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PREFACE 

Game dynamics, as a branch of frequency dependent population 

genetics, leads to replicator equations. If phenotypes corre- 

spond to mixed strategies, evolution will affect the frequencies 

of the phenotypes and of the strategies and thus lead to two 

dynamical models. Some examples of this, including the sex 

ratio, will be discussed with the help of a non-Euclidean metric 

leading to a gradient system. Some other examples from popula- 

tion genetics and chemical kinetics confirm the usefulness of 

such gradients in describing evolutionary optimization. 

Alexander B. Kurzhanski 
Chairman, 
System and Decision Sciences Program 



GAME DYNAMICS, MMED SJRATEGIES AND GRADIENT S E T E M S  

* 
Karl Sigmund 

1. Introduction 

The theory of frequency dependent selection received a strong boost, and in 

fact a new meaning, from game theory. The introduction of the notion of evolution- 

a ry  stability by Maynard-Smith and Price (1973) and the subsequent flourishing of 

evolutionary game theory must be viewed a s  a major advance in theoretical biol- 

ogy. But like every new field, i t  has met with its share of misunderstandings. 

In particular, i t  has probably been unavoidable that the use of the term "stra- 

tegy" evoked hostile reactions. "Strategy" is closely associated with plotting and 

scheming: we don't expect much forethought from nonhuman brains. "Mixed stra-  

tegies", in particular, seem totally misplaced in the animal kingdom. Konrad 

Lorenz claims not to have met with a single one in all his life. Animals, a s  others 

have pointed out, do not have roulette wheels in their  heads: so how can they 

obtain probability distributions for different types of behavior? 

But this is  a superficial view based on a semantic confusion. Indeed, in evolu- 

tionary games, a strategy is  a phenotype. The sex rat io is an example of a mixed 

strategy, and it  is common enough. Many species manage to  mix male and female 

offspring with nearly equal probability without playing roulette. Other cases of 

mixed strategies a r e  to be found in foraging, dispersal, parental ca re  etc. We 

re fe r  to Maynard-Smith (1982) for  a thorough presentation of the biological 

aspects of this question. On the following pages, w e  shall be more interested in the 

mathematical aspects, but stick to the sex rat io for  illustration. 
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2. The sex ratio 

Already Darwin (1859) w a s  puzzled by the prevalence of the sex ra t io  $. I t  is 

not, as we may f i r s t  think, an immediate resul t  of the sex determination through X- 

and Y-chromosomes. In fact,  at conception the ra t io  may be quite different, and 

subsequently shift t o  yield the value $ at birth.  What is the evolutionary reason 

fo r  this? After all, as animal breeders  know, a female biased sex ra t io  leads t o  a 

higher overall  growth r a t e .  Why a r e  t he re  so  many males around? 

The ingenious explanation of Fisher (1930) anticipates, as Maynard-Smith 

notes, thinking in terms of game theory. We shall assume that  the number of chil- 

dren is not affected by the  sex rat io ,  and conclude that  the number of grandchil- 

dren is. Roughly speaking, if there  w e r e  more males than females, girls would 

have good prospects. Since the same holds vice versa,  this should lead t o  a sex 

ra t io  of i. 
To check this, let  us denote by p the sex ra t io  of a given individual, and by m 

the average sex ra t io  in the population. Let N1 be the  population number in the 

daughter generation F1 (of which m Al l  will be male and (1-)N1 female ) and N2 

the number in the following generation F2. Each member of F2 has one mother and 

one father:  the  probability that  a given male in the F1 generation is i ts  fa ther  is 

- , and the expected number of children produced by a male in the F1 genera- 
mN1 

N2 
tion is therefore - (assuming random mating). Similarly, a female in the F2- 

mN1 

generation contributes an  average of 
N2 

children. Since a p-phenotype 
(1 - IN1 

produces male and female children in the rat io  p t o  1 9 ,  i ts  expected number of 

grandchildren will be  proportional to  

i.e., i ts  fitness is proportional t o  

(we may clearly exclude the cases m = 0 and m = 1 which lead to  immediate extinc- 

tion). For given m E (0,1), the function p w (p ,m ) is  affine l inear,  increasing 

fo r  m < k, decreasing fo r  m > $and constant f o r  m = i. 



Let us now consider a phenotype with sex ra t io  q ,  and ask whether i t  is  evolu- 

tionarily stable in the sense tha t  no other  phenotype with sex ra t io  p can invade. 

If such a deviant phenotype i s  introduced in a small proportion E, the  average sex 

ra t io  of the population i s  r = E p + ( 1 - ~ ) q .  The q-phenotype f a re s  be t te r  than 

the  p-phenotype if and only if 

This is obviously the case f o r  every p when q = $ (it i s  enough t o  note tha t  p and 

r a r e  ei ther  both smaller, o r  both la rger  than i). For q < *, a sex rat io  p > q will 

do bet ter ,  however, and consequently, spread; similarly, any q > & can be  invaded 

by a smaller p . Thus is the  unique "uninvadable" sex ratio. 

A similar game theoretical analysis makes sense whenever the "payoff" f o r  a 

given "strategy" (or t ra i t )  corresponds to  i t s  r a t e  of increase in  the  population. 

In many examples from biology, this will mean that the  t ra i t  is inherited, and i ts  

payoff Darwinian fitness - a fitness which, in general, will depend on what the oth- 

e r s  a r e  doing, and hence will be  frequency dependent. But examples where the 

t r a i t  spreads through learning, o r  o ther  means, have also been discussed. We 

refer in particular to Axelrod (1984) and his computer tournaments between pro- 

grams fo r  the  Repeated Prisoner 's  Dilemma, a striking approach t o  the evolution 

of cooperation. 

3. Game dynamics 

Following Taylor and Jonker (1978), the  evolution of the  frequencies of the 

different phenotypes in the population will be  modeled by a game dynamics whose 

Ansatz consists in setting the growth r a t e  of the frequency of a phenotype equal t o  

the difference between i ts  payoff and the average payoff in the  population. 

For the sake of simplicity, w e  shall assume that  t he re  a r e  only finitely many 

phenotypes El, . . . ,En with frequencies zl, . . . ,zn. The state  of the population i s  

given by the point _z in the unit simplex Sn. By fi (z), w e  shall denote the payoff 

f o r  the  phenotype Ei in a population in s ta te  _z. The average payoff in the  popula- 

tion, then, is 

The r a t e  of increase of the  frequency of Ei is  II. The dynamics, then, i s  given by 
4 



the  

equation 

on the s ta te  space Sn . (It is easy t o  see that  the  simplex Sn as well as i ts  boundary 

consisting of faces  zi = 0 is  invariant). 

This "replicator equation" has  been derived and analyzed in many different 

fields of evolutionary biology, as e.g. in population genetics, chemical kinetics and 

mathematical ecology (see, e.g., Schuster  and Sigmund (1983) and Sigmund (1985)). 

Of par t icular  interest  is  the case where the f i  Cz) are linear:  as shown by 

Hofbauer (1981), t he  repl icator  equation then is  equivalent t o  the Lotka-Volterra 

equation yi = yi ( r i  + zai, y,). 

In many situations, the  rest r ic t ion t o  finitely many phenotypes is  unnatural. 

For t he  sex ra t io ,  in par t icular ,  all  values between 0 and 1 should b e  allowed. I t  i s  

easy t o  derive t he  corresponding differential equation modeling the  evolution of 

the  frequency distributions. However, f o r  ou r  purposes this will be  only of secon- 

dary  interest:  we shall stick t o  discrete  approximations and assume that  only fin- 

itely many sex ra t ios  pi may occur.  

The average sex r a t i o  i s  

The fitness f i  &) of sex r a t i o  pi is  given by w (pi , m )  (see (1)). I t  will be useful t o  

write this in a slightly different way. There are two "pure strategies" in the sex 

ra t io  model, namely "produce only sons" o r  "produce only daughters", i.e. p = 1 

1 
and p = 0. The corresponding payoffs are w (1,m ) = - and w (0,m ) = - 

m 
. With 

l-m 
F ( m )  = w (1,m) - w (0,m) one obtains 

1 ?&I =zzifi = n r ~ ( m )  + - 1-m 

and 



Similar equations occur  very frequently in game dynamics. The celebrated 

"Hawk-Dove" game from Maynard-Smith (1974) is  a case  in point. W e  may assume 

that  an animal, when faced with a fight, has two basic options: t o  retreat o r  t o  

escalate. The success of each move depends on what the  opponent i s  likely to do. 

To escalate i s  a good idea if the  opponent will retreat: if not, i t  might be  a fatal  

step. I t  i s  conceivable tha t  individuals will display mixed s t ra tegies  and escalate 

with a cer ta in  probability. 

Thus w e  shall consider games satisfying two assumptions: 

(a) There are two s t ra tegies  R1 and R 2 .  Each phenotype Ei will be  charac- 

terized by i t s  probability pi of using R1.  Then m  as given in (5) will be  t he  fre-  

quency of R 1  in t he  whole population. 

(b) The payoffs A1 and Az f o r  R 1  and R z  depend only on m  . 

With F ( m )  = A l ( m )  - A 2 ( m ) ,  equations ( 6 )  and ( 7 )  will become 

fr @ )  = p i F ( m )  + A z ( m )  and j@) = mF(m)  + Az(m ). Thus (8) will hold again. 

In the  sex ra t io  game, 

In the  Hawk-Dove game, and more generally whenever t he  payoff depends on (one 

o r  repeated) pairwise encounters, A l ( m )  and A 2 ( m )  are linear in m .  Indeed, if aij 

is the payoff f o r  an individual using Ri against an individual using Rj  ( 2 ,  j = 1 ,2 )  

then A l ( m )  = a l l m  + a 1 2 ( 1 - m ) ,  A z ( m )  = a z l m  + a z z ( l m )  and hence 

Returning t o  the general case,  we see tha t  f o r  any th ree  phenotypes Ei , Ej and E k ,  

equation (8) admits a constant of motion, namely 

This induces a foliation of t he  phase space S, into one-dimensional invariant mani- 

folds. 

The evolution of t he  average  frequency m  of R1 i s  given by 



i = F ( m )  Var P (12) 

where P is the random variable taking the value pi with probability xi. If we 

neglect the degenerate situation Var P = 0 (only one phenotype present  in the  

population), w e  obtain tha t  i has the sign of F(m), i.e. tha t  the frequency of R, 

increases if and only if F(m ) > 0. The set 12 E Sn :F(m ) = 0 j, which consists of 

linear manifolds, i s  the set of rest points of (8). 

1 3 4 
W e  sketch the situation f o r  the sex r a t i o  game and p = - , p =- a n d p a  = - 

5 5 5 

in Figure 1. The invariants of motion corresponding to  (11) are the  curves 

12 = const z , zf in Sn. The orb i t s  converge along these curves  t o  t he  set m = + 
of equilibrium points. This s e t  is evolutionarily stable,  in the terminology of Tho- 

mas (1985). 

In t he  sex r a t i o  game and many o the r  situations, t h e r e  holds a "law of dimin- 

ishing re turn"  in the sense tha t  the payoff f o r  each s t ra tegy i s  a decreasing func- 

tion of i ts  frequency. In this case (8) is  locally adaptive in the  sense that  F(m) 

converges monotonically t o  0. W e  shall presently see tha t  (8) is  a gradient and 

hence satisfies a global maximum principle. 

4. Shahshahani gradients 

A s  shown by Shahshahani (1979) and Akin (1979), the  metric most appropriate  

f o r  the  repl icator  equation (4) on Sn is not the  Euclidean one. I t  i s  advantageous 

t o  consider another Riemannian metric on the  tangent space 



For _z E int Sn and l , ~  E T, Sn , i t  i s  given by the  inner product - 

n 
(while t he  Euclidean inner product will be denoted by t . 7 = ti qi). - - 

i =1 

In par t icular ,  t he  Fisher-Haldane-Wright selection equation 

with symmetric matrix M is  a gradient with respect  t o  this  Shahshahani metric, 

with V k )  = 3s . M z as potential. This implies Kimura's Maximum Principle: t he  

average fitness z . M z increases  at maximal rate under the effect of selection. 

In general,  l e t  V be  a real valued function defined on an open set U in Rn con- 

taining the  simplex Sn , and let Dz V a n  + R b e  i ts  derivative at s. The vector  field 

F:U + lRn is  the  Euclidean gradient of.V, i.e. _F@) = grad  V(z ) fo r  all  _z E U, if - 

holds f o r  all 3 E T, Rn -Rn, while i t  i s  t he  Shahshahani gradient of V, i.e. 

E k )  = G r a d V b )  f o r a l l y  EintS,, if 

holds fo r  all 3 E T, Sn . 

If j' = g r a d  V i s  an  Euclidean gradient, then the  vector field f with com- - - 
ponents 

is  the  corresponding Shahshahani gradient, i.e. - f =Grad  V (cf. Sigmund, 1984). 

For the converse direction, let us define two vector  fields j' and g t o  be - - 
equivalent, j' - g , if Pi (g ) - gi (g ) i s  independent of i fo r  all _z E Sn . I t  is  easy t o  - - 
see that - j' - - g implies = 6 on S n ,  and vice versa.  Now if f = Grad V, then - - - 
j' - grad V. Thus the vector  field 7 is  t he  Shahshahani gradient of V on int Sn if - - 
and only if t he re  exists a r ea l  valued function defined in a neighborhood of 

int Sn such that  



holds on int Sn . 

Equivalently, the repl icator  equation (4) is a Shahshahani gradient if and only 

holds on int Sn f o r  all  pairwise different indices i . j ,k E t l ,  . . . , n j .  ( Here f f  , j  

a f t  denotes t he  partial  derivative - ). This "triangular integrability condition", 
a =, 

the  equivalent of the  integrability condition f i l j  = f jVi  f o r  Euclidean gradients, 

has been shown by Sigmund (1984) fo r  l inear vector  fields f (z) = A  . It  means 

that  there  exist constants cj such tha t  the matrix with elements ail - c j  i s  sym- 

metric. The general case w a s  proved by Hofbauer (1985b), and w e  shall presently 

see  i ts  usefulness. Let us note that f o r  n = 2, condition (15) is trivially satisfied 

and (4) therefore  a gradient. 

5. Mixed stategist games 

Let us consider now a game with N pure s t rategies  R1 to  RN,  and n phenotypes 

El to  En playing mixed strategies: Ei plays strategy R, with probability p:, and 

hence is characterized by a vec torz i  E SN. If we denote the frequency of Ei in 

the population by x i ,  then 

is the frequency of the  strategy Rk in the population. The s tate  of the population i s  

given by z ESN and the  distribution of s t rategies  by m ESN. Let us  assume now that 

the payoff depends on _z only through the  frequency distribution _m E SN of the  

pure strategies.  (Thomas (1984) calls such games degenerating). If we denote the 

payoff f o r  the  pure  s t rategy Rj by Aj (m), then the payoff for  phenotype Ei is  

given by 

while the average payoff in the  population i s  



G a m e  dynamics leads t o  

which f o r  N = 2 yields (8 ) .  

Whenever t he re  are more phenotypes than s t ra tegies  ( N < n ) ,  t he re  are non- 

trivial relations 

CcQi = o .  

Since al l  - pi belong to  SN,  this implies z c i  = 0 and hence 

C ~ i ( Z ! ~ z ! k ) = o .  

Thus one obtains from (20)  t he  constant of motion 

x c i  log xi = const 

which corresponds t o  (11). 

The mean _m satisfies 

where Cov P is the  covariance matrix of the  random variables Pk taking values p: 

with probability zi . This corresponds to (12). 

Following Thomas (1985) w e  can also consider the auxiliary game correspond- 

ing t o  the  pure  strategies.  This "pure s t ra tegis t  game" corresponds t o  (20)  with 

n = N andpi the  i -th unit vector  of the standard basis in lRN. Denoting by yi the  

frequency of Ri , we ge t  _m = - y and 

on SN. 

Theorem: If t h e  pure  s t ra tegis t  dynamics (24) is a Shahshahani gradient, 

then so  is the mixed s t ra tegis t  dynamics (20).  

Proof. (20)  is  a repl icator  equation of type (4) with 

Hence 



If (24)  is  a gradient, the triangular integrability condition (15)  reads 

This implies tha t  the N X N-matrix D,,A can be written as S(7n ) + C ( m ) ,  where 

S  b ) i s  symmetric and C (z ) has N equal rows. For some _C = _C (m ) E R~ w e  have 

Clearly - p i  . S ( n  ) - p j  = - p j  . S(7n ) p i  - and - p  . C& ) - p f  =_c - p j .  This together with 

(26)  implies that (15)  is  satisfied and hence that (20)  is  a Shahshahani gradient. 

Equation (20)  has actually the same potential as (24) .  More precisely, if - vt+ 
V ( y  - ) is a Shashahani gradient f o r  (24) ,  then _z1+ V(m ) is  a Shashahani gradient f o r  

(20) .  Indeed, if 

(cf. eq. ( 14 ) )  then 

I r k )  = _ p i  . A & )  = C P ~  = C p f ( ~ ~ ( 7 n ) - + ( 7 n ) )  + *b) 
j j 

A s  a corollary , we obtain tha t  (8) i s  always a Shahshahani gradient: indeed, w e  

have only t o  recal l  that N = 2 .  Equation (14) ,  in this case,  i s  satisfied with 

9k) = A2(m ) and V a primitive function of F ,  since 

av av am ( m )  = ( m )  = p i  F ( m )  - 
azi axi 

For the Hawk-Dove game, F i s  given by (10)  and hence we may use 

The expression in the square bracke t  is the difference between the actual f re-  

quency of R1 in the population and its Nash equilibrium value in the Hawk-Dove 

game, provided i t  l ies in (0,l). 



For the  sex r a t i o  game, F i s  given by (9) and hence w e  may use 

The product m (l-m ) of the frequencies of males and females increases  to  i ts  maxi- 

mal value, obtained f o r  m = &. This principle, which w a s  f i r s t  formulated by Shaw 

and Mohler (1953). can  now be  strengthened: the  population evolves in such a way 

that  m (1 -m ) increases  a t  a maximal rate. 

I t  i s  interesting t o  consider also the case of N > 2 mating types. Every "sex" 

Ri can mate with any o ther  Rj, j # i. Since mi denotes the frequency of Ri and 

l - m i  the frequency of i t s  possible mates, the frequency of Ri-matings is  

and the  payoff f o r  a n  Ri -individual, i.e. i t s  sha re  in matings, i s  

I t  i s  easy t o  check that  

satisfies t he  t r iangular  integrability condition (27). This implies tha t  the  sex r a t i o  

game with N mating types is  a gradient system. Kow 

av 
is of t he  form -(m ) + +(m ), with 

a"'i 

i.e., since Emrc = 1. with 

Hence (36) i s  the  potential f o r  the N-type sex r a t i o  game. The state ~ ( t )  evolves 

in such a way tha t  converges at a maximal r a t e  towards 0. In equili- 



brium, the  N sexes will be equally represented in the  population. (This i s  somewhat 

disappointing. To quote Fisher (1930): "No practical biologist interested in sexual 

reproduction would be  le t  t o  work out t he  detailed consequences experienced by 

organisms having th ree  o r  more sexes: yet  what else should he  do if he  wishes t o  

understand why the  sexes a r e ,  in fac t ,  always two". I t  would have been nice to  find 

out tha t  the  model with N sexes leads t o  the  extinction of all but two of them.) 

6. Discussion 

(a) Gradient systems with respec t  to a non-Euclidean metric occur  in several  

fields of theoretical biology. In par t icular ,  Hofbauer (1985a) discussed the  

mutation-selection equation of Hadeler (1981) and related models. Such systems 

are Shahshahani gradients if and only if t he  mutation r a t e  from allele A, t o  allele 

Ac does not depend on j. In Hofbauer (1985b) one can find some more gradient 

systems: f o r  example, ferti l i ty equations with two alleles, o r  with additive ferti l i ty 

contributions of the  parents,  o r  with multiplicative but sex-independent contribu- 

tions. 

In Schuster and Sigmund (1985) i t  i s  shown that competition of autocatalytic 

reactions may lead in important cases to gradients and hence t o  maximum princi- 

ples. 

(b) Our discussion of the  sex  ra t io  neglected many bioIogical aspects.  For 

example, w e  assumed tha t  the "costs" fo r  producing male and female offspring are 

the  same: i t  frequently happens, however, tha t  they differ. Fisher 's  argument is  

still valid: i t  says now tha t  the total (life time) effor t  in producing sons and 

daughters must be equal (see, e.g. Charnov (1982) and Trivers (1985)). W e  have 

fur thermore failed t o  consider the case that  competition f o r  mates Is local r a t h e r  

than global: this case may lead t o  extraordinary sex rat ios  (Hamilton (1968)). 

Another aspect  which w e  neglected i s  the  genetic basis of the sex r a t i o  (this is  a 

common t ra i t  of "phenotypic" game dynamics for  frequency dependent selection). 

There is  a considerable amount of work on genetic models, which seem independent 

of Fisher 's  argument but lead again t o  t he  sex ra t io  (see, e.g., Eshel and Feldman 

(1982) and Karlin and Lessard (1986)). Sex linked meiotic drive may again lead t o  

extraordinary sex ra t ios  (Hamilton, (1968)). 



The outcome of both genetic and game theoret ic  models is  a prediction on the  

total  sex ra t io  in the population, and not on the  sex ra t io  of individuals. The popu- 

lation may just as w e l l  consist of a unique phenotype with sex ra t io  o r  of two 

equally represented phenotypes with sex rat ios  0 and 1, say. Why is  t he re  in 

actual populations a prevalence f o r  individual sex ra t ios  close ta *? Numerical 

simulations by Poethke (1986) suggest tha t  this  is  due to  the finite size of t he  popu- 

lation. 

Finally, we mention that  evolutionary dynamics seems w e l l  on the way t o  invade 

classical game theoret ical  fields. For example, Samuelson (1985) deals with a sex  

ra t io  model as a link between modes of thought in economics and biology. 
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