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PREFACE

This paper is a continuation of the author’s previous investigations in the theory
of epsilon-solutions in convex vector optimization and serves as a theoretical
background for the research of SDS in the field of multicriteria optimization. With
the stress laid on duality theory, the results presented here give some insight into
the problems arising when exact solutions have to be substituted by approximate
ones. Just like in the scalar case, the available computational techniques fre-
quently lead to such a situation in multicriteria optimization.

Alexander B. Kurzhanski
Chairman
Systems and Decision Sciences Area



CONTENTS

1. Introduction

2. Epsilon Optimal Elements

3. Perturbation Map and Duality
4. Conical Supports

5. Conclusion

6. References

12

17

18



EPSILON SOLUTIONS AND DUALITY IN VECTOR OPTIMIZATION

Istvan Valyi

1. INTRODUCTION

The study of epsilon solutions in vector optimization problems was started in 1979
by S. S. Kutateladze [1]. These types of solutions are interesting because of their
relation to nondifferentiable optimization and the vector valued extensions of
Ekeland's variational principle as considered by P. Loridan [2] and [. Vdlyi [3], but
computational aspects are perhaps even more important. In practical situvations,
namely, we often stop the calculations at values that we consider sufficiently close
to the optimal solution, or use algorithms that result in some approximates of the
Pareto set. Such procedures can result in epsilon solutions that are under study in
this paper. A paper by D. J. White [4] deals with this issue and investigates how

well these solutions approximate the exact solutions.

Motivated by the above, in the present paper we study the implications in duality
theory of substituting exact solutions with epsilon solutions. Although the well
known results have their counterparts, our findings show that in some cases spe-

cial caution is required.

For the sake of simplicity in formulation we shall restrict our consideration to fin-
ite dimensional spaces, although all the results have a corresponding version in in-
finite dimensions. Our major tool is the saddle point theorem for epsilon solutions
and the techniques used in standard vector duality theory. For details see [. V4lyi
[5] and the book by Y. Sawaragi, H Nakayama and T. Tanino [6]. As a consequence
of the fact that the notion of approximate solution coincides with that of exact
solution in the case when the approximation error is zero, our results reduce to
those related to exact vector optimization. From another point of view they are

parallel to the theory of epsilon solutions in the scalar valued case as expounded
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e.g. by J. J. Strodiot, V. H. Nguyen and N. Heukemes [7], or in the vectorial case
for absolute optimality by 1. V4lyi [8].
In this paper we give the proofs of the results presented at the VII-th Internation-

al Conference on Multiple Criteria Decision Making, held between 18-22 August,

1986, in Kyoto, Japan.



2. EPSILON OPTIMAL ELEMENTS

In this section we recall some basic notions and known facts (withoul proofs) relat-
ed to e-optimal solutions in vector optimization. All the vector spaces throughout
the paper are real, finite dimensional and ordering cones are supposed to be con-
vex, pointed, closed and to have a nonempty interior. X, ¥ and Z denote vector
spaces while ¢ and K are the positive cones of Y and Z respectively. The dual
space of Y is Y and the cone of positive functionals with respect to CCY, or the
dual of C, is C* and L*(Z,Y)CL(Z,Y) stands for the cone of positive linear maps
from Z to Y.

For the various ordering relationships hetween two elements of an ordered vector

space we shall use the following notations, for example in Y:

Yo=Yy, iff Yp,—Y,€C
Yo >y Iff Yy, -y, €int(C)

and ¥, 3 y 4 will refer to the fact that y,€Y does not dominate ¥ ,€Y from below.
Now for the readers convenience we quote the following definition from e. g. D. T.
Luc [9].

Definition 2.1.

The set HCY is C-convex if #+C CY is convex.

The function f:X-Y is C-convex if the set | f(z)€Y : z €dom f | is C-convex.

The set HCY is C-compact if there exists a bounded set #,CY with the property
HCHy+C and if H+C CY is closed.

Now turn to the consideration of e-optimality. Throughout the paper the vectors

£,6, €CCY will represent the approximation error and their value will be fixed.
Definition 2.2.

The vector y €H is an e-minimal element of ACY, in notation y € e-min(¥#), if
(y —e-C)nHcCly —¢&}
it is weakly £-minimal, in notation Yy € e—wmin(H), if

(y —e—int(C)) nH C ly — &l
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and properly e-minimal, in notation ¥ € ¢ —pmin(H), if there exists a y*€int(C?*)
such that <y* ,y—&> g <y*A> v h €A

The approximately maximal elements are to be defined in a corresponding manner.

The following statements are easy consequences of the definitions and clarify the

relationships between the different notions of minimal element.
Proposition 2.1.

Suppose that £;5£, . Then we have
ei—min(H) C e,—min(H)
g,—wmin(H) C g,—wmin(H)

gy—pmin(H) C e,—pmin(H)

Proposition 2.2.
e—pmin(H) C e—min(H) C e~wmin (H)

Proposition 2.3.

Consider a sequence {¢, €C : n € N{ decreasing to £€C.

Then

e-min(H) < Ne, —min(#H): n € N{| C e~wmin (H)

and
Nie, wmin () : ne€ N{ = e~wmin (H)

Now the definition of the convex vector valued minimization problem and the
corresponding vector valued Lagrangian follows. Then we recall the relationships
between e-solutions of the minimization problem and &-saddle points of the Lagran-
gian.

Definition 2.3.

Let

f:X »Yand g: X - Z
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be proper C-convex (and K-convex, respectively) functions with

A=dom f ndom g # ¢. We define the minimization problem (MFP) as follows
e—minimize f (F) (MP)

where F'CX is the feasibilily set of the problem (MP) defined by the equality

F=lzeX:z €A g(xz)=<s0].

As we already pointed it out, the case £=0 represents the solutions in the usual

(exact) sense.

The Lagrangian of the minimization problem (1P)

d:AXLYZY) » 7Y,

is defined by the equality
¥z R)=s(x)+R g(z)

The element (z,,Rk,) € X X L(Z,Y) is an £-saddle point for the Lagrangian ¢ if the

following is met:
(@) ¥(z o, Ry) € e—min {d(x ,Ry) €Y :z € A}
(b) ¥(zyR,) € e—maz [ (z,,R) €Y : R €L (Z,7)).
Definition 2.4.
We say that the Slater condition holds for the problem (MP) if there exists an z, €4
with g (z,) <0.
Theorem 2.1.

The element (z4,8y) € X X L(Z,Y) is a e-saddle point of the Lagrangian &, iff
(@) 8(zyR,) € e—min [8(x ,By) €Y : z € A}
(b)zyeF
{(c) — ¢ *Ro ~g(zy) 0.

The property stated in Theorem 2.1. is as much negative as positive. Point (c),
namely, turns into the well-known complementarity condition Ry - g(zy) =0 in the

case of exact saddle points. When £#0, it only means that

Ry -g(zg)€(—C\ [ ~—e—-C))u|-eg|
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where the right hand side is an unbounded set.

Theorem 2.2.

Suppose that the point (z,.Ry)EXXL(Z,Y) is a e-saddle point of the Lagrangian 9.

Then z ,€X is an (¢—R ;g (x,)) -solution of the minimization problem (#P).

For the approximation error ¢—R, g (z,)€C we have 0 S e—-Ryg(zy,) 22 ¢ as a
consequence of the point (¢) in Theorem 2.1. However, unlike the scalarized case,
transitivity for the relation of non-domination does not hold, and so we cannot

claim that z,€X is a (2-&)-solution.
Theorem 2.3.

Suppose that for the problem (MP) the Slater condition holds. If z4€X is a proper
e-solution of the problem (MP) then there exist an operator Ry€l *(Z.,Y) such that
(x g, o) EAXL ¥(2.7) is an &-saddle point of the Lagrangian &.
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3. PERTURBATION MAP AND DUALITY

The procedure that we shall follow is standard. We start by defining a
parametrized family of problems (the family of perturbed problems) that includes
our original minimization problem. The primal map will then be defined as a func-
tion taking the optimal elements of the perturbed problems as values, while for the
dual map this will happen via the Lagrangian. Vector minimization problems usual-
ly do not have unique solutions in the exact case and this is even more so now.

Therefore these functions will be set valued maps.

We shall not reiterate the analogies to the known results in exact vector optimiza-
tion or scalar e-optimization but we should like to call for special attention to this

issue.
In this section we shall assume that
(i) f is C-continuous and g is K-continuous,
(ii) ACX is compact,
(iii) int(C ")=¢.
We define for each u€Z
Flu)={zeld: g(z)su |
and

Y(u) ={yeY : :y=f(z), zeF(u) |

As is well known, under our assumptions, F'(u)CX is a convex set and Y(u )CY is C-
convex. Furthermore in the case when v =0, F(u) and Y(u ) coincides with 7' and

f(F) respectively. Hence the following definition of the perturbed problems (P, )

really means embedding (MP) in a parametrized set of problems:
Definition 3.1.

We define the perturbed problems as follows
g—minimize Y(u) P.)
and we call the set valued map defined by the equality
W(u) = e=min {Y(u)]

the primal (or e-primal) map.
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Now we state the basic properties of the primal mapping.
Proposition 3.1.

The equality
We(u)+C =Y(u)+C VvV uez

holds and so, ¥, is a C-convex set valued C-convex map.

Proof.

The equality is a consequence of Proposition 5.2.1. of Y. Sawaragi, II. Nakayama
and T. Tanino [6]. From this and the C-convexity of the mapping Y(.) the whole

statement follows.
Proposition 3.2.

Suppose that £y5£, and uw (fu,. Then we have
W, (w)CW ()
and
W (u, )W (u,)+C

i. e. the primal map is monotonous in £ and C-monotonous in the variable .
Proof.

The first inclusion follows from Proposition 2.1. On the other hand the monotonicity

of the mapping Y(.) together with Proposition 3.1. imply

Wo(uy) © Y(uy) C Y(u,) €W, (uy) +C

Now turn to the dual map and shall use the construction originating from T. Tanino

and Y. Sawaragi, -

Definition 3.2.

Let for each R €L *(Z,Y) be
QR) = {8(x ,R)EY : z €A},

then we define the dual (or £-dual) map by the equality
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D (R) = e—min [QR)+C]
and the dual problem as
e—maximize |\ {D (R): ReLt(Z, V)| (D)

Proposition 3.3.

The following relation holds for each » €[0,1]:
D (rRi+(A-r)R) Cr D (Ry) +A-r)D (B +C

and so, the function D, is a compact, C-concave set valued, C-concave map.

Proof.

The map 8(.,F) is C-convex because it is a sum of two C-convex functions. In other
words this means that (R) is a C-convex set. By the C-continuity of the function
S, the K-continuity of g and the compactness of ACX, QX)X we can apply Lemmas
2.5. and 2.4. of D. T. Luc [9] implying first that Q(R)CY is C-compact and then that

D (R)+C = Q(R)+C.

Hence we can conclude that D (R)CY is C-convex.

The C-concavity of the mapping D, is implied by the following sequence of rela-

tions:
D (r-Ri+(1—r)Ry) = e=min {Q(r-R,+(1—r)-R,) ] C
C e—min {®(z,r Ri+(1-r)R,):z€ld] =
= e—min {r f(z)+(1-r)f(z)+r Ryg(x)+(1-r)Ryg(z): z€A] C
c e—min {r-6(x R)+(1-r)d(z,Ry):z€A | +C =
= e—min {r-®z,R,): z€A |+ e—min [(1-r)®(z,Ry): z€A ] +C =
=rD (R +(A-r)D(R,) +C.
Proposition 3.4.

D (R)=¢e-min [ W (u)+Ru : u€Z | WV ReL'(Z
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Proof.

The statement follows from the equality
QR)+C =W (u)+Ru :ucZ} V ReLY(Z)

that we shall prove.

Let first be v €Q(X). Then we have
y = f(z) + R uy
where we used the notation u =g (z,). This implies
S(zy) €W (u)+C
because f (z1)€Y(u,). Hence
y EWu) +C +RuqgC{W(u)+Ru : ueZ |

On the other hand, if y € W,.(uq)+R u, for some ui€Z then, by the definition of

the primal map,
¥y —Ruy € e-min {Y(uq)}
and consequently there exists a £, €4 such that
y —Ruy=f(zxq), and g(z() S uy
Hence we have
yz2f(zy) +Rg(zy)

or that y €QX)+C.

We are able now to formulate the weak and the the strong duality theorems for our

eg-solutions.

Theorem 3.1.

The relation
y-z & f(z)

holds for each z €F and y €D, (R) with ReL *(Z.,7).
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Proof.

By the definition of the dual map,
y—s#f(zl)‘i-f?'g(zi) Vz; €l

holds and the rest of the conditions ensure R g (z,)=0.

Theorem 3.2.

(a) Suppose that for some z €F and ReLt(Z,Y) the relation f(z) € D (R) holds.
Then z €X is an e-solution for the problem (MP) and f(z )€Y is an e£-maximal

element of the e-dual problem (D,).

(b) Suppose that for the problem (MP) the Slater condition holds and z €X is a
proper &-solution of (MP). Then f(z )€Y is an e-maximal element of the e-dual

problem (D,).
Proof.

We prove (a) by contradiction. If there exists an z,€F such that f(z) ~ ¢ = f(z,)

then we also have
f(z) —ez f(zy) +R-g(zy)

contradicting to the assumptions. To see the rest, let us suppose that there exists

an R,€L*(Z,Y) and a y €D (R,) with the property that
)+ e=sy.
This implies again
J(Z)+Rig(z)+esy

that contradicts to the assumption on y €Y.
We start the proof of (b) by using Theorem 2.3. to establish the existence of an
ReL*(ZY) with the property that f(z)eD (R). Now (a) can be applied and this

completes the proof.

Notice that the problem arising in Theorem 2.1. does not appear here,only because
we use assumptions that are stronger than the e-saddle point property in the case

when e#0.
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4. CONICAL SUPPORTS

In this section we give a geometric interpretation of the duality and saddle point
theorems and summarize our results in one sequence of equivalent statement. This
will clearly show where do we have the analogies as expected and where do pecu-

liarities arise.

The fact that the function W, takes values among subsets of an ordered vector
space implies that the appropriate notion of epigraph is to be defined in the fol-

lowing way:
epi W, =1} (u,y)EZXY : yeW (u)+C, u ez |

By Proposition 3.2., of course, here we have the equality epi W, =epi Y(.). We
expect that passing from exact solutions to e-solutions and from scalar values to
vector values means the change from a supporting hyperplane to an 'e-supporting’
translate of a cone. This is indeed so. Given an operator R <L *(Z,Y) let us, namely,

define a cone Mp in the product space ZXY as follows:
Mp = {(u,y)EZXY : y+R u=0 |
and let us denote its linearity space of by [(Mp), that is let be
L(Mp) = (~Mp) N Mp

This cone is closely related to the structure of ¥ and Z, and has the regularity

properties formulated in the following proposition.

Proposition 4.1.

For each RelL ¥(Z.,Y), MpCZ XY is a closed convex cone such that
Mp = {0} x (=C) + L(Mp),

where the lineality space of Mp, [ (Mp)<CZ XY, is isomorphic to the space Z.
Proof.

Because of the pointedness of the cone CCY we have that (u,y )€l (Mp) if and only

if y=—R-u. Now take any pair (u,y)€ZXY and consider the representation

Easy calculations show that
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—C = y+Ru€Y : (u,y)elp |.
on one hand and that the mapping
I:2 - 1(Mg)
defined by
Iw) =(u,-Ru)

is an isomorphism.

Definition 4.1.

We say that the cone M CZ XY e-supports the set valued map

at the point (u,y) € graph h if
(-M)+{(u,y—¢€)] Nepi h C [(u,y—&)l.
Analogously, the hyperplane #CZ XY e-supports the map A at (u,y) € graph h if

H+ {0{x(~=C) + {(u,y-&)] Nepi h C {(u,y—&)i.

Let us take now z*€Z” and ¥*<€Y and r €R, defining a hyperplane in ZXY, as fol-

lows:
H(z*,y*,r) = [ (u,y)EZXY : <y*,y>+<z* ,u>=r, uecZ, y€Y |

In particular, we use the following notation for the e-supporting hyperplanes of

epi W,
H(z*,y*) = H(z*,y*,7()
where
ro=sup | reR: H(z* y* r—<y*,e>)+{0{xC Depi W, |

Now we formulate the relationships between e-supporting cones and hyperplanes of

the perturbation function W,.
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Proposition 4.2.

(@)

(b)

Suppose that A(z*,y*)CZXY is an e-supporting hyperplane of epi #, at the
point (u,y) € graph W,, y*€int(C *) and that for the cone MpCZ XY the rela-
tion [ (Mp)CH(z*,y*,0) holds. Then MpCZXY e-supports epi W_ at the point
(w,y) € graph W,

Suppose that #pCZ XY e-supports epi W, at the point (u,y) € graph W,. Then
there exists a nonzero vector y*€C' and a hyperplane H(z*,y*,7)CZXY
that e-supports epi W, at the point (u,y) € graph W, and for which the rela-
tion I (Mp)CH (z*,y*,0) holds.

Proof.

To prove (a) we reason by contradiction. If MpCZ XY does not £-support epi W, at

the point (u,y) € graph W, then there exists another point (u4,¥4) € grapa W,

such that

Y —&e-yYy tRu —Ru;s0.

For any y* €int (C*), this implies

<y* ,y —e—-yy +tRu —Ruy > < 0.

On the other hand, relying on the formula representing the elements of [(Mp)CZ XY,

and the assumption [ (Mp)cH (z*,y*,0) we obtain

<2z* u > = <y* , ku > VvV uweZ.

Together with the previous inequality, this implies the relation

<y* ,y —&€>+<z* u > < <y*,yqy >+ <2z* u >

contradicting to the e-supporting property of the hyperplane H(z*,y*)CZXY.

Let us prove now (b). By the assumptions we have that

Yy —&—yy tRu —Ru;s0 VvV (uq,v4) €epi W,.

Consider now the mapping

J . ZXY » Y

defined by the equality

J(u,y) =y + R u.
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By the linearity of the map J and Proposition 3.1. we have that J(epi W, )CY is a
convex set, and therefore it can be separated by a positive functional from the
cone J({=(Mp)+(u ,y —¢&))CY. If we dencte this functional by y* €C* and then, by a
reasoning similar to the above, we obtain that the hyperplane
HER y*,y*, <y*,y +R-u>)TZXY g-supports epi W,. The inclusion
Z(MR)CH(]?"y"‘ ,0) follows from the construction.

Now we summarize the major results of the previous sections in the form of a set of

equivalent statements.
Theorem 4.1.
Consider an element (zo,Ro)EAxL+(Z,}’). Then the following statements are
equivalent:
(a) The pair (zy.Rq)€AXL *(Z,Y) is an e-saddle point of the Lagrangian ¢.
(b) 8(z o) € e~min [¥(z . Ry) €Y :z € A}
zy€EF
—e} Ry g(zo) 0.
() z,€4 is an (e—Ryg(zy))-solution of the problem (MP) and f(z,)€Y is an
(¢-Ryg(z())-maximal point for the dual problem (DE‘RO'Q(IU))'
(d) zy€A is an (e—F,y¢(xzy))-solution of the problem (#MP) and the cone MRU &=
supports epi W, at the point (0,f (z()).
Proof.
The equivalence of (a) and (b) is stated in Theorem 2.1.
Let us consider now the implication from (b) to (c). That z,€4 isan (e—Ryg(x,))-

solution of the problem (MP) follows from Theorem 2.2., and by the definition of
the dual map this also means that f(:z:o)ED:_Ro.g (xo)" Hence Theorem 3.2. can be

applied and this yields the rest. To see the reverse implication we note first that

f(zo)ED:—Ro-g =0 is a reformulation of the first relation of (b). The second rela-

tion follows from the fact that zy€A is an (¢—Ry g (xy))-solution of the problem
(MP). To prove the last relation we note first that by the positivity of ®y€L (Z,Y),
the inequality &y g (z)=0 holds. We also know that

S(zg) + &€ —Ryg(zy) =f(zg)+Ry9(zg)

because f(zy)€Y is an (¢e—Ry g (z o} maximal element of the dual problem and so we
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proved the third relation, as well.
(c) implies (d) because their first parts are identical and the second part of (d) is
just a reformulation of the first relation in (b). The last part of the argument used

to prove the implication from (b) to (¢) shows that (d) also implies (c¢).
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3. CONCLUSION

In this paper we developed the analogue of the duality theory in vector optimiza-
tion, on one hand, and of the scalar valued e-duality results, on the other, for e-
solutions in vector optimization. The significance of e-solutions in vector optimiza-
tion arises from the fact that optimization algorithms often produce such results
instead of the exact solutions. Using the above theory we obtain guidance in situa-
tions when we want to use duality without knowing the solutions exactly. It appears
that the duality relations remain true, in general, but we have to cope with such
problems as the increase of the approximation error when we start e. g. from sad-

dle points.
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