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FOREWORD

One component in the validation of mathematical models is related to their sta-
bility properties under data perturbation. The authors obtain a very strong
(Lipschitz) stability result for the nearly optimal solutions when the data pertur-
bation is measured in terms of a new distance function introduced here.

Alexander B. Kurzhanski

Chairman
System and Decision Sciences Program
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ABSTRACT

We prove that the £-optimal solutions are Lipschitzian with respect to data
perturbations when these are measured in terms of the epigraphical distance.
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SOLUTIONS IN CONVEX OPTIMIZATION

Hedy Attouch! and Roger J.-B. Wets 2

1AVAMAC, Mathématiques, Université de Perpignan, Perpignan
“Mathematics, University of California, Davis

1. INTRODUCTION

Our main objective is the study of the stability of the solutions of convex op~
timization problems from a quantitative viewpoint. More precisely, mainly for nu-
merical reasons, we like to be able to estimate the distance between the solutions
of two convex minimization problems. We aim at the study of the rate of conver-
gence of the solutions of approximation schemes, or the quantitative study of the
way errors in, or perturbations of the data affect the solution.

Our approach is based on the introduction of a distance on I'y)(X) the set of
closed convex proper functions from the normed linear space X into R | {+ . At
this point, there are (at least!) two ways of attacking the problem:

(a) Assuming the functions to be strongly convex, for example, working with
LX) = To(X )+ a/ 2/l - I® when X is an Hilbert space, one can prove the following

Holder continuity result:
”ar‘g min F — arg min cllsc - d(F, ¢)172 . a.1)

This approach, which we follow in Attouch and Wets [4], leads to the introduction of

conditioning in convex optimization. The distance & in this theory
d , @) = F(z) - CG,(= 1.2
a & G) |§fffp| az) =6 \(=)| (1.2)

is obtained by using F, ¢, the Moreau-Yosida approzximation of F and & defined
by

Fylz) =inf, ex|F(u) + 2—];\—”:: -l
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and similarly for G,. Let us note that the exponent 1/2 in (1.1) is optimal (it is re-
lated to the fact we work with a Hilbert structure). The distance d, 4, has ultimate

connection with Mosco epi-convergence which is the good topological concept [4].

(b) In this paper we present an alternative way to study the stability question
that relies on the utilization of the concept of g-approximating solution. A major

advantage is that the set
e—argmin F = |z € X; F(z) S infF + €|

is non void. Moreover this notion of solution might be considered as more natural
from a numerical point of view, refer to the systematic studies of Hiriart-Urruty
[12], R.T. Rockafellar [19], for example. However, ¢-arg min F is a (convex) set
while with conditioning arg min F is reduced to a single element. Thanks to the
flexibility provided by this notion of approximate solution we are able to prove a

Lipschitz dependence of the s~approximate solution on the data, i.e.
haus (¢—arg min F, e—arg min @) < C, " d (F, &)

where haus stands for the Hausdorff metric and d is again a distance on [((X) that
induces Mosco-epi-convergence. We give practical criteria (Kenmochi's condition
[13]) allowing the computation or estimation (from above) of this distance. In the
process we obtain as a byproduct of the theory the Lipschitzian behavior of the &-
subdifferential mapping, see Nurminski [17], Hiriart-Urruty [12].

Let us describe on an elementary example coming from scenario analysis how
the two above approaches permit to obtain quantitative statements about stability

in convex optimization.

Take X = R? and consider the following linear programming problem (we take
maximization instead of minization, one can convert easily each formulation into

the other)

max oz + By
subject to the constraint {z 20, ¥ 20,z + ¥y <1}

where ax is the profit which results from an investment z in a first product (oil
production for example) By is the profit which results from an investment ¥ in a
second product (nuclear energy plant for example), and the total available capital
is 1. Let us consider the following possible scenarios (@ =0.9, § =1.1), (a =1,
B=1), (a=1.1, B =0.9) (note that there are only slight differences between

these scenarios and in all cases a + # = 2) and describe in each case
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—  the solution set arg max F where F(z, y) = az + 8y — 6“”,‘”(:, V)
- the e-approximated solution set e-arg max F

—  the solution of the e-well conditioned problem arg max (F — &/ 2/-19)

® 5—11 §:1 ﬁ:c;.';
A A \A

argmax F = A argmax F = [A,B] argmax F = B

We can observe that a small change in the data (scenario 1 and 3 are '"close"” to
each other) has, as a consequence an important modification in the solution set:
one pass from solution A to solution B. This means a completely different strategy
is to be followed in case of scenarios 1 and 3. Let us observe how the introduction

of some flexibility via e-solution corrects this phenomena (¢ = 0.2):

@ ®

N N\
D
D 1
-|_i 1-¢€ 9(11-—6)
1.1
1

0 c.e\ o| 0 c B\

1.1 _ e 1-€ 1 _€
09 09 1.1
€ — argmax F = [ABCD)] € — argmax F = [ABCD] € — argmax F = [ABCD]

Now the Hausdorff distance between the &- arg max solution sets in scenario 1 and
3 is less or equal than 3d, where d is the perturbation on the data, here d =0.2.

Let us finally examine the effect of the addition of a £-well conditioning term,
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which corresponds here to subtraction of — &£/ 2 (z2 + yz):

maximize {az + fy — %(:z:2 +y?% suchthat z 20,y =0,z +y <1}

— €., .42 _ _€,.2 =
argmax F 2| ] _31 argmax F 2I 1< =8

We observe that the variation of the solution is of order (1/ &)d. (It is a quite
favorable situation, one might end up with a variation of order (1/ &) Vd !).

The article is organized as follows. In Section 2, we begin with the study of the
projection of a point on a convex set, the major advantage being, that in this ideal-
ized situation, the variation of the data, (the convex set) is naturally taken in the
sense of the Hausdorff distance. In Section 3, we introduce a distance on the set of
convex lower semicontinuous (Isc) proper functions which allows us to extend the
preceding Lipschitz continuity property of the e-minimizing set to this general si-
tuation. As by product, we obtain the Lipschitz property of the e-subdifferential of
a convex function 8, F:X — 2% ., see Hiriart-Urruty [12]. We finally study the pro-
perties of the epigraphic distance which is introduced in Section 3 and relate it to
the distance d, , based on the Moreau-Yosida approximates introduced in [4], and

the so called Kenmochi condition, see Kenmochi [13], Attouch and Damlamian [2].

2. PROJECTION ON A CONVEX SET-STABILITY OF £-PROJECTIONS

Let X be a normed space. Given C a convex subset of X, ¢ >0 and z, € X we

denote by

d(z, C) =inf f"zo -zl z €C]
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e-pri(xgy C) = {z EC;“zo—z“sd(zo, C) + &} (.1)
For any pair of nonempty subsets C and D of X we write

haus (C, D) =suple(C,D); e(D, C)]
where

e(C,D)=supid(z,D);z €C) .
THEOREM 2.1 Let C and D be two convexr subsets of a normed linear Space X.
Given any £ > 0 and z, € X, the following estimation holds

haus (z-prj(z,, C); e-prj(z oy D)) s p,_.(”zon)haus (C; D) (2.2)
with

pollzolh =3 +%[d(zo,D) +d(zg C)] . (2.3)

PROOF Let us pick up an arbitrary point z belonging to &-prj (z, C) and prove
that

d(z, &-prj(zy D)) s p,lz,lhhavs(c, D) . (2.4)

Since the sets C and D play a symmetric role, this will prove the theorem.

By definition (2.1) of &-prj (zo, C) we have
||zo —z||sd(zo, C)+e¢ .
Now, we notice that
d(zy, C)sd(z,, D) + haus(C, D)
hence
lzy —zll< a(zg D) +haus(C, D) + ¢ . (2.5)

Moreover since x belongs to C, by definition of haus (C, D) for every u > 0 there

exists some y € D satisfying
lz -y lshaus(c, D) + o . (2.6)

From (2.5) and (2.6) and by the triangle inequality
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lzg -y, llsd@, D) +2+2haus(C, D) +u

y, €D (2.7)

that is Yu€ (¢ +2h + u)-prj(z o D), where h = haus (C, D).
From the triangle inequality, it follows that
d(z, e-prji(z, D) = d(yp, e-prj(z, D)) + lz - y'“”

which with (2.6) yields

1+ d(xzg, D)|+h + 1

2
-prj s +
d(z, &prj(zey, D)) = Rh + u) T +2h

s(h +p)3 + d(zg D)

E+2h

~— which yields the desired inequality with p, as defined by (2.3), let & — 0 in the

above inequality, provided we have that

d(ypt &-prj (IO! D) s (Zh' + ,J') 1+ d(zol D)] .

2
E+2h
And that actually follows from the next Lemma. 0

LEMMA 2.2 Let K be a convex set in a normed linear space X, zo € Xandy €K

which satisfies
||zo -y”sd(zo,K) +&e+h

where £ >0 and h =0. Then, for each u €]0, 1] there exists some z € K such

that

“IO_ZHSd(Io, K) + &,
d(zg K) + ue
h +@Q —u)e

1+2

(2.8)
||y —zllsn ] ,

Letting p — 0 in 2.8), it follows

d(y, e-pri(ze K))sh|1l + d(zy, K)] . (2.9)

e+ h

and

haus ((¢ + ~A)-prj(z o K); &prj(zo K)) s h|1l + d(zq K)| . (2.10)

e+ h
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PROOF For any 0 < =<1 let us introduce = b belonging to X such that
Then for any 0 < A < 1 let us define
{A.# =Ay + (4 —)\)z“

which still belongs to the convex set X.

Let us estimate
lzo — &) J =Mz —v) + @ = M)z -z

sAllzg—yll+ @ =Nl -z,

sA(@(@p K)+e+h)+ @1 —A)d(zo K) + pe)

sd(zg K)+pe +A[(L —pwe+h]. (2.11)

In order to have the second member of (2.11) less or equal than d (z , X) + &, take

N ¢ S 7 X -2
A= T -me+h (2.12)

Then

ly — ¢, l=a -nlly -z |

h
h+Q-u)e

ly — gM‘II < [d(zg K) + (L + w)e +h] . (2.13)

Since fx, L belongs to &-prj(z,, X)

h
h +@1—-uw)

d(y, e-prj(z,y, X)) = C[Zd(zo,K)+(1+y.)e+h] .

which yields (2.8). This inequality being true for any u belonging to the interval
]0, 1], by letting u tend to zero it follows

h
h +¢&

d(y, epri(zo K)) s [2d(zg, K) + €+ Rh]

<h(1+ d(zo, K)| .

e+ h

This being true for any y belonging to (& + h)-prj(z,, X) and noticing that
&-prj(z, K) is contained in (¢ + A )-prj(z(, X), formula (2.10) follows. O
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3. STABILITY OF ¢-APPROXIMATE SOLUTIONS OF CONVEX MINIMIZATION
PROBLEMS

Let us now examine the general situation. We would like, as suggested by the
mathematical model involving just projections studied in the preceding section, to
prove a Lipschitzian dependence of the tz-approximate solution set on the data. In

order to prove a Lipschitz property for the map
Fb g-argmin F

we need to introduce a distance on the set of convex functions. At this stage, we
may decide to work with the distances d, ,. dyj . Or dx:’; see (1.2), which have
been introduced in [4], [5]. Indeed, these distances are well fitted to the study of
strictly convex minimization problems in reflexive Banach spaces. But, when con-

sidering &-solutions in general normed spaces they don't play such a naturail role.
Relying on the following elementary geometric considerations,
a) epiconvergence is equivalent to set-convergence of the epigraphs

b) e-argmin F is obtained by taking the projection on the space X of the inter-
section of the epigraph of F with the ball of radius (inf F + &), we are natur-
ally led to introduce the following distances on the set of convex functions
(cf. the r-distance for convex sets introduced by Salinetti and Wets [21],
Mosco [24]).

DEFINITION 3.1 Lel X be a normed space.

a) QGivenanyp >0, and any pair C and D of convex subsets of X
h.p(C, D) =sup [e(Cp, D); e(Dp, C)H)
where
Cp =C M By ()
and
e(C, D) =supld(z,D);z € Cpi

b) Given any p >0, and any pair F and G of convez functions from X
into R | {+ =],

dp(F, G) = h.p(epi F,epi @) (3.1)
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where epi F and epi G are two convexr subsets of X X Rand

Byygp) =lz. M) ex xR llzlls pandial < p} .

Byxpp) =z, M) ex xR llzllsp and \l=p] .

THEOREM 3.2 Let F,G:X — R | |+ | be two convezr functions on a normed

linear space such that

infFF and inf G are finite . (3.2)

(i) Ifthere exists some py > 0 such that for every &£ >0

s~argminF (M By(py) # ¢, e-argminG M By(py) # ¢ (3.3)
then
linfF ~infG|= d, F,G) (3.4)
with
py =sup {py; linfFl + 1; linfel +19 . (3.5)

(ii) Under the stronger assumption

g-argminF ) e-argmin G C By (py) (3.6)

the following Lipschitz continuily property of the e-solutions holds

haus (e-argminF, t-argminG) =< dpl(F. G)|1 + s del(F- ) 3.7

PROOF 1) Take for each 1 > £ > 0 some z, € By(py) such that
F,)=infF +c .
(z,, InfF + &) € epiF M By(py)

where
Py = sup {pg: sup flinfFl; linfely +17 .

By definition of d, see (3.1), for every u >0 there exists (.E#, )\p) € epi G such

p)
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that
lz, —¢,llsa, F, ¢)+p
linfF + & — )\#|s dp(F, G)+p .
Thus
A#Sian+e+dpl(F, G)+ .
Since )\# = G(.f#) 2 inf @, it follows
inf G —iansdpl(F, G)+e+pu .
This inequality being true for any ¢ > 0and u >0
infG —infF <sd, (F, G)

and by exchanging the role of F and G we finally obtain (3.4).

ii) Let us take some z belonging to e-argminF i.e. F(z) < infF + £. From ine-
quality (3.4) it follows that

F(z)<infG +d, (F,G) +¢ . (3.8)

Moreover since (z,F(z)) € (epiF),, for every u >0 there exists some
P1

(¥, A,) €epiG such that
lz —y l=a, F 6)+u 3.9)
|F(z) - )\#|s d,F, C)+p .
Hence
AuSF(z)+d,(F, G)+p
and since A, 2 G(y,)
G(y,) SF(z) +d,(F,G) +u . (3.10)

Adding (3.8) and (3.10) we obtain

G(y,) SinfG +e+2d,(F.G)+u . (3.11)

We complete the proof by relying on Lemma 3.3 below (similar to Lemma 2.2). We
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apply the Lemma to the convex function &G with @ =infG +¢&¢ and

h = de(F' G) + u. So, inequality (3.11) can be reinterpreted as (see notations in

Lemma 3.3 below)
lvd
Yu€Sg+n
and by construction, ¥ b satisfies
||y“||$po+dpl(F, G)+ u .
From (3.14), Lemma 3.3, we have

ly I+ o
Zdﬁx(F’ G)+ ¢

d(y,, S§) s (d, (F.G) + )

4p, + del(F' G)+2u
£ +2d, (F, G)

< (dp,(F' G) + u) (3.12)
Noticing that s¢ = g-argmin &, from (3.9), (3.12) by using the Lipschitz contrac-
tion property of the distance function d (', c-argminG) we finally derive (let

M4 — 0)

4p, +2d, (F, G)
£ +2d, (F, G)

d(z, e-argminG) < dﬁl(F' G)I1+

This being true for any £ € e-argminF, inequality (3.7) follows. O

LEMMA 3.3 Let F be a convexr function from a normed linear space X into

R ) [+ =|. Let us assume there exists some po > 0 such that
Ve>0 e-argminF N\ By(py) # ¢ . (3.13)

For any ® € R let us denote by Sg =z €X; F(zx) < 8). Then, for any 8, h € R
satisfying

8+ Ah286>infF
the following tnequality holds:

ly Il + p,

F
< . .
VY eSen dW.S®)Sh. g

(3.14)
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PROOF Let ® + h =0 >infF. Given y € Spe+n let us construct some £ € Sg such
that (3.14) is satisfied. Take for any u €]0, 1[ some point Yy such that

F(y, sinfF + u(8 —infF) = 8 + (1 — winfF
ly < po

and introduce for any A € [0, 1]
Qp=Ay +1-Ny, .

Let us choose A and u in order to have £, , € fe. that means F'(§, ,) = . By con-

vexity
F(£r,,0 S AF() + L = NF(y )
SAO+A)+ (1 —N[rd+ (1 —winfF]
S[A+ @1 =A)ul8 +Ah + (1 —A)(1L — winfF . (3.15)

In order to have the second member of (3.15) less or equal than @ take

(1 — u)(8 —infF) =1 —p - 1

A A =)@ —intFy - B + (L~ @)(8 —infF)

Sof,"#esg and

ly - &yl = @ =nlly =g |

=h L ”y -y I
h+@—-u)(® —infF) It
< h 1 [”y” + pol -

A+ —u)(® —infF)
This inequality being true for any 0 < £ <1

||y||+p
d(y,SEYsh- i . o
W.5e) S h e —intF)

REMARK 3.4 a) Let us examine what conclusion can be derived when assumption

(8.3) is dropped. Clearly
linf # — inf ¢ | = haus (prjpepiF, prigepi G)
< haus (epiF’, epi &)

But taking d (F, ¢) = haus (epiF, epi @) is not convenient since this quantity is + o
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as soon as F and & have distinct recession cones.

b) When assumption (3.6) is dropped then conclusion (3.7) fails to be true as

shown by the following example:
Take X = R, F(z) =x*
and for every n € N

x if z 20

Clearly assumption (3.3) is satisfied and indeed infF =inf&, is achieved
in both cases at z =0. Moreover for every p >0, dp(F, G) = £ ynile
n
g-argminF = ] — o, £], g-argminG, =[—-&n, £] and
haus (e-argminF’, s-argminG,) =+ « !0

With a similar type of argument as in Theorem 3.2 one can obtain the Lipschitz con-

tinuity property of the map
F—5%

whereS{ =z €X;,F(z)s A] :

PROPOSITION 3.5 Let F', G be two convex funciions from X, a normed linear

space, into R|) [+ | and let A\ be some real number such that A >infF,

A >infG. Let us assume that S5 By (py). Sf C By (py) for some py > 0. Then

2py +d, (F, G)
d,F.G)+\~sup finfF, infG} | '

haus (S¥, 5§) s d, (F, G)|1 +

where p; = sup {p,; Ak lingFl linfe 3.

PROOF Take z € S}, i.e., F(z) < A, then lizll< p, and (z, A) € (epiF),, with p,
given as above. By definition of dp, for every & >0 there exists some

(¢, K,) € epi G such that
iz ~¢,ll< d, (F.G) +¢ (3.16)

Ia —y.,_.lsdpl(]"'. G) +¢
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Hence,
Gl,) s p, <A +dp1(F', G)+e .

Applying Lemma 3.3, we derive

g, N + p,
d,(F,G)+\—infG

d(¢,. S§) < (d, (F, G) +¢) (3.17)

From (3.16) and (3.17) if follows

2py +d, (F, G)
d, (F,G) +\ —infG

d(z, S§) s d, (F,G)|1 +

This being true for any z € S{ and by exchanging the role of F and ¢ we finally
obtain

2py +d, (F, G)

h sF . s9<d, (F,G)|1 + . 0
aus (S, SX) Px( ) dpx(F' G) + A —sup {infF, inf G|

Let us now show how the Lipschitz continuity of the e-subdifferential of a convex
function, proved by Nurminski [17] and Hiriart-Urruty [12], can easily be derived
from Theorem 3.2. We recall that given F: X — R U | + =]

8 F(z)=lz" €eX ;Fly)aF(z)+<z ,y —z>—¢& Vy €X]
Equivalently

dF(x) = {z* ex”; F(z) +F*(z.) —<z,z">x £}
where

F*z") =supi<z”, z>; z x|
is the conjugate (Legendre-Fenchel transform) of F.

COROLLARY 3.6 Let F be a closed convex funciion from a Banach space X into
Ry [+ «|. Then for every & >0, 8, F:X — 2X" has the following locally
Lipschitz properiy:

For any z4, z, € X satisfying 8,F(z,) U 8, F(zy) C BX* (Po)

1

haus (8,F(z ), 8, F(z ) < C|p,, ?] Az, =z, (3.18)
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where C depends continuwously on p,and 1/ .

PROOF We characterize the e-subdifferential at z as some e-approximate solu-

tion. Move precisely
0 F)=lz" ex" F @) +F ) (z)—<z,z " >=¢] .
Here we used the fact F =(F* )*. Hence
0 F(z) =tz €eX"; F @)+ <z, £>-F (¢7) <z, 2" >seVveE ex™)
=z ex™;F ") -<z, 2" >sFT¢T) ~ <z, "> + e e ex™
= g-argmin {F*(') - <z, > .

Given two points z; and z, such that 8,F(zq) U 8,F(z7) CBX,,,(po) applying

Theorem 3.2, formula (3.7), we derive

apy +2d, (8, &)
£ +2d, (8, 0)

haus (8, F(z,), 8, F(z;)) = dpl(d’l, &) (1 +

where

Ql(:c*) =F"(z") - <z, z >

Qz(:c*) =F*(:c*) - <z, z">

py = sup {pg; sup {linf &; linfe,l} +1] . (3.19)
An elementary computation yields

d, (25, 8) s py llzg =zl ,
that is

4p, +2p1“:c1 —::J‘
£ +2p1||:c1 —::2H

haus (8,F(z 1), 8,F(z,)) < py|1 + Nzy =z,l (3.20)

where an upper bound for p; can be obtained from (3.19) and clearly depends in a

continuous way on ppand 1/ £. O

Since £ » 8,F(x) is a multivalued locally (pseudo) Lipschitz mapping, from
classical selection theorem there exists a Lipschitzian selection. Indeed and this

will make the link with the other classical approximation of 8F by Lipschitzian
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map, more precisely by the Yosida approximation VF, = (8F),. We prove that VF,

provides a Lipschitz selection of 3,.F.

PROPOSITION 3.7 Let F be a convex Lipschitz function from a Hilbert space H
into Rwith Lipschitz constant k. Then for any A > 0, ¢ > 0 satisfying

4&

A< ? ' (3.21)
we have
VF, € 6CF (3.22)

and the bound determined by (3.21) is sharp.
PROOF We use the following notation
1
A{ x:=VF,(z) =:—>‘—(z —J{z)

where J{z = + ABF)"iz and recall that A{z € 8F(J{z). Let us prove that
under condtion (3.21), A{z €8 F(x), i.e.

F(z)+F.(A§z)—<z,sz>S£ . (3.23)
From A,z € GF(J’;:::)

Flz) + F*45z) - <z, 45z>=0 .
Hence (3.23) is equivalent to

F(x) —F(J{z) - <z - {z, A{z) <,
that is

F(z) -Fhz) = %“z —FzlP e 3.24)
From the k-Lipschitz property of F, (3.24) will be satisfied if

kllz —J{z Il< %”z —J{z P+ e

Noticing that for A < 4&/ k% the function £ — z2 — A kz — £ takes only positive

values the relation (3.22) follows.
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Let us prove that the bound A < 4¢/ kZis sharp. Take H = Rand F(z) =k Iz .
Let us compute VF, and 8, F:

k if £ >0
a) Clearly 8F(z) = [k, +k] if z =
-k if £ <0
e if z= Xk
b) VFy(z) ={ = if —Ak sz =\k
—k if zs- Xk
k—§.+1 if T =¢e/2k
c) 8,F(z) =1 [-1, +1] if —e/2kszs+¢&/2k
—k -k -E|if z=—-&/2k
! T
a A
+k +k D_U‘
ol/ |
—Ak
D> y ' D>
0 X 1 Ak X
I
—k —k
oF VF

o_F
€

Let us compute the slope m of the ray passing through the origin which is tangent
to the curve deliminating 8,F, which equation is y(z) =+ &k — &/ x. An elementary

computation yields m = k?/ 4¢. In order that the ray Dy g, which defines VF,, to
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be included in 8, F one needs

2
1, k"
A 4=

that is A < 4&/ k% i.e. condition (3.21) is optimal. O

Thanks to the above result we are able to do the connection between the two

approaches described in section 1, that is e-solution and conditioning.

COROLLARY 3.8 Let F be a convez funclion from an Hilbert space H into

R [+ «]. For any A >0, let us consider z, the solution of the A\-well condi-

tioned problem
;nier:‘,[F(z) + %“z “2]
and for any & >0, assuming infF >— o, let us constder the set of &-
approzrimale solutions
g-argminF .
Let us suppose that F¥ is k-Lipschitz and A < 4&/ k% then

z, € e-argminF .

PROOF Let us write the optimality conditions that characterize respectively z,

and c-argminfF:
a) 8F(z,) + Az, 30 i.e.

z,=( + %3}?)'1(0)

1
== 2(0F0)

= (8F"),(0)

b) z € s-argminF

0

8,F(z) 30

¢

8,F (0) Dz
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i.e. e-argminF = a,F" (0)

Thus the inclusion z, € e-argminF can be translated into (GF‘ Kh0) c af‘ (0).

Applying Proposition 3.7 to F‘, the conclusion follows. O

REMARK 3.9 The condition F"© k-Lipschitz is equivalent to "F = + o outside of a

ball of radius k£". The Lipschitz assumption can be weakened, just assume F” local-

ly Lipschitz.

THEOREM 3.10 Let X be a normed linear space and F, G:X — R | + ={ two

convez functions such that
“infF and inf G are finite

" there exists some py > 0 such that for every € >0
g-argminF M By(p,) # ¢, e-argminG M By(py) # ¢ . (3.25)

Then, the following Lipschitz continuily property of the e-approzximale solu-

tions holds: for any p > p,, and any & >0,

haus (e-argminF" (M) By(p), e-argminG N By (p)) < C - da(P)(F, G) (3.26)
where
a(p) = sup [p;|ian|+1;|infG|+1j . (3.27)
1 . 2

cC=1+ (Zp + dﬂ(P)) * sup (3.28)

P=Potdap &£+2dagp |

PROOF Let us follow the lines of the proof of Theorem 3.2: Take
z € e-argminF (M By(p)i.e.

lzll<p
F(z)<infF + ¢ . (3.29)
From inequality (3.4)
linfF —inf Gl = d 4y (F, G) . (3.30)

Since (z, F(z)) belongs to (epiF)a(p) for every u >0 there exists some (yp, )\,)
belonging to epi G such that

lz -y lls d gy, G) + 1 (3.31)
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\F(z) - A'u|s d gpyFs G) + 4t . (3.32)

alp
From (3.29), (3.30) and (3.32) it follows that
AysF(z) +dypyF.G) +
SsinfF+¢+ da(p)(F, G) +pu
SinfG + € +2d,4(p)(F, G) + 1,
and since Aﬂ > G(y#),
C(y, sinfG + & +2d 4,)(F.G) + u . (3.33)
Moreover, from (3.31)
ly M= lizll + a7 6) + u
sp+ da(p)(F, G)+pn . (3.34)

Let us introduce for any 0 < £ < 1 and thanks to assumption (3.25) some v, satisfy-

ing
iyl < g
G(y,) <infG + ke (3.35)
and take for any 8 € ]0, 1
e, =0y, +01 -8y, . (3.36)
By convexity, and from (3.34), (3.35)
lee dlsolly ll+ @ —elly,l
SB(p+dapy +u) +(1—8), .
Thus ||£k.1,|| < p as soon as
8(p+dgp+H)+(1—8)pysp ,
that is
e < |o, P~ Po (3.37)

Similarly
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Gk, 8) S8CG(y,) + (1 —8)C(y)
which from (3.33) and (3.35) implies
G(£k o) S O[NfG + & +2d 0 + 1]+ (1 —O)inf G + k&] .
Thus G(fk'.‘,) is less or equal than inf @ + ¢ as soon as

8(e +2da(p)+,u.)+(1—8)ke:5e: ,

and thus
(1 —k)e
8 € |0, . 3.38
(1—k)e+2da(p) + u ( )
Taking
P = Po (1 —-k)t
8, = inf ,
k ‘p—po+da(p)+,u. (1 —k)e +2d g0 + 1
we obtain
[rA Py

G(fk‘.‘,b) <infG + ¢ ,

and

”y# - fk,db“ =(1 - Bk)”y# - yk” ,

= sup{—2a@ TR Edap T ly . el
P—pPotdapti' (L—k)e+2d,, +u| * kT
1 _ 2

s(da(p)+,u.) sup‘ ](2p+da(p) + i) .

Combining the preceding inequality with (3.31)

iz — &5, 0,/ = (d gy, ) + )

1 2
1+ +d + w)sup ' ’
Rp +dg(p) + 4 [p —potdgy (1 —k)e+2d,0 ”

The above argument being valid for any £ € ]0, 1[ and u > 0 by letting £ — 0 and
M — 0 we obtain
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d(z, (e-argmin &) M By (p))

1 2
<d FGC)1L+Rp+d ) - sup ; .
alp) a(p) P—pPo+dap & +2d4,,

The formulas (3.28), (3.27), (3.2B) clearly follow. O

As a direct consequence of theorem 3.10 we obtain the following result from

Hiriart-Urruty [12, Theorem 3.3].

COROLLARY 3.11 Let us consider F:X — R | | + «| be a proper, lower semi-
continuous convez function from a Banach space X into R |+ «{. Let z, ,

and z, be in the effective domain of F’ such that for some pp >0 andany &€ >0

8.F(z1) M By (po) # b, 8.F(z3) M Br(po) ¥ ¢ - (3.39)
Then for all p > p, there exists some constant C(1/ p — py, 1/ &) such that

haus (8,7 (z 1) M Byw (0), 8,F(22) M Byw(p)) S C % %Jll:c1 —z,ll . (3.40)

—po,

PROOF Asin Corollary 3.6, we use the following characterization of 8 F(z):
8 F(z) = g-argmin IF“(') - <z, >} .

Then apply Theorem 3.10 to the two functions
Qi(:c*) = F*(:c*) - <z, z">
(") =F (") =<z, 2" > .

Clearly z, € domF, z, € domF imply inf ®; > — e, inf , > — e and condition (3.25)

is equivalent to (3.39). o

4. PROPERTIES OF THE EPIGRAPHICAL DISTANCE: dp

Let us first describe the following practical result which makes the epigraphi-

cal distance easy to handle. Without ambiguity, we use the same notation B p for

By(p) and By , g(p).
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THEOREM 4.1 Let X be a normed linear space and F, G be two proper convezx
Sunctions from X into R [+ o|. Let p, > 0 be such that epi F N BPo # ¢, epi

G N By, % &.
a) Let us assume that for all p & py d p(F, G) <+ 0. Then the following condi-
tion - called Kenmochi's condition — holds: for all p2 p, and x € domF

such that |zl = P, |F(z)| < p, for every & >0 there exists some z, € domG
that satisfies

llz —5€||sdp(F,G)+£

G(E,) SF(x)+d,(F,G)+¢ (4.1)

and symmetrically, exchanging the role of FF and G.

b) Conversely, assuming that there exists some constant (that depends on p)
c(p) € R* such that for all x € domF such that lz| < P, IFz)l < p, there ex-

ists some £ € dom G that satisfies

lz =2l c(p) ,

G(Z)SF(z) +c(p) , (4.2)

and the symmetric condition (interchanging F and G), then the following ine-

quality holds:
dp(F, G) =c(py) 4.3)

where p; =sup {p; a(l + p)} and a is such that-a(l + -l minorizes F and G.

Moreover the following estimation holds:

d,(F, G) S haus ((epiF),, (epi G),) sp—fpp—d,,l(r, G) . @.4)
-]

PROOF It suffices to observe the following

(i) hp(epiF, epiG) s k, if and only if, for every € >0
(epiF)p CepiG + (k+ )P

(epiG)p CepiF + (k + &)B
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where B is the unit ball of X (Definition 3.1).

(ii) that these inclusions yield exactly the Kenmochi condition (4.1) if one

remembers that epi & is an epigraph.

(iii) the estimate (4.3) is obtained by calculating an upper bound on & in terms of

the given coefficients p and c (p). We do that next.

Given (z, u) €eepiF N B, i.e., llz |l < P, |/.L|Sp, u 2 F(x), we have, introduc-

p’
ing an affine function that minorizes F (it exists because F is proper), for all

v €X,

Fy)z-a@ +lylh

IF(z )| < sup {p; + a(1 + p){ =:p, . (4.5)
By (4.2) there exists some £ € dom G such that

lz —zll<c(py)

G(Z)sF(z) +c(py)

su+c(py) . (4.6)

We distinguish the two separate cases:
(i) If G(x)=<F(zx) then (£, u) €epiC anH:(pl) where we have used:

IZl<llz il + c(py) < p + c(py). Hence
d((z, W), (PiG)prcipy) sz, w) = (& Wl
s c(p4q) -

(ii) If G(£) = F(z), take (£, G(x) + o —F(z)) € epiG and observe that by
(4.6),

le(®) -F(z) + ulslul+6@E) -Fz) .,

sp+c(p) .

Hence (£, G(Z) + u ~F(z)) € epi G N Bpic(p, and

d((zl I"')r (ePiG)p+c(pl)) = Sup iC(pl); l[.lr - (G(E) + 73 _F(Z))”
< sup {c(p,); G(Z) —F(z)}

sc(py) -
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and that is (4.3). In order to prove (4.4) we next rely on the estimate provided by
Proposition 4.2, that yields

haus ((epiG), 4 ¢ (p,) €PIG),) S |1 + 2f°o ]c(pl) :
which combined with

ad((z, 1), (ePiG)prc(p)) S c(P1) .
gives

d((z, w), (epiG),) <21 + Po c(py)

and that is (4.4). O

To prove the next proposition we could use an argument that parallels that of

Lemma 3.3, we give here a proof based on duality.

PROPOSITION 4.2 Let X be a Banach space and C a closed convex set such that
c r‘\Bpo # ¢. Then for any p > py, for any dp =0

haus (C N Bpyap C NBp sSL ~dp 4.7)

where the Lipschitz consiant L is given by

L=1+— . (4.8)

PROOF From Hormander classical duality formula, see [4, Section 3] for example,
»” »” »”
haus (C r‘\Bp+dp,C(‘\Bp)=sup[|s(C NBprap = ) —s(C NB, = i llz® s 1)

where s (X, z*) = sup [<z*, z >; z € K] is the support function of X.

Note that
s(C N B, = (8¢ + 53,)*

and that dyp is continuous at a point of the domain of & ¢ (because of the assumption

cnN BPo # ¢ and p > py), which means that

s(C N B, =ézuép, ,
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i.e., the inf-condition Dis exact. Hence
s(C NBpz )=minisC,y ) +pllz™ =3, 3™ ex™}

and the min is achieved at some point y; . Similarly

S(C N Byrap z ) =min{s(C,y )+ +dp)llz” —y*ll; y* ex™}
Thus
L] L]
s(C ﬁBP+dp,:: ) —s(C ﬂBP,z )
sfs(C,y;)+(p+dp)|lz*—y;”}—{s(C, y;) +pliz™ —y;”} .
=dp Nz™* —y;” .
Indeed

s(C, y;) +p||z* —y; Il < s(C ﬁBp, z*) .

Since C N B,, # ¢, taking some z, € C N By,

S(C, Y, ) =<y, o>
Moreover
s(C N B, z')Ssupi(z*, ud>; u eBpi
<pllz™Il .

Hence

p”x* - y; < po”y;“ + p”.’c*“ ,

and
(o —po)”y;HSZp”z*” ,
2
Iz -y 3 ls 1+ —22|ilz*ll .
Finally

|s(C me+dp, x*) -s(C ﬁBP, x*)|sdp(

2
1+ —20 liz*Il .
P = Py
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and

ZPo
P = Po

haus(C N\ B CNB=dp- |1+

p+dp

REMARK 4.3 Theorem 4.1 tells us that in order to compute dp(F, G) we have to
find the best constant c(p) for which the condition (4.2) holds. Indeed this condi-
tion that we called Kenmochi’s condition had been introduced in Kenmochi [13], see
also Attouch and Damlamian [2] in order to study the existence of strong solutions

to evolution problems of the following type:

0 e%+aF(t, u(t)); u@®) =u, .

The time dependence of F with respect to £, with our terminology, can now be ex-
pressed as an absolute continuity property of the application ¢t — F(f). Let us re-

call this condition: there exists some b € C([0, T]; H) N Wi'z([O, T]; H) and a func-

tion a, increasing such that:
VOoss <t <T Wz €domF(s, ), 3% € domF(t, - ) such that 4.9)
lz -2l slbee) ~es)l- 1t +lz
Fit,£)sF(s,z)+ (a(t) —a(s)IF(s, z)l +llzI”P +17 .

Thus, Wz € domF(s, ) with HzHSp, |F(s, ~)|s p we have the existence of some
Z € domF(t, *) such that

lz -zlls@ + p)lo) —b(s)!,
FA,E)sF(s,z)+ 1 +p+pdat)~a(s)) .

Taking c(p) =sup {(1 + p)|b(t) -b(s)l @+ p+pAa(t) —a(s))], we see that
condition (4.2) is satisfied. O
To conclude let us examine the connection between the epigraphic distance and the

Moreau-Yosida type distance d Ao introduced in [4].

PROPOSITION 4.4  Let X be a Hilbert space and F, G:X — R { + =] be two
proper lower semticontinuous convezx funciions. For any A >0 and p >0 we

have the following estimate:

d) ,(F.G)S L - dg, y(F, G) (4.10)
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wherel =1/ A(p + C,(p)) and C,(p) is given by (4.15)
PROOF Let us fix z € X and some A > 0. By definition of F, G

Fy(z) =min{F(y) + %”z —y”z; y €X),

1
=F'(J};z) + E”z —J};z I’
Ca(z) = min {G(¥) +%“z ~ylky exy |

= G(ng) + %”z - Jﬁz”z .

Hence

Fy(z) - G &) =F(z) - 6(JSz) + %(”z ~ Izl ~llz — Sz By .

Let us consider the point sz: € dom &. We first notice that
lréz il <lls§oll + Nzl .
Introducing a = 0 such that
Fw)+a@ +llylh=o0
cy) +a@ +llylh =0
by definition of JfO
6 (/50) + ——11/50IR < G (z ) + —Ilz JP
2X 2A
where we have picked some point £, € dom . Hence
—a( + 750l + 2N/50R < @ (zg) + =z,
2x 2X

and

lrGoll <2ra +llz |l + \/2X(@ +1G HN -

Hence

||sz l<slizll + 2aa + iz o” + /2 (a +iG(zo)W

Moreover

(4.11)

(4.12)

(4.13)
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G (JSz) < G\(z)
< G(z,y) + Elk_”z —10”2 .

Thus assuming lzll < p, we have “Jf:c Il < c(p), |G(Jf:c)| =< c(p) where

c(p) =:sup [p +2 a + ”-‘Co” + V2X(a +1G(zp)!); |G(zo)| + %(p2 +||:co||2) ;

a [1 +p+2ra +llz ll + /2X(a +iG(zo)i)]] )

We note that c(p) depends on a continuous and bounded way of a, p, A, 1/ A, ||:co||,

G(z) where z is an arbitrary point in domG. Assuming epi G N BPo # 0, we have

1
Ca(p) =:C(p, A, ' Por a) =sup {p +2ha + py + V2A(a + py); Po (4.15)

+ —g’\-(p2 + pg); a(l+p+2ha+ py+V2A(a + pp))) .

By definition of the epigraphical distance dp and Theorem 4.1, (4.1), for every

£ > 0 there exists £, € domF such that

y 4.16

F(Z,) < GWSz) + de,(p)(F, G) + £ (4.16)
Returning to (4.11), this yields

Fy(z) =G )(z) S F(J5z) —=F(,) + dg, (,y(F, G) + £ (4.17)

+—2_:-]-'_>-\-[||z —J’;‘cm ~llz —Jg:c'P] .

From the convex subdifferential inequalities
Fx,)= F(J{z:) + <A§z, z, - §z>
zF(J":z) + <A§z, z, —Jf:r:> + <A’;z, sz —J";'z> .
iz —Azlf -llz = 7§zl ~2<z =75z, 7Gx —~Hz> =<0
and (4.17) we deduce

Fy(z) = C\(z) s <A5z, I§z ~Z,> + <alz, Az - §z> + dg (,,(F. G) + &
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+ %—<z —Jﬁz, Jﬁz —J{z> .
Since A{z =1/ A(z - J{z). we obtain,
Fy(z) = Cy\(z) = <A};z, sz —5c> + dCA(p)(F' G)+e&

which with (4.16) implies,

F(z) = Gxz) S [de, (ny(F, G) + £11 +1afzlly
Observing that

lafzll < llaXoll + —}1\-|Iz |
L ol + izl
1
= (p +Cy(p)) .
we finally obtain (let £ — 0)

Fx(®) = G(2) S dg,(y(F, G) [1 + 5 0 + Cx(p))

Interchanging the role of F and G, this yields (4.10). O
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