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FOREWORD 

The paper is concerned with the filtering problem for systems with piecewise linear 
coefficients. Such systems have recently attracted the attention of various researchers in 
the field of stochastic system theory. 

The interest of the present study is twofold. On the one hand it provides a possible 
approximation to a general piecewise linear filtering problem, on the other hand it sug- 
gests the relevance of adaptive linear systems in the study of stochastic nonlinear systems. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



ABSTRACT 

A discrete-time nonlinear filtering problem with piecewise linear coefficients and not 
necessarily Gaussian disturbances is considered. It is shown that  i t  possesses asymptotic 
properties that  coincide with the analogous properties of a filtering problem for a suitably 
randomized linear model which admits a finite-dimensional solution. The asymptotic pro- 
perties are connected t o  the behavior of the nonlinear filters when some parameters of the 
distribution of the initial condition and of the signal disturbances become small. These 
asymptotic properties allow to  consider the finite-dimensional filter as an approximate 
solution t o  the original problem. It can in fact be shown that ,  asymptotically, the original 
and the approximate models have the same conditional moments and, in particular, the 
same conditional mean square errors. 
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ASYMPTOTIC ANALYSIS FOR 
PIECEWISE LINEAR FILTERING 

Giovanni B. Di Masi and Wolfgang J. Runggaldier 

1. INTRODUCTION 

We shall be concerned with asymptotic properties of the solution to the discrete- 

time nonlinear filtering problem related to the partially observable stochastic process 

(zt ,  yt) E R x R m  described by 

Here at and ct are continuous and piecewise linear functions, namely 

where (ri : i = 1 , .  . ., N) is a finite partition of Rn.  It is furthermore assumed that the ini- 

tial condition zo and the disturbances Pt and -yt are distributed according to finite mix- 

tures of normal densities, more precisely we have (- means "is distributed according to" 

and g(z; p,  a2) denotes the normal density with mean p and variance a2) 

where a&, oBi, a$ are positive definite. A possible representation for these random vari- 



ables can be obtained in the following way. Consider a discrete random vector Oo which 

takes the values poi, i = 1,. . . , No with probabilities P{Oo = poi) = a0, and define the 

mapping S : {poi) - R n  by 

Assuming vo -- g(z; 0, I) we have that  the random vector 

satisfies (3.a). 

With an analoguous procedure we can obtain representations for Pt and 7t of the 

form 

where {vt : t = 0, 1, ... ) and {wt : = 0, 1, ... ) are independent standard Gaussian white 

noises, Op and O7 are discrete random variables taking values in {ppi) and {p7;) respec- 

tively with probabilities P(Op = ppi) = api and P{07 = p .) = a7,, and Q and R  satisfy 7' 

With such representations for zo, Pt ,  rt the mutual dependence of these random variables 

will be related to  the joint probability p(Oo, Op, 07) and a suitable choice of the latter al- 

lows a considerable flexibility as far as the possible dependence patterns are concerned. 

We will therefore assume that  the given nonlinear filtering problem is exactly described 

by equations ( I ) ,  (2) with initial condition and disturbances as in (4) and with a given 

joint distribution p(Oo, OD, 07). It is well known [1,3] that  in general such a problem ad- 

mits an infinite-dimensional solution. The aim of our study here is to  show that  some 

asymptotic properties of the nonlinear filter associated with model ( I ) ,  (2) coincide with 

those of a finite-dimensional nonlinear filter associated with a suitably chosen randomized 

linear model. Such filter can therefore be considered as an approximation t o  the original 

infinite-dimensional filter and for this reason the randomized linear model will be referred 

to  as the approximate model. In order t o  provide a precise definition of this approximate 

model, we have to  introduce a further random process related to the possible linear 

behaviors of the coefficients at and ct in (2). To this end let tt  and qt  be the processes 



defined by 

We can now define the approximate model as: 

where At,  Bt,  Ct, Dt are the quantities appearing in (2) and where the initial condition zo 

and the disturbances pt ,  rt are defined in (4). Notice that ,  asymptotically, q t  "tracks" the 

linear behaviors of at and ct, namely, defining 

E = max {aoi, ap .: i = 1,. . ., No, j = 1,.  . . , Np) 3 (7) 

we have a.s 

Writing explicitly Pt and 7t as in (4.b, c), taking into account that  q t  depends only on Bo 

and OD, and defining 6 = [6;, 68, o;]',  model (6) can be rewritten, with obvious abuse of 

notation, as 

Zt + 1 = At(6)zt + Bt(6) + Q(6)vt + 1 ( 9 . 4  

Y t  = Ct(fl)zt + Dt(6) + R(6)wt ( 9 4  

with 

20 = S0(6) + S(6)z0 

where So(6) = 60 and with a given distribution p(6). In this case, using (8), we have a.s. 

lim At(6)zt + Bt(6) - at(zt)  - Op = 0 ( l0.a)  
€10 



We are now in a position to state more precisely what is the main result of this pa- 

per. We shall show, under suitable assumptions, that for any k ,  the k-th conditional mo- 

ments of zt given y t :  = {yt,. . ., y t ) ,  relative to the original model (1) and to the approxi- 

mate model (9) respectively, converge to the same limit as c in (7) converges to zero. This 

will be done in the next Section 2. In the following Section 3 we shall then show in analo- 

gy to 121 that the exact filter for the approximate model (9) is indeed finite-dimensional 

and derive recursive relations that allow to actually compute it. 

2. ASYMPTOTIC ANALYSIS 

The main result of this Section is Theorem 1 below and its Corollary 1 showing that,  

asymptotically for c in (7) going to zero, the conditional moments of zt given y t ,  relative 

to the original model (1) and to the approximate model (9) respectively, converge to  the 

same limit. 

We shall need the following 

ASSUMPTION A For i = 1,. . ., N and all t we have 

Let pf(zt, 8) and fi;(zt, 8) denote the joint conditional, on y t ,  distribution of (zt, 8) 

for model (1) and (9) respectively. With the symbol oc denoting proportionality and using 

again g(z; p,  a2) to denote the normal density, from the recursive Bayes formula we have 

with initial condition 

In the next Section 3 we shall derive a recursive preceedure for the exact computa- 

tion of p^;(zt, 8). 



In the proof of Theorem 1 below we shall need the following 

LEMMA 1 Given a uniformly continuous and bounded function f ( - ) ,  we have 

where the convergence is uniform w.r. to y. 

PROOF We have for 5 > 0 

Due to  the uniform continuity of f ( . ) ,  the first integral is infinitesimal with 5 for all y and 

a ;  due to  the boundedness of f ( . ) ,  the second integral is infinitesimal with a for all y and 

5. 

Recalling that  by its definition (5a) the process tt is a function of 8, for what follows, 

when convenient, we shall write it as tt = t t ( 8 ) .  

We now have 

THEOREM 1 For a continuous function f ( - )  with polynomial growth we have a.s. 

where 

K(yO,  8) = ~ ( 0 )  

W y t ,  8) = K ( y t  - l ,  8)9(yt; c t ( t t (8))  + e7 ,  ~ ~ ( 8 ) )  

PROOF The proof is by induction. For t = 0 we have 

lim J f ( z o ) ~ 6 ( z o ,  8) dzo = lim J f(zo)$;(zo, 0) dzo 
€ 1 0  10 



Assume now (12) holds for t - 1 2 0. We have 

lim $ f(zt)pf(zt; 4) dzt 
c 10 

By Assumption A we have that the function 

considered as a function of zt ,  is uniformly continuous and bounded. By Lemma 1 we then 

have that 

- g ( ~ t ;  c tb t  - 1 b t -  1) + + R2(fl))f(at - l b t  - 1) + I 

is infinitesimal with 6 .  On the other hand, by the induction hypothesis 

g(yt; ct(at - 1(zt - 1) + + 87' ~ ~ ( f l ) )  /(at - 1 b t  - 1) + dzt - 1 

a K(Y' - l ,  fl)g(yti ct(at - l (F t  - 1) + dB) + e7> R2(fl)) (14) 

/(at - I ( < ( - I )  + K(yt9  4) f(Ft(e)) 

thereby accomplishing the proof of (12) as far as the original problem (1) is concerned. 

In an analogous way we obtain that 

lim $ f(zt)r;f(zt; 0) dzt a 
€10 

which by (10) and the definition of tt in (5a) is equal to  the right hand side of (14) 

thereby completing the proof. 



Let p i t  and $it denote the conditional moments relative to  the filters for the original 

and the approximate models respectively, namely 

Furthermore, denote by ei  and 6: respectively the conditional mean square errors of the 

two filters, both computed with respect to  the joint conditional distribution for the origi- 

nal model ( I ) ,  i.e.: 

We then have as an immediate consequence of Theorem 1, 

COROLLARY 1 For every t and every k 

lim pi t  = lim $it 
6 10 €10 

which implies, in particular, that also for the conditional mean square errors we have 

lim ef = lim 6: 
€10 €10 

3. RECURSIVE COMPUTATION OF THE FINITE-DEMENSIONAL 

FILTER 

The result to  be obtained in this section is given in Theorem 2 below and allows 

p^;(zt, 8) t o  be computed recursively through a finite-dimensional filter. 

In what follows, given a generic nonsingular matrix M, we let 

In analogy to [2] we now have the following 

THEOREM 2 The conditional joint distribution p*;(zt, 8) for the approzimate model (9) 

satisfies 

fif(zt, 8) o< [(det S(O))(det ~ ( ~ ) ) ' ( d e t  ~ ( 8 ) ) ~ ] - l *  



. ,(8)[ : (det b s ( 8 ) )  '1' ~ ~ ( 8 ) ~  + z; hy(8) + kY(8) s = o  

where 

REMARK Using the matrix equality 

Q-' - Q-'A[A'Q-'A + M ] - ~ A ' Q - '  = [Q2 + A M - ~ A ' ] - I  

and the positive definiteness of S-'(8) and Q2 it is easily seen by induction 

that Mt(8) and Nt(8) are positive definite. 

PROOF For simplicity we shall drop here the argument 8. We proceed by induction. 

Recalling ( l l .c) ,  we immediately have the result for t = 0. Assuming now that the result 

holds for t - 1 2 0, we show it for t using the recursive formula (1l.b). The induction hy- 

pothesis and a straightforward "completion of the square" lead to  

m [(det S)(det Q)'(det R)( t  - I)]- lp (8) I  (det N ~ ) -  '1' 
s = o  1 



exp I : ,  - - [ z ~ Q - ~ A ~ - ~  - B ~ ' - ~ Q - ~ A ~ - ~  + h f ~ l l [ ~ ; - l ~ - Z ~ t - l  + Mt-ll-l  

[det (At'- 1 ~ - 2 ~ t -  1 + Mt- 111 - 112 

Multiplying this expression, according to ( l l .b ) ,  by 

g(yt; Ctzt + Dt, R') a (det R)- l  

and collecting terms, we get the desired result. 

Theorem 2 immediately yields a finite-dimensional recursive algorithm for comput- 

ing $:(zt, 6'); it consists in computing for each of the possible values of 6' the recursive re- 

lations (1 7). 
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