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1.Introduction

Ever since the publication of Axelrod’s basic book (1984), the Iterated Prisoner’s Dilemma
(IPD) is generally viewed as the major game theoretical paradigm for the evolution of
cooperation based on reciprocity. In repeated encounters, two players are faced with the
choice to cooperate or to defect (C or D). If both cooperate, their payoff R (reward) is
higher than the payoff P (punishment) obtained if both defect. But if one player defects
while the other cooperates, then the defector’s payoff T (temptation) is higher than R,
while the cooperator’s payoff S (sucker) is smaller than P. It is furthermore assumed that

R > %(S + T), so that joint cooperation is more profitable than alternating C and D.



If the game consists of a single encounter, the best option is to defect, no matter what
the other player does. Since both players will resort to this solution, they end up with
the punishment instead of the reward. A simple argument shows that the same holds if
the game consists of a fixed number of encounters (known to both players): one has just
to apply the previous reasoning to the last move and then to work backward. But if the
length of the game is unknown, as for example if there is a fixed probability w for a further

encounter, then the players may ‘learn’ that it is in their interest to cooperate.

In Axelrod’s well known computer tournaments, the simplest strategy did best. This
was Tit For Tat (TFT), submitted by Anatol Rapaport : it consists of starting with a
cooperative move and then doing whatever the opponent did on his previous move. Most
strategies among the ‘runner’s up’ shared with TFT the properties of being nice (i.e.

starting with C), provokable and forgiving.

The assessment in Axelrod’s contests was established by round robin tournaments. For
applications to evolution, Axelrod and Hamilton (1981) stressed the ‘ecological approach’
and hence the underlying dynamics of the game : each strategy participates to the next
generation in proportion to its present success. Thus good strategies spread in the pop-
ulation at the expense of weaker ones, but what is good and what is weak depends on
the composition of the population and hence varies in time : it may happen, for instance,
that a strategy does well when rare but poorly when it meets itself too often, so that it
chokes on its own success. This view of ‘frequency dependent fitness values’ is at the core
of Maynard Smith’s applications of game theoretical arguments to evolutionary models
(1982), and in particular of his notions of uninvadable phenotype and evolutionarily stable

strategy (ES5S).

In spite of its success, TFT is not an E£SS. For sufficiently high w, it cannot be invaded
by All Defect (ALLD), as Axelrod has shown. But ALLC for example, does as well as
TFT in a population consisting only of itself and TFT, and hence can spread by genetic

drift. Once its frequency is sufficiently high, ALL D can take advantage and invade, since



it has to fear less retaliation than against TFT alone. This argument is due to Selten and
Hammerstein (1984), who also pointed out another weakness of TFT: if by mistake, one
of two TFT-players makes a wrong move, this locks the two opponents into a hopeless

sequence of alternating D’s and C’s.

Such a mistake is unlikely to occur in a computer tournament, but has to be expected
in ‘real life’. Actual biological situations are fraught with errors and uncertainties. The
answer to the opponents last move (which may be misperceived in the first place) is only
an increase or decrease in the readiness to cooperate. This emerges quite clearly from

Milinski’s (1987) experiments on sticklebacks or Lombardo’s (1987) data on tree swallows.

As May (1987) points out, it is important to ‘take more account of intrinsic stochasticities

and of evolutionary stability against representative ensembles of mutant strategies’.

This suggests considering stochastic strategies given by three parameters (y, p, q), where y
is the probability to cooperate in the first move, and p and g the conditional probabilities
to cooperate, given that the adversary’s last move was a C or a D. Thus a strategy is
defined by a triple (y,p, q) € [0,1]*. For example, ALLC = (1,1,1) or TFT = (1,1,0) are
extremal representatives. A p-value of 0.95 can be interpreted as a mixed strategy, or as
a decision to cooperate after C, subject to an error rate of 0.05 due to incomplete control
over one’s own action. Tit For Two Tats (T'FTT, which defects only after two consecutive
D’s from the opponent) is not a member of this class, and neither is a strategy taking
also account of one’s own previous move. Most of the programs submitted to Axelrod’s
tournaments were much more complex. But in spite of their limitations, strategies of type

(y,p,q) already display a remarkable variety of interactions.

There are several candidates for an appropriate evolutionary dynamics, all leading more or
less to the same outcome. We shall use here the Ansatz given by Taylor and Jonker (1979):
the rate of increase of a strategy is the difference between its payoff and the average payoff
in the population. This game dynamics, which relates well to the theory of evolutionary

stability, has been studied extensively, e.g. by Zeeman (1980) or by Schuster and Sigmund




(1985). We refer to Hofbauer and Sigmund (1988) for a recent treatment.

If only two strategies are competing, one can find (i) dominance (e.g. E, = ALLD
always outcompetes F; = ALLC),(i1) bistability (Fy = ALLD and the stochastic TFT
E; = (y,1,0), with 0 < y < 1, do never coexist, but which one wins depends on the initial
frequencies) and (iii) stable polymorphism (E; = ALLC and E; = (y,1,0) settle down
to a predetermined equilibrium). Roughly speaking, case (ii) occurs frequently if the two
competing strategies differ only in p, and case (iii) if they differ only in g. If we consider a
simulated evolutionary process consisting of alternating (a) periods of selection described
by the game dynamics and (b) mutations introducing a small population which differs
from the current population by a slight deviation , sometimes in p and sometimes in gq,
then the tendency is either towards ALLD or towards a state with p = 1 and some well
defined g¢-value, but usually not towards TFT. Thus one should sometimes forget a bad

turn, but never a good one.

For three competing strategies, it may depend on the initial condition whether a polymor-
phic state gets established or no.t. An example is obtained by the three strategies F,, E,
and E3 above : most initial conditions lead to an equilibrium of all three strategies which
is asymptotically but not evolutionarily stable, other initial conditions lead to a monomor-
phic state consisting of E; only. For other choices of E,, E; and Ej3, a ‘stone-scissors-paper’
effect caﬁ occur :F; dominates E;, which dominates F3, which in turn dominates F, again.
The presence of all three strategies in the population can lead to neutral oscillations or
to a stable polymorphism. It can also lead to a heteroclinic cycle a la May and Leonard
(1975): for a long time, one of the strategies will seem to have complete ascendancy, until
it is replaced , quite suddenly, by the next strategy, which will seem to have the upper
hand until it is superseded in its turn by the next one etc... in an endless cyclic alternation,
proceeding in fits and starts, the time between the revolutions growing exponentially. In
practice, this behaviour means that a random fluctuation (or a computer round-off} will

wipe out one of the strategies during its ‘weak’ phase, and so lead to the fixation of the



dominating of the two remaining strategies. But it is completely impossible to predict
which one will turn out to be the ultimate winner. (This case can occur even if y, the

initial readiness for cooperation, is the same one for all three strategies).

With four competing strategies, one can find oscillations which damp down to some equi-
librium, or which ‘explode’ in the aforementioned way, or which settle down to some
predetermined amplitude and period. Such limit cycles can be found quite frequently, in

fact. Whether chaotic oscillations occur is probable but we have found none so far.

In section 2 , we introduce the explicit game dynamics and compute the payoff matrix for
(y,p, q)-strategies. In section 3, we investigate the evolution if a single parameter is varied,
and in section 4 we study examples of oscillating behaviour in low dimensions. In the
discussion in section 5, we refer to other dynamical approaches to the IPD and suggest

some further lines of investigation.

2. The Payoff-Matrix and the Game Dynamics

Each game consists of a sequence of rounds between two players having the options C and
D each. The probability that the game is extended by another round will be denoted by

w € [0,1]. This parameter w can also be viewed as a discount factor for the future payoff.

We denote by a, and a, the probability that the first (resp. second) player cooperates in
the n-th round. If the first player uses strategy (y,p,q) and the second player (y',7',¢') ,

then (G'O,a:)) = (y!y') ’ (G']’a']) = (272') and

Qnyg = UGy + ¥
1
' _ ' ' ( )
Qpy2 = UG, +v

with

z=py +q(1-y')

Z=py+q(1-y)



v=pq +q(1-4q")
v' =p'g+q'(1-gq)
v=(p—q)p' —q')

By A, and A! we denote the expected payoff for the first and second player in the n-th
round , and by A = 3> A,w™ and A' = }_ A, w™ their total payoff. Clearly

An=ana,(R-S-T+P)+an(S—P)+a (T-P)+ P

and for A, the same with § and T exchanged.

For w < 1, (1) allows to compute the payoff by a simple geometric sum which yields

A=(R-S-T+P)'y+(S—-P)'y+(T - P)'3 + PI'y (2)
where
I\ 1 1 1 w2 ) ] ! vv'(1+uw2)
lzmlyy +wzz+1_uw2[uv(y+wz)+uv(y +wz)+ﬁ]]
1 w?
il g L S gl
1 ! ! 2 f
Fa:l—u Y w2z’ + ——v]
1
Mg = —
Tl w

if |[u| < 1. For |u| = 1 we have deterministic strategies, i.e. p,q € {0,1}. This yields four

special cases for I'y,I'; and I'3 (I'y remains unchanged):



(i)p=p"=1,9 = ¢ =0 (Tit For Tat against itsell). The sequence a, is y,¥',¥,¥, ...

periodically.

(ii) p=p' = 0,9 = ¢' = 1 (the paradoxical strategy against itself). The sequence a, is

y,1 —y',y,1 —y',... periodically. We have

r,= lyy' + w(l — y)(1 —¢')]

1 — w?

1
1 —w?

I =T = ly + w(1 —y')]

(ili) p=¢' = 1,p' = ¢ = 0 (Tit For Tat against the paradoxical strategy). The sequence

a, is now y,y',1 —y,1 — ¢, ... with period 4. We have

1
I'y = 1_w4[yy'+wy'(1—y)erz(l—y)(l — ")+ wly(1 —3')]
1 f 2 ' 3
1 1
Ty = ——ly +wy' +w’(1 - y) + (1 -y

(iv) p=¢q =0,p' = g =1 is like (iii) with roles reversed.

In more general situations, the conditional strategy in each move may be determined by

the outcome of the k previous moves of both players, for some fixed memory length k.

This can be modelled as a Markov chain. In our case, for instance, the states in the n-th

round are the pairs (C,C),(C,D),(D,C) and (D, D) of possible moves by the two players,

and the transition to the state in the (n+1)-th round is given by the stochastic matrix
pp' p(1-p') (1-p)p' (1-p)1-p

n= |9 1-7) (1-9gp" (1-g)l-p

o oy
r¢ p(l-4q) (1-p)gd (1-p)1-4q')
g9 q(1-4¢') (1-q) (1-g)1-4q')



The initial probability distribution is (yy',y(1 — ¥'),(1 — ¥)¥',(1 — y)(1 — y')) and the

stationary distribution (for irreducible II) is given by
(1 - u)_z[vv'av(l - v')a(l - v)v'a(l - v)(l - v')]

as can be checked easily. We shall not pursue this approach here, which is of special interst

in the case w = 1 (no discount of the future), but refer to Nowak(1989).

We now turn to the game dynamics. In principle the strategy set is the three-cube [0,1]® =
Q and the state of the population is a probability distribution on @ . It is possible to write
down some plausible dynamics for the evolution of this distribution in time , but rather
difficult to analyse it. We shall therefore assume that only finitely many strategies are
present in the population , denoting them by E, to E, and their frequencies by z; to
zn. Thus the state of the population at time ¢ is given by the vector x = x(t) in the
unit simplex S,, . Since we know the payoff a;; for strategy F; agaist E; , i.e. the payoff
matrix A4 , we can compute the average payoff (4x); = D ai;z; for strategy E; in the
population, and the mean payoff xAx = Y z;(Ax); within the population. The game
dynamical Ansatz by Taylor and Jonker consists in assuming that if , the rate of growth
of strategy F; , is given by its relative success, i.e. by the difference (4x); — XAX between

the payoffs for E; and the mean payoff. This yields
zi = zi((Ax): — x4x) (3)

on the (invariant) state space S, . This type of equations occurs in many biological
contexts: we refer to Hofbauer and Sigmund (1988) for a recent survey. We shall use it to
study the evolution of a small number n = 2,3 or 4 of competing strategies of the IPD in

order to get a feeling for the complexity involved in the full game with its continuum of

strategies .

The faces z; = 0 of the population simplex are invariant : if the stategy E; is missing ,

it will not be introduced through the competition described by (3) (but possibly by other



mechanisms , like mutation , migration ,etc.). On the other hand , it may be that z;(0) > 0
but liminf, o z:(t) = 0, which means elimination of E; . A fixed point X in the interior

of S, (i.e. satisfying &; > 0 for all ¢ ) is a solution of the linear equations

Generically there is one or no such solution in intS, , in exceptional cases we may have
linear manifolds of fixed points . We obtain similarly the fixed points in the lower dimen-
sional faces making up the boundary of S,, . In particular the corners of S,, , i.e. the unit
vertices coresponding to the presence of a unique strategy F; in the population are fixed

points .

If (3) is permanent , in the sense that there exists a compact set in intS, where all orbits
in the interior end eventually up , then all strategies present in the population will survive
( their frequencies will be bounded away from 0 ) . In this case there always exists a unique
polymorphic equilibrium X € intS,, but it need not be stable. For n > 4 (but not for
n < 4 ) the orbits can converge to a periodic or chaotic attractor. Their time averages,

however, converge to X :

lim %/mi(t)dt:a”:i (4)

Several conditions for permanence are known (see Hofbauer and Sigmund (1988)). In
particular the system cannot be permanent if there exists a Nash equilibrium on the
boundary ( i.e. a fixed point such that (Ax); < xAx whenever z; = 0 ; recall that for

r; > 0 we have (Ax); = xAx).

3. Variation of a Single Parameter

For a preliminary orientation we keep two of the three parameters (y,p, g) fixed and con-

sider populations of competing strategies which differ only in the third parameter. For



illustrations we shall use Axelrod’s payoff values T'= 5, R = 3,P =1 and § = 0 if not

otherwise stated. As discount factor, we shall use w = 0.9 for our numerical examples.

(A) Variation of y

This case is the one which is easiest to analyse. Indeed , the payoff given by (2) is affine

linear in y and y' . This allows us to use the results from Sigmund (1987).

Let us consider first the pure strategist case : n = 2,y; = 0,y = 1. The 2 x 2-matrix A

is then easily computed. Let

ajz — azz
5
(a12 — a22) + (az; — a11) (5)

7=

If aj2 > a3 and a3y < ay; , then z; converges to 0, the uncooperative strategy wins. If
a1 < az; and ay; > ay; , then z; vanishes. In both cases y ¢ [0,1] . If a;2 — a3, and
a1 — ay; both have the same sign , then § € (0,1). In this case , both terms have to be
positive since their sum ,i.e. the denominator of (5), is (1 — ww)~!, which is larger than
0. In this case z; converges to § for all initial conditions z; € (0,1) . For Axelrod’s values
we have § > 1 for p— ¢ < 0.4 (roughly) , y <O for p— g > 0.8, and § € (0,1) for values

in between (see Fig.1).

Let us now turn to the general case of n strategies y; < ... < y, with frequencies z; to z,.

The expression
y= Z Tiyi
is the average readiness for cooperating in the first move. In Sigmund (1987) it is shown
that
1 2

V(x) = 2(1—_uw—)(17 —-9)

is a potential for (3), with gy given as in the pure strategist case (5). More precisely there
exists a Riemannian metric on S, (the so-called Shashahani-metric) with respect to which

(3) is a gradient . We may distinguish generically three cases :

10



(i) if § <y, then 2y — 1. This means that the strategy least prepared to cooperate wins

out. This happens e.g. for p < ¢ (for p = ¢ we have § = —1, which is negative).

(1)ifg > yn , thenz,, — 1. This means that ultimately , there will be as much cooperation
as possible within the population. This is the case in particular for Tit-For-Tat players

when g ~ 2.26 > 1.

(iii) if y3 < § < yn , there exists a linear manifold of fixed points in intS, , given by § = 3.
All orbits approach this set (actually along invariants of motion). This means that the
population converges to a polymorphic state , where all strategies have the same payoff.
This happens, for example, for (p,q) = (0.75,0.25) where g is approximately 0.43. The
evolution for y; = 0.2,y, = 0.6 and y3 = 0.8 is sketched in Fig.2.

(B) Variation of ¢
Since the payoff given by (2) is not linear in q and ¢' but fractional quadratic we cannot

use the same method as before. We are unable to give a full global analysis of the resulting

system , and can only offer some arguments supported by numerical simulation.

Let us consider first the special case R+ P = S+ T (which includes for example Smale’s
(1980) values: T = 3,R = 2,P = 1,5 = 0). Then the contribution of I'; in (2) vanishes

and we are left with a payoff function A which is fractional linear in g:

where the a, b, c, d are expressions in the parameter y = y',p = p' and ¢' (cf. part D). Since
these values are all in [0, 1] the denominator is always well defined (we recall that w < 1).
Thus ¢ — A(q) is monotonically increasing or decreasing in [0,1] depending on whether
ad — bc is positive or negative. This in turn depends on ¢’ and p, but interestingly not on
y. More precisely, we shall show in part D that there are two possible cases, depending on

the value of

N

. -5

1
w

~

11




(which is always < 1).

(i) If § < 0 then ¢ — A(q) is monotonically decreasing in [0,1] for all values of ¢'. Thus
if g1 < g2 we have A(q1,92) > A(g2,92) and A(q1,91) > A(g2,¢1) and so q; dominates g;.
Hence it always pays to defect if § < 0 (i.e. for small values of p -little gratitude from the

opponent- and small values of w -small risk of further encounters).

(1) If 0 < § < 1 then ¢ — A(q) is increasing for ¢' < ¢ and decreasing for ¢' > §. For two

strategies q; < q2, with frequencies z; and z,, there are three possibilities:

(a) If both g, and ¢, are smaller than ¢, then A(q1,q1) < A(q2,q1) and A(q1,¢2) < A(q2, q2).

Thus ¢, dominates q;, and z; — 0.

(b) If both ¢; and g, are larger than §, then A(q1,q1) > A(92,¢1) and A(q1,92) > A(q2,92).

Then q; dominates ¢, and ¢, — 0.

(c) M ¢1 < § < g2, then A(q1,q1) < A(g2,q1) and A(g2,92) < A(g1,92). In this case z,

converges to the value

A(Qz,(h)—A((h,(h)
Algz, 1) — Alg1, @) + A(q1,92) — Alg2,92)

Hence we obtain a stable polymorphism of the two strategies.

Thus for ¢ > 0 (a high probability for a return in cooperation), a small increase in coop-
eration (g2 = q + ¢€) will succeed if the overall cooperation (g, = g) is smaller than ¢, but

not if it is larger than ¢ .The value ¢ can be viewed as a stable level of ‘forgiveness’.

Let us consider now the case of several strategies ¢; < ... < gn, with frequencies z, to z,.

Numerical simulations indicate that the following holds :
(i) if gn < ¢, then z,, — 1;
(ii) if g1 > g, then z; — 1;

12



(iii) if gx < ¢ < Qk+1, then z4 and x4, converge to some strictly positive values summing
up to 1, and all other strategies vanish. Thus a mixture of the two strategies ‘closest’ to

the value ¢ gets established.

The effect of a large number of mutations introducing new g-values into the population
will eventually lead to a population which is almost homogeneous and consists only of

strategies very close to §.

In the general case R — S —~ T + P # 0, the term I'; introduces complications which
we cannot fully analyse. The overall effect is to blur the sharp transition, at ¢, from
defection to cooperation. For Axelrod’s values, for example, this blurring effect is quite
small, and the overall picture for most parameter values very similar to the special case :
the population converges to a more or less homogeneous state with a g-value as close as
possible to ¢ ( 0 if § < 0). For example , we can observe by computation that

lim ¢~ 0.26.
y:p—o]

If nice (y ~ 1) and grateful (p = 1) strategies vary in their readiness to forgive, then the
evolutionary tendency is towards g >~ 0.26). It must be stressed, however, that for a small

range of parameter values y and p, a more complex outcome is conceivable, especially for

large |[R— S - T + P|.

(C) Variation of p

The situation is closely related, but in some sense almost complementary to the previous
one. Again, it is useful to consider first the special case R+ P = S+ T. The payoff function
A is fractional linear in p, and hence p — A(p) is monotonically increasing or decreasing

in [0,1], depending on p' and ¢ (but not on y). The crucial parameter is now

. +P—Sl
P=19 T-Puw

(which is always > 0).

13



(i) if p > 1, then p — A(p) is monotonically decreasing in [0, 1] for all values of p'. Thus if
P1 < pa, then p; dominates p,. Hence it always pays to defect if p > 1 (i.e. for large values

of ¢ -the readiness to forgive - and small values of w - the risk of further encounters).

i1) if 0 < p < 1, then p — A(p) is decreasing for p' < p and increasing for p' > p. For two
P p g p P g P

strategies p; < p, there are three possibilities:
(a) if p2 < p, then p; dominates py;
(b) if py > p, then p, dominates p,;

(c) if py < p < pa, we obtain an unstable equilibrium. Depending on the initial frequency,

p1 or pz will outcompete its rival strategy.

Hence for p < 1 ( a small expectation to get away with a defection) a slight increase in
cooperation (p; = p + €) will succeed if the overall cooperation (p; = p) is larger than p,
but not if is smaller. The value p can be viewed as a reciprocity threshold: if the average
tendency is to defect, then it pays to defect, while if it is to cooperate, then the more one

cooperates the better.

In this case, the effect of an evolutionary process of mutation and selection drives the
population to the fixation of a pure strategy p = 0 or p = 1. Which of these alternatives

holds depends on the initial phase of the process.

Again the general case is similarif R — S — T + P is relatively small (for example Axelrod’s
values). The population converges in most cases to a homogeneous state with p = 0 or (if

the initial population is cooperative, and defection punished severely) with p = 1.

(D) More on the special case R+ P=S+ T

For the expression

given in (B), we have

14



a=(S—P)wd-y)+f1-¢)N+(T-P)fr

b=(5—-P)ly+wyp+ fpg'] + (T — P)(y' + wyr + wq' + fq')

d=1- prw?

where r =p— ¢’ and f = w?(1 — w)~!. A rather tedious computation shows that

ad - be = (1 — w) 'w(l + rw)(quw + y(1 — w))|(T — P)rw — (P — §)).

The first four factors on the right hand side are always positive, so that ¢ — A(q) is strictly
increasing in [0, 1] if and only if the parameter q' satisfies ¢' < ¢, with g = p— ;—:% L which
is independent of y.

In the same manner, we obtain that p — A(p) is strictly increasing if and only if the

parameter p' satisfies p' > p, with p = q + ;—:% é

It is interesting that the two conditons for A(q) and A(p) to increase are actually the same.
Thus let us consider a population with strategy (p, q) and a small mutant population with
a strategy slightly diflering in either its p or its q value. If

P-51

T-Puw (6)

p—q>

then the mutant can invade and take over iff its strategy is more cooperative (higher p or

g); if the inverse inequality holds, the mutant can invade iff its strategy is less cooperative.

Since R < 3(T + §) and R+ P = § + T by assumption, we have E=S <1 lfw< %’fg,
there is no region in the (p, g)-space [0, 1]|? where more cooperative strategies succeed. The
evolution tends to the fixation of ALLD. If w > %, then there exist a region (in the

south-east corner of the parameter square [0,1]?) where cooperativity is favoured, while

in the remaining zone it is discriminated against (see Fig.3). An evolutionary alternation

15



of selection and small mutations tends to ALLD if it starts in this zone of defection and
top=1,q=1- %}%i if it starts in the zone of cooperation. (Larger fluctuations,
however, can lead the evolutionary path frome one zone to the other and hence complicate
the outcome.) There is no tendency to approach TFT. On the other hand, & result by
Axelrod implies in the present case that for w > TP:—}SD, the strategy TFT cannot be invaded

by ALLD. This agrees well with our result that for such w, no strategy near TFT (large

p, small q) can be invaded by a less cooperative strategy (with lower p or g value).

4.0scillating behaviour

(A) Three strategies

The most interesting phenomenon, in the case of three strategies, is that of cyclic compe-

tition: strategy E; dominates FE, , E; dominates E3 and Ej; in its turn dominates E; .

This occurs if the modified payofl matrix (a;; — a;;), whose diagonal is zero, has the sign

structure

0 +
0

A= -
+ —_

< +

This happens for a fairly substantial set of strategies in the (y,p, q) space. As example we
mention (a) E; = (0.40,0.75,0.75), E, = (0.40,0.75,0.25), E3 = (0.40,0.95,0.25)

(b) E, = (0.75,0.75,0.75), E; = (0.75,0.75,0.25), E5 = (0.54,0.95,0.30).

(We remark that in the first case all y values are the same.) The results from section 3(D)
suggest that this can only happen if one of the strategies has large p- and small g-value
, i.e. is a neighbour of TFT. This cyclic ‘stone-scissors-paper’-structure determines the
behaviour at the boundary of the state space S3 . Its corners are saddles, and its edges
saddle-connections (i.e. orbits having one corner as a-limit and another as w-limit). The

cyclic arrangement of these saddle connections forms a so-called ‘heteroclinic cycle’. With
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respect to generic perturbations of a dynamical system, such a cycle is not structurally
stable : within the class of game dynamical equations of type (3) however, it is stable in

general.

The behaviour on the boundary does not specify the behaviour in the interior of the state
space. There exists a unique interior fixed point X (the unique Nash solution of the game),

but two generic cases can occur.

(i) X is globally stable. All orbits in intS; converge in an oscillatory manner towards X.

The system is permanent. This occurs if detA' > 0, as for example (a). (See Fig.4)

(ii) X is unstable. In this case all orbits in intS; (with the exception of the fixed point
itsell) converge to the boundary. More precisely, their w-limit is the whole heteroclinic
cycle. Hence the orbits follow the boundary , remaining for exponentially increasing times
near a corner and switching after such a period of ‘near-rest’ suddenly to the next corner.
Such a behaviour has been described (in other contexts) by several authors (for a survey see
Hofbauer and Sigmund (1988)) . It seems particularly interesting that the time averages
(4) do not converge in this case. Their accumulation points form a triangle contained in
1ntS; and containing X. Numerically the round-off error will wipe out one species , and
one strategy reaches eventually fixation, but it is impossible to predict which. This type

of behaviour occurs if detA' < 0 and example (b) is the case in point (Fig.5).

Of course it can also happen that detA' = 0. The point X is a center surrounded by closed

orbits filling up intS,. This case of ‘neutral oscillations’ is highly degenerate, of course.

Another interesting case, mentioned in the introduction, is that of the three strategies £y =
ALLD, E, = ALLC and E; = (y,1,0) with 0 < y < 1. This last strategy can be viewed a
a sort of suspicious TFT, which starts with a random move. The uncertainty of TFT in
the first move seems to be realistic in a biological context, because in contrast to ALLD
and ALLC, TFT is able both to cooperate and to defect. There exists one three-species
equilibrium which can be shown to be a sink, the two-species equilibria between (y, 1,0)

and ALLC resp. (y,1,0) and ALLD, one of which is stable and the other unstable in the
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two-strategy subsystem, and the three one-species equilibria of which one, namely ALLD,
is a sink and hence evolutionarily stable. It follows that the three-species equilibrium
cannot be an £SS. In fact, we have here Zeeman’s (1980) example of an attractor which
is not evolutionarily stable. It is surprising that ALLC and ALLD can coexist if there is

a sufficient amount of suspicious TFT in the population (Fig. 6).

In the case w = 1 (i.e. no discount of the future) E;, E; and Ej3 as above form a ‘stone-
scissors-paper’ cycle and the state space S, is filled with periodic orbits around the stable
(but no longer asymptotically stable) polymorphic equilibrium. If w < 1 and y = 1, then
most initial conditions yield a mixture between ALLC and TFT, with ALLD eliminated.

(Fig. 7)

(B) Four strategies

For n = 4, the behaviour of (3) is not yet fully classified, but the permanence criteria are
fairly well understood (Kirlinger (1986), Hofbauer (1987)). Our feeling is that whatever
can happen with (3) can be realized by a suitable /PD game dynamics. Numerically, we

have found limit cycles, e.g. for
E4(0.75,0.75,0.75), E5(0.75,0.75,0.24), E4(0.40,1.00,0.30), E4(0.70,1.00,0.00)
(see Fig. 8).

What one can show analytically in this case is that the system is permanent (no strategy
will get eliminated), and that the unique interior fixed point X is unstable. Thus the w-
limit of all interior orbits is disjoint from the boundary, and for almost all interior orbits

it does not reduce to x.

6. Discussion

There are several other dynamical approaches to the JPD in the literature. We mention

in particular Feldman and Thomas (1987), where it is shown , using a discrete version of
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game dynamics, that if the probability w of continuing the game is part of the strategy
and depends on the previous move, then a polymorphism of TFT and ALLD can get
established. Another investigation, by Blad (1986), studies game dynamics for a modified
version of TFT: the players are not allowed any memory of earlier outcomes, but can
use a third (‘adaptive’) strategy A besides C and D, which ‘splits’ the game into two
subgames, playing C on the first game and whatever the other did on the second. The
encounters are repeated infinitely often (w = 1), and the dynamics is given by (3), with
E,=C,E, = D,E; = A. A small perturbation yields a structurally stable dynamics. It
is shown that A is the unique ‘good’ locally stable Nash solution (2, = 0) of the stabilized
game, and D the unique ‘bad’ one (z2 = 1). This is related to (but different from) a
general theory of Smale (1980) on dynamical systems associated with non-cooperative
games, where strategies have a bounded memory, where the evolution is based on the
players average accumulated payoff and where ‘good’ strategies lead to ‘good’ solutions

(i.e. equilibria of the dynamics) which are stable.

Of special interest is the approach of Axelrod (1987), which reports the effect of a genetic
algorithm of Holland-type upon an ensemble of strategies where each move is determined
by the history of the last three interactions. It is shown that an evolutionary dynamics
leads frequently to the establishment of strategies which are quite different from T'FT, and
that algorithms mimicking ‘sexual’ recombination are much faster than ‘asexual’ algorithms
in promoting strategies doing considerably better than T'F'T against eight ‘representative

strategies’ cuddled from Axelrods previous round-robin tournaments.

Our approach emphasizes the dynamical complexity and unpredictability for small num-
bers of competing strategies using very simple stochastic decision rules. It would seem
interesting to extend this by taking into accound more diversified ensembles of strategies

with a longer memory. It could well be that this ‘smoothens’ the dynamics.

As a first step, one can approach this question by numerical experiments, starting with

a random distribution of strategies and introducing from time to time a mutant close
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to the prevailing ensemble. If one considers only (y,p, q)- strategies differing in a single
parameter, the situation is reasonably clear :(i) variation of y leads, depending on p and
g, either to a pure state with y = 0 or y = 1 or to a rich mixture of strategies with
a predetermined average y-value ; (ii)‘ variation of p leads to an extremal value 0 or 1,
depending on y,q and possibly the initial state of the population ; (iii) variation of ¢
leads to a monomorphic population with a predetermined g-value. If one admits variation
in two or three parameters, the result is less predictable. It depends obviously on the
initial conditions and the history of mutational events. In view of the preceding results, it
seems highly unlikely that TFT is the evolutionary outcome. A solid statistical analysis

is required to settle this question. It seems difficult to rely on intuition in this field, and

our few experiments to date are far from conclusive.

20



References

Axelrod,R. (1984), The Evolution of Cooperation, Basic Books, New York.

Axelrod,R. and Hamilton, W.D. (1981),The evolution of cooperation, Science 211,1390-

1396.

Axelrod,R. (1987), The evolution of strategies in the Iterated Prisoner’s Dilemma, in

Davis,D.(ed), Genetic Algorithms and Simulated Annealing, Pitman.

Blad,M.C. (1986), A dynamic analysis of the repeated Prisoner’s Dilemma Game, Int.J.Game
Theory 15, 83-99.

Feldman, M. and Thomas, E. (1987),Behavior-dependent contexts for repeated plays of
the Prisoner’s Dilemma II: Dynamical aspects of the evolution of cooperation, J. Theor.

Biol. 128, 297-315.

Hofbauer,J. (1987), Heteroclinic cycles on the simplex, Proc.Int.Conf. Nonlinear Oscilla-

tions, Janos Bolyai Math.Soc. Budapest.

Hofbauer,J. and Sigmund,K. (1988), Dynamical Systems and the Theory of Evolution,

Cambridge University Press.

Kirlinger,G. (1986), Permanence in Lotka-Volterra equations: linked predator-prey sys-

tems. Math. Biosci. 82.165-191.

Lombardo,M.P. (1985), Mutual Restraint in Tree Swallows: A Test of the TIT FOR TAT
Model of Reciprocity, Science 227, 1363-1365.

May, R.M. (1987), More evolution of cooperation, Nature 327 15-17.

May, R.M. and Leonard, W. (1975),Nonlinear aspects of competition between three species,
SIAM J. Appl. Math. 29, 243-252.

Maynard Smith, J. (1982), Evolution and the Theory of Games, Cambridge University

Press.

21



Milinski, M. (1987), Tit For Tat in sticklebacks and the evolution of cooperation, Nature

326, 434-435.
Nowak, M. (1989), Stochastic Strategies in the Prisoner’s Dilemma, preprint.

Schuster,P. and Sigmund,K. (1985), Towards a dynamics of social behaviour: strategic and

genetic models for the evolution of animal conflicts, J.Soc.Biol. Structures 8, 255-277.

Selten,R. and Hammerstein, P. (1984), Gaps in Harley’s argument on evolutionarily stable

learning rules and in the logic of TFT, The Beh. and Brain Sci. 7, 115-116.

Sigmund,K. (1987) Game dynamics, mixed strategies and gradient systems. Theor.Pop.Biol.
32, 114-126.

Smale,S. (1980),The Prisoner’s Dilemma and dynamical systems associated to non-cooperative

games, Econometrica 48, 1617-1634.

Taylor, P. and Jonker, L. (1979),Evolutionarily stable strategies and game dynamics, Math.

Biosc. 40, 145-156.

Zeeman,E.C. (1980), Population dynamics from game theory, in: Global Theory of Dy-

namical Systems, Springer Lecture Notes in Mathematics 819.

22




NENEBEENENEEENENEN!

— 1

-

-

—

=

lllIlllllLlelllllJlllll!llllllIJllllJlllllllLlll

o o © ~ wn n < [aa} oN -— Q‘
-—4
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Fig.2: Phase portrait of (3) with E,
(0.80,0.75,0.25). In this case y ~ 0.43.

(0.20,0.75,0.25), E; = (0.60,0.75,0.25) , Ey =
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Fig.3: Cooperation increases in the corner defined by equation (6).
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Fig.4: Phase portrait of (3) with E, = (0.40,0.75,0.75), £, = (0.40,0.75,0.25), Es =

(0.40,0.95,0.25). All interior orbits converge to X. The boundary is a repellor.
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Fig.5: Phase portrait of (3) with E, = (0.75,0.75,0.75), E, = (0.75,0.75,0.25),Ey =
(0.54,0.95,0.30). All interior orbits converge to the boundary.
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Fig.6: Phase portrait of (3) with E, = (0,0,0), E; = (1,1,1), E3 = (0.9,1,0). The interior

is divided into two basins of attraction.



Fig.7: Phase portrait of (3) with E, = (0,0,0), E, = (1,1,1),E3 = (1,1,0). Some orbits

converge to E;, the others to the edge E, E;.
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