESPECT TO THE A-PRIOR1 DISTRIBUTIONS 

IN THE MODEL 

In this Section we consider model (5) with the following assumptions (Recall tha t  + 
denotes weak convergence) 

E E 
E 10 

~ . 2  [w; ,..., w T , V 1 l . . . J v + , e ;  ,..., e$l= 

* [w01..-1 WT,  v l ~ - . . ~  "T, e O ~ - . . ~ e ~ ]  

where wt and vt are independent standard Gaussian random variables, O O J . .  . , 6' 
have a joint a-priori density p(OT) and {wt), {vt), { O f )  are mutually independent. 

A.3 Same as A . l  in addition t o  the boundeness of f (z ,  0). 

Assumption A.3 implies tha t  the functions OI(t, yt)  and @jN)( t ,  yt)  defined in (2) 

and (3) respectively, are (uniformly in N) bounded in addition t o  their continuity as 

shown in Theorem 2.1. 

The result t o  be obtained in this Section is given in Theorem 3.1 below showing that  

if one uses the (exact or approximate) solution Ol(t, yt) (@jN)(t ,  y t ) )  computed for the 

ideal limit model (1) and uses it for the physical model (5), in the sense of estimating 

f(z;, 8;) by @!(t, (yE)l)  or @jN)( t ,  (yE)l) depending on whether the limit process { O f )  is 

finite-state or not, then this filtered estimate is, for small 6 and large N, an almost (mean 

square) - optimal filter for f(z;, O f )  with respect to  all alternative filters tha t  are continu- 

ous and bounded functions of the past observations. In other words, with respect t o  the 

above alternative filters, the filter computed for the ideal model (1) is robust to  small 

variations (in the sense of weak convergence) of the a-priori distributions of the noises 

{wt),  {vt) and of the process { O f ) .  

First we have the following Lemma 3.1, which shows that  the ideal model (1) is 

indeed the limit model (for 6 10) of the family of models (5). 

LEMMA 3.1 Under assumptions A . 2  and A.3  we have the weak convergence 

where the vector on the left corresponds to model (5) and the one on the right to model (1 ) .  



PROOF Let G be the function from R ( ~ + ' ) ( ~ + Q ) +  Tm into itself tha t  according to  

model ( I )  expresses the vector [zO,. . . , ZT,  VI, .  . ., vT, Oo,. . ., O T ]  as  a function of 

[wO,. .., wT, vl, .. ,, vT, 00, .. ., O T ] .  This function remains the same for [zt ,  yt, O,] and [wt, 

vt, O t ]  being replaced respectively by [zf ,  yf ,  O f ]  and [wf, vi, O f ]  from model (5). The 

Lemma follows from the continuity of G. 

In the statement of the following Theorem 3.1, to  fix the ideas, we assume that  the 

joint limit distribution p(Ot) for O f  is absolutely continuous so that  as  solution to  the ideal 

limit model (1) one has t o  take the approximation d N ) ( t ,  y t )  computed according t o  the 

algorithm of Section 11. If the limit process B t  is already finite-state, then the limit model 

( I )  has the exact solution Bl(t, y t ) ,  computed according to  the algorithm of Section I, and 

in the statement of Theorem 3.1 we can drop the dependence on - and the limit with 

respect to  N. 

THEOREM 3.1 Under assumptions A . 2  and A.9  we have for all t = 1,. .., T and all con- 

tinuous and bounded functions F t (y t )  

PROOF From Lemma 3.1, assumption A.3, the w.p. 1 continuity and boundedness of 

F t ( y t ) ,  the fact tha t  Ol(t, yt)  = E{f(zl, O t )  1 yt)  is mean-square optimal, the continuity 

and (uniform in N) boundedness of @jN)(t ,  y t )  and Qf(t ,  yt)  (assumption A.3 and 

Theorem 2.1), and the last statement of Theorem 2.1 we have 

where for the last equality we use the result from (1; Thms. 5.2, 5.51 recalled in the 

paragraph above (22). 
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