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FOREWORD 

T h i s  paper  d e a l s  w i t h  s e v e r a l  problems i n  c l u s t e r  a n a l y s i s .  

I t  a p p e a r s  t h a t  t h e  s u g g e s t e d  s o l u t i o n s  have n o t  been c o n s i d e r e d  

i n  c u r r e n t  l i t e r a t u r e .  F i r s t ,  t h e  a u t h o r  p ropose s  t h e  u s e  o f  a  

pe rmuta ted  m a t r i x  a s  a  t o o l  f o r  i n t e r p r e t a t i o n  o f  c l u s t e r s  gene- 

r a t e d  by h i e r a r c h i c a l  agg lomera t i ve  c l u s t e r i n g  a l g o r i t h m s .  

Second, a  new method of  d e f i n i n g  s i m i l a r i t y  between a  p a i r  o f  

c l u s t e r s  i s  shown. T h i s  method l e a d s  t o  a  new c l a s s  o f  h i e r a r c h -  

i c a l  agg lomera t i ve  c l u s t e r i n g .  T h i r d ,  two c r i t e r i a  a r e  d e f i n e d  

t o  o p t i m i z e  dendrograms t h a t  a r e  o u t p u t s  o f  h i e r a r c h i c a l  c l u s t e r -  

i n g .  

Th i s  pape r  h a s  been p r e s e n t e d  a t  t h e  Task Force  Seminar 

S e s s i o n  on New Advances i n  Dec i s i on  Suppo r t  Sys tems,  Laxenburg,  

A u s t r i a ,  November 3-5, 1 9 8 6 .  

Alexander  B. Kurzhanski  

Chairman, 

System and Dec i s i on  S c i e n c e s  Program 



Cluster Analysis as a Tool of Interpretation of Complex Systems 

S. Miyamoto 

1. Introduction 

Recently techniques of the cluster analysis has become a 

standard tool for analyzing and recognizing objects to be studied 

in various fields of sciences. One remarkable characteristic of 

the cluster analysis is that i t  directly generates several 

categories of objects without any predefined standards for the 

classification. Application of the technique of the cluster 

analysis is easy, since many algorithms of the cluster analysis 

do not require prerequisites in advanced mathematics. On the 

other hand, i t  has been suggested that the cluster analysis has 

its inherent weak point: i t  has many algorithms with various 

options that one can not judge which is the best for a particular 

application. In many cases, however, this weak point is due to a 

fundamental property of human psychology in the sense that in 

natural psychological classification boundaries of categories are 

not clear, and also categories have hierarchical structure of 

supercategories and subcategories. Therefore in general we can 

not solve theoretically the problem to overcome the above weak 

point and we do not touch this problem in this paper. 

In spite of this drawback, experiences in many fields 

exhibit that the cluster analysis is a useful technique to find 



structures in a complex system. If we describe data analysis in 

a very general term as a process starting from a chaos of huge 

data and disorder of various information to a final goal of clear 

understanding of system structure with structured configuration 

of information and with summarized representation of data, the 

cluster analysis is particularly useful in an early stage of data 

analysis. That is, the generated structures by the cluster 

analysis will help system analyst to proceed his analysis by 

summarizing data and information; in the later stages he should 

check or varidate the generated categories by some other means 

including his own knowledge of the system. 

This paper does not aim at introducing a new framework of 

the clustrer analysis, nor is i t  a survey of the various 

techniques. We will describe here some problems in the current 

methods of the cluster analysis together with solutions to them. 

The aim here is to improve the current techniques for better 

application to real problems and to show some ideas that will be 

important in future studies of the cluster analysis. 

In the present paper we are concerned with the hierarchical 

methods of the cluster analysis, since in many real problems i t  

is difficult to determine beforehand the number of categories to 

be generated. Note that nonhierarchical algorithms require 

specification of the number of clusters. If we have sufficient 

prior information on the number and properties of the categories, 

various nonhierarchical procedures might be effective, but we do 

not assume that we already know the number of categories 

beforehand. 



Section 2 deals with a technique of simultaneous clustering 

of objects and attributes. Section 3 is devoted to some 

new algorithms of hierarchical clustering that current literature 

does not deal with. Section 4 shows a method of "optimizing" the 

output from the hierarchical cluster analysis. 

2. Twoway clustering 

2.1 Need for twoway clustering 

Let X=txl,x2, ..., xm) be a set of objects or entities to be 

classified. On the other hand let Y={y1,y2,...,yn) be a set 

whose members are called attributes or variables. Relations 

between an entity xi and yj is described by a real number 
'ij* 

Therefore we assume that a matrix C=(cij) is given. 

Since we consider the hierarchical cluster analysis, (and 

in particular, agglomerative hierarchical cluster analysis. In 

the below the word of cluster analysis means agglomerative 

hierarchical cluster analysis. Exceptions will be written 

explicitly.) first we should describe the major outline of the 

hierarchical clustering. Namely, hierarchical clustrering 

consists of the following two steps: 

1. Definition of a similarity measure stxi,x.) between an 
J 

arbitrary pair of entities xi and x 
J . 

2. Generation of clusters based on the similarity measure 

stxi ,x. 1. 
J 

In the first stage the definition of a similarity stxi,x.) 
J 

is based on two vectors (cik), (C 1, k=1,2,..,n. In other words jk 

the space Y is used to define the similarity measure through the 

matrix C. Various similarity measures have been proposed. We do 



not describe them in detail. (See Anderberg, 1973.) Therefore we 

simply assume that s(xi,xj) is given by any method for definition 

of the similarity. 

In the second stage there also exists a number of algorithms 

for hierarchical clustering. In this section we need not 

describe them. (See Anderberg, 1973; Everitt, 1980.) In general 

input to a hierarchical algorithm is a matrix (sij=stxi,xj)) of 

similarity defined in the first stage and its output is a tree- 

like figure called dendrogram. The output of the dendrogram has 

great amount of information, since i t  shows not only the 

generated clusters but also the procedure of forming clusters one 

by one. The significance of the dendrogram will be emphasized 

throughout the whole sections. 

Let us recall that X means entities to be clustered and Y 

means variables that are used to define a similarity. This 

distinction is, however, for convenience's sake. In practical 

situation sometimes we wish to cluster Y using X .  Furthermore i t  

frequently occurs that we wish to cluster both X and Y. Hartigan 

( 1 9 7 5 )  called this as a simultaneous clustering. He proposed a 

particular method of the simultaneous clustering and i t  was 

implemented on BMDP program package. Basically there is no great 

difference in the method of Hartigan and our method which will be 

described here. Hartigan's method is, however, too restrictive 

for applying i t  to many of real problems. Therefore i t  is 

necessary to describe here a method that is similar to Hartigan's 

method but different from i t  from a practical viewpoint. In the 

below we call our method as a twoway cluster analysis. 



2.2 Pattern in the plane 

Let us begin with a simple example. Consider the matrix 

C=(cij), 1.1, ... 5 ;  j=l, ... 4 with X={x1, .., x5) and Y=(y l,..,y4) in 

Fig.la. We wish to cluster X based on C. Here we assume that 

'i j means whether yj is applicable to x i  (cij=l) or not (cij=O). 

By any definition of the similarity and algorithm, we can obtain 

three clusters in X shown in Fig. lb. In practice i t  is 

important to see why these clusters have been generated in 

relation to the set Y through C. One of the best way to see the 

relationship is to cluster Y as in Fig. lc. 

Fig. la Fig. lb 

This simple example shows the importance of the twoway 

analysis even if we wish to classify only the elements in X .  

When we use cluster analysis to understand structure of a complex 

system, what is important is to understand the meaning of the 

clusters, in other words, to interprete the clusters. The 

interpretations are given in terms of the relation of a cluster 

to variables in Y through the matrix C. In general i t  is more 



desirable to observe its relation to "a cluster of variables" 

rather than individual variables. 

To realize the above idea in an actual computer program of 

the cluster analysis, let us define a permutated matrix. Let a 

and T be two permutations of 1 2 ,  l and (1,2*. ..*n}, 

respectively. According to orders x l , . . . x  ) )  and 

(YT (I)*"*"'T (n) a permutated matrix ( c (i) ( j) 1 is 

determined. To obtain the permutated matrix that reflects the 

categorical structures generated by a clustering algorithm, we 

simply use the orders in the entries of the dendrograms of X and 

Y. Namely, the outline of the twoway clustering is as follows. 

1. Calculate similarity stxi,x.) defined on X x X and s'(yp, I Yq ) 

on Y x Y. Use the same kind of measures for s and s'. For 

example, in our former studies (Miyamoto and Nakayama, 1986) we 

proposed the following similarity measure based on the framework 

of fuzzy sets. 

2. Perform the clustering by a hierarchical algorithm and output 



two dendrograms in which entries are ordered as 

(Xu (l).---.Xo tm)) and (YT (l).***.YT (n) . Then output the 

permutated matrix ( c o  ( j )  
(j) 

as a two dimensional pattern of 

relation between X and Y. 

e a r  In case that c i j  is binary or i t  means the frequency of 

occurrence of x i  at yj (Miyamoto and Nakayama. 1986). zero 

entries in the permutated matrix should be replaced by blanks so 

that we can observe the two dimensional pattern more clearly. [ I  

2.3 Scaling of clusters 

Let us assume that we already have clusters (subgroups) 

XI. ..., XK of X and Y1, ..., YL of Y by some hierarchical or 

nonhierarchical clustering. The problem here is to find some 

scales on {Xp) and {Yq), p=l....K; q=1. ... L. so that the 

resulting display of Xp's on X-axis and Y 's on Y-axis shows 
9 

relation between clusters of X and those of Y. This problem has 

been studied for a long time as optimal scaling problem. This 

problem in our context can be solved if we can define an 

aggregated matrix (F 1 between P9 
Xp and Yq from c i j  in a 

reasonable way. In many cases i t  is natural to define 

Then, the scaling problem can be formulated as follows (See 

Kendall and Stuart. 1973) Let a l ,  . . . ,  a K  be coordinates on X- 

axis to be determined for X1 . . . . .  XK, and P 1  ...., D L  be 



coordinates on Y-axis to be determined for Y1, ..., YL. Then we 

consider maximization of the following criterion: 

The maximization problem is equivalent to an eigenvalue problem 

(Kendall and Stuart, 1973): 

In case that we use hierarchical clustering, clusters {Xp) and 

{Y can be obtained by cutting the two dendrograms at a certain 
9 

levels of similarities. 

3. A new class of hierarchical clustering algorithms 

3.1 Similarity between two clusters 

A major part of clustering algorithms is based on calculation 

on a Euclid space. In case of the hierarchical clustering, we 

have the centroid method and the Ward method. In nonhierarchical 

clustering the Euclid space has been assumed in general. 

Algorithms that do not assume a Euclid space is exceptional. 

This tendency is due to the fact that various good properties of 

the Euclid space are available to have an advanced algorithms. 



For example, in the Euclid space minimization of dispersion 

wi thin clusters is equivalent to maximization of dispersion 

between clusters. (See Everitt, 1980.) Nevertheless, in many 

cases we can not assume the Euclid model in real problems. Even 

when the Eucl id space is assumed, many authors emphasize the 

necessity of validation of clusters (See e.g., Bezdek, 1981.) 

based on some criterion that is not based on the Euclid model. 

In these cases the authors implicitly assume two different 

criteria: one to generate clusters and the other to validate the 

generated clusters. Here arises a question: what if we use the 

latter criterion from the first to generate clusters? In many 

cases i t  is possible to use the criterion of validating clusters 

for the purpose of defining similarity between a pair of 

individuals. 

When we do not assume the Euclid space, available algorithms 

are far poorer than those based on the Euclid model. For 

example, in hierarchical algorithms, the single linkage, the 

complete linkage, and the average linkage methods are available. 

In these algorithms, however, calculation of similarity between a 

pair of groups is not based on the initial mathematical model, 

but is based on a rather simple arithmetic calculation. For 

example, in the single likage clustering similarity s(A,B) 

between a group A={al,a2, ... 1 and B={bl,b2, . . . I  is defined as 

s(A,B) = min stai,bj) 
ai & A 
bj E B 

This observation leads us to development of a new class of 

9 



clustering algorithms that has various implications for future 

studies. 

Let us consider again the above definition of s(A,B), where 

s(A,B) is defined only in terms of s(ai,b.) as similarity between 
J 

a pair of individuals. The latter is based on a specific 

mathematical model, whereas the former is not. Nevertheless, a 

similarity between two groups can be defined in a natural way 

that is different from the arithmetic definition of s(A,B) such 

as the one defined above. 

Let us consider a specific example. Consider the model 

(X.Y.C) in the previous section. We assume here that cij 2 0 is 

a frequency of occurrence of xi at y and also the measure is 
j 

defined by ( 1 ) .  If we consider similarity s(Xp.Xq) between two 

groups Xp and Xq* i t  is natural to define 

where 

Of course other measures such as the cosine correlation are 

applicable to define s(xi,x.) and s(X X in the same way as 
J P* 9 

above. I t  should be noted that in the latter case the similarity 

between two groups are defined based on the same model as the one 

on which the similarity between a pair of individuals has been 

defined. 



The latter definition of similarity between two groups can 

be used in two ways: 

1. Development of a new class of algorithms. 

2. Use of similarity between two groups for other purpose than 

the generation of clusters. 

3.2 Clustering algorithms 

As is mentioned in the previous section, we assume that 

the similarity s(A,B) between a pair of groups is defined on the 

same model as the one on which the similarity between two 

individuals are defined. This means that some aggregation 

procedure like (2) is defined in a natural way. 

When we do not assume the Euclid space, maximization of 

similarity within groups is not equivalent to minimization of 

similarity among groups. Therefore in the clustering algorithms 

we have two different approaches: 

I .  Generate clusters so that sum of similarities within clusters 

is maximized. 

2. Generate clusters so that sum of similarities between every 

pair of clusters is minimized. 

These two rules are applicable to hierarchical agglomerative 

clustering, hierarchical divisive clustering, and to 

nonhierarchical clustering with a fixed number of clusters. In 

case of hierarchical agglomerative clustering, the former rule is 

easier to apply. In the following algorithms we assume the set 

X=txl, ..., xm} with elements xi's. Clusters are denoted as X 's. 
P 

(Outline of a hierarchical agglomerative algorithms) 



1. Let N:=n (number of clusters) and let Xi={xi) for all i=l,..,N 

2. For all lII.JIN, ifj, calculate similarities s(Xi,Xj) based on 

the given model. 

3. Find a pair Xp, X such that s(X ,X = max s(Xi.X.) and merge 
9 P 9 

i ,j J 
~. 

them into Xr = X U Xq . P 

4. N:=N-1. If N=l output the result as the dendrogram and stop. 

5 .  For all 1IilN. ifr, recalculate similarities stXr,Xi) based on 

the same model. Go to Step 3. C l  

3.3 Use of similarity between a pair of groups 

The similarity measure s(A,B) between a pair of groups can 

be used in a number of other ways than the generation of clusters 

above mentioned. Here we discuss multidimensional scaling of 

clusters and a method of classification based on the 

mathematical model of clustering. 

Multidimensional scaling has been studied in the field of 

mathematical psychology (Kruskal, 1964). I t  projects the data 

points onto plane or three-dimensional space so that the 

resulting configuration shows overall structure of the data set. 

The projection is based on an optimization in the sense that the 

distance between every pair of elements on the plane (or three- 

dimensional space) reflects in an optimal way the original 

similarity defined on that pair. The multidimensional scaling 

has been used in much the similar way as the factor analysis. 

Unfortunately in the presence of many points to be projected, for 

example, one hundred points, the multidimensional scaling often 

fails: i t  is more suitable for small number of elements te-g., 

10 - 20 1 .  In such a case an effective way to apply the method of 



the scaling is to summarize elements into a smaller number of 

clusters. To consider these clusters as elements on which the 

multidimensional scaling are performed often leads to a better 

configuration. Therefore s(A,B) should be considered as the 

similarity on which the projection should be performed. If we 

perform the clustering by the procedure described in the previous 

subsection, we will be consistent in the whole process of the 

clustering and the scaling. 

Another application of s(A,B) is classification of a new 

individual based on the model on which s(A,B) is defined. 

Suppose that we have categories {XI, ..., XK) which was generated 

by the above procedure or by some other way. An easy way to 

classify a new individual w is to calculate s(w.Xp), p=l ,.... K 
and allocate w into the category Xs which satisfies 

s(w,Xs) = max s(w.Xp) . 
1LiLK 

4. Optimization of dendrograms 

4.1 A problem in the single linkage and in the complete linkage 

The single linkage and the complete linkage methods are the 

two most we1 1 known algori thms among various techniques of the 

hieararchical agglomerative clustering. According to their 

applications, some researchers prefer the single linkage; others 

prefer the complete likage. When we observe the dendrograms 

produced by these two methods we frequently notice that the 

dendrogram representations have a problem. In a dendrogram we 



observe not only the generated groups but also the process of the 

generation of the clusters one by one. I f  the merges of the 

clusters are concentrated at a particular level of similarity, i t  

is difficult to see the structure of the dendrogram. This 

problem is typical in the single linkage and in the complete 

linkage, although other algorithms such as the average linkage 

method also have the same problem. In the single linkage method 

frequently a major part of the merges occurs at higher levels of 

similarity in the whole process of the generation of 

dendrograms. In the complete linkage a considerable part of the 

merges is inclined to occur at lower levels of similarity. 

Everitt (1980, p.87) showed several examples of single likage 

clustering in which we observe that 85% of the merges are 

occurred in an interval of the higher similarity whose length is 

20% of the length of the whole interval of the similarity of the 

merges. We find that to see clearly structures of the generated 

clusters are frequently difficult in such a kind of dendrograms. 

If we denote the level of similarity for each merge as ml ' 

m2,.-., mn-l and if we make a histogram of these data of the 

levels of the merges, we will obtain a histogram like the one 

shown in Fig. 2, where a sharp peak of the histogram is observed. 

4.2 Histogram flattening 

Let us note again that a dendrogram is a tree-like figure 

with one axis that shows the levels of the merges based on 

similarity. Every point of branch of the dendrogram can be 

projected onto the axis: the point of projection shows the level 

of similarity at which the two clusters are merged. 



There are two ways for output of a dendrogram about the 

treatment of the level of similarity of the merges. In a 

discrete treatment the axis shows a number of discrete levels of 

the merges. Let us denote this number as c. I f  we assume that ml 

< m2 <...< mn-l, a usual way of the discrete treatment gives the 

classes of intervals [m1,z11,(zl,z21, ..., (zCC1,mnnll of an equal 

length i e .  zl-ml=z2-z l-...-mnl-z - - >O.1 Each level of a c-1 

merge of two clusters is put into some of these classes. Merges 

in the j-th class are represented by the j-th discrete level on 

the axis. In other words, the projection of the merges in the j- 

th class are at the j-th level on the axis. (See Fig. 3 . )  This 

kind of discretization is necessary to print a dendrogram on a 

usual type of printers such as line printers without a graphic 

output option. 

On the other hand when we have a graphic printer we can use 

a continuous treatment in which the axis is continuous: a 

projection of the j-th merge is f(mi) with a continuous strictly 

monotone transformation, without any categorization of the 

merges. 

The problem posed in the previous section should be 

considered in both the discrete and the continuous treatments. 

We begin by the discrete case. 

As was suggested in the previous section, the difficulty of 

observing a dendrogram comes from a high peak (or high peaks1 of 

the histogram of the merges. Therefore some computer programs of 

hierarchical clusterings allow a user to specify freely the 

levels zl, ..., z ~ -  1 for the classes, although default value is of 



- course zl-ml=z2-zl=...-mn~l-~c-l for equal intervals. These 

consideration suggests an automatic method of selecting levels 

Zl*....Zc-l so that the resulting information on the dendrograms 

is maximized. 

Let us represent the levels by a vector z=tzl, ..., z and 

let (hl,. . . , hc) be a histogram of the merges of pairs of 

clusters. In other words hj is the number of mi's satisfying 

zj-l<mi(z 
j ' 

Therefore we represent h =h.tz) as functions of the 
j J 

levels. A natural formulation to maximize information is given 

by an optimization 

h.tz) 
J 

h.tz) 
max - C - J log - 

j n-1 n-1 

subject to zl < z2 <...< zc-l . 

When the problem is formulated as above, this method has the same 

form as the histogram flattening which is well-known in the field 

of image processing (Rosenfald, Kak, 1976). I t  is easy to 

maximize the above criterion in an approximate way, since the 

number of the merges is not very large in general. Therefore we 

omit the detail of the algorithm for the optimization. 

4.3 Optimization of the dendrogram in the continuous case 

A similar but somewhat different method can be considered 

for the continuous case, where we do not have any discrete 

class of the merges. An analogous way for the formulation is to 

define z i * s  not as the ends of the intervals of the classes but 

as the coordinates of the projections of the merges, namely, 



zi=ftmi), i=l, ..., n-1 tc=n). The simplest choice is that f is an 

affine transformation, in which case we will obtain the original 

dendrogram. (See Fig.4.) 

I f  we consider an optimization 

max I Z z - z 1  log (zj-z 1 I 
J J - 1  

subject to zl < z2 <...< zn-l, Z ~ - ~ - Z ~ = C O ~ S  t . 

i t  is easy to see that the optimal solution is given by 

- Z ~ - Z ~ = . . . - Z ~ - ~ - Z ~ - ~ .  This solution corresponds to the histogram 

flattening in the previous subsection. Unfortunately the above 

solution is not useful to a user of the hierarchical clustering, 

since the output expresses only the order of the merges. A good 

way to deal with the problem of optimizing dendrograms in the 

continuous case is to restrict the class of admissible 

transformations for the criterion (4). 
I 

Let us consider a piecewise linear transformation 

for a fixed zl and zn-l, and PL be the class of all piecewise 

linear transformations of the above form with all mlldlrnn,l and 

zlletzn-l. Then consider 



max I (f(mi)-ftmi,l)) log (ftmi)-ftmi,l)) I (5) 

subject to f c P L .  

Since the computation of an approximate solution is not 

difficult, we omit the detail. 

Remark This method of restricting admissible transformations to 

a class of piecewise linear functions is applicable to the 

discrete case. We studied this method in picture enhancement 

problem (Miyamoto and others, 1985). The application of this 

method to optimization of dendrogram is straightforward and we 

omit the detail. 

Remark Another motivation for optimization of dendrograms comes 

from the desire to compare two dendrograms. Frequently we wish 

to compare two dendrograms of the same set of entities by 

different algorithms of the hierarchical clustering to check 

whether they have similar structures or not. In such a case i t  

is much better to compare those two dendrograms in their 

optimized forms, in other words, in their enhanced forms. 

5. Conclusion 

In the present paper we dealt with solely hierarchical 

methods of cluster analysis. Various algorithms o f 

nonhierarchical clustering have been published including those of 

fuzzy clustering te.g., Bezdek, 1981). Nevertheless, here we 

emphasize the significance of hierarchical cluster analysis. 

Successful application of the cluster analysis can be divided 

into two types. In one type methods of analysis are less 



developed. One does not have sufficient prior knowledge, nor 

experience about the nature of the clusters. In these 

applications researchers try to increase their knowledge through 

clustering: they compare a number of different clusters to find 

what is more appropriate structure to fit their intuition end 

experiences. For these applications hierarchical cluster 

analysis is more adequate. In the other type of the successful 

applications methods of analysis are more developed. Experiences 
\ 

have been accumulated and one knows an approximate number of 

clusters to be found. For example, application to remote sensing 

belong to this category. In the latter applications 

nonhierarchical methods such as ISODATA (Ball and Hall, 1 9 6 5 )  are 

successful. 

In this paper i t  has been implicitly assumed that we are 

dealing with the former type of applications with little prior 

knowledge. In these applications sometimes no appropriate 

framework has been established. Therefore researchers are trying 

to find what is an adequate too1 of analysis. What is important 

in such a case in general is to provide tools that is easy to 

apply without much prerequisite, and the hierarchical cluster 

analysis is one of such tools. Indeed, the hierarchical methods 

are easy to apply, nevertheless, they have various problems, a 

part of which has been considered in this paper. The 

hierarchical methods of cluster analysis can be called as a 

"small" tool in the sense that they are easy to apply to various 

real problems. On the other hand, one should not draw a strong 

conclusion only by the resuIt of the clustering. One should 

check the result of the clustering with other type of data or 



1 knowledge to obtain a clear understanding of the system. 
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l e v e l  of s i m i l a r i t y  

F ig .  2 A t y p i c a l  h i s togram of merges 
occur red  i n  t h e  dendrograms by 
t h e  s i n g l e  l i n k a g e  method. 
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Fig .3  An example o f  a dendrogram wi th  d i s c r e t e  t rea tment .  The 
numbers 1-25 below t h e  dendrogram show 25  l eve l s  on t h e  
a x i s .  (This  dendrogram was copied from Miyamoto and o t h e r s ,  
Development o f  a computer program package f o r  b i b l i o m e t r i c s ,  
Report of  a r e sea rch  supported by t h e  Grant i n  Aid f o r  
Fundamental S c i e n t i f i c  Research of t h e  Educa t iona l  Min i s t ry  
i n  f i s c a l  1983, i n  Japanese . )  


