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FOREWORD 

Many of the problems in mathematical economics and game theory may be reduced 
to  the investigation of a generalized equation with a multivalued right-hand side. 

This paper deals with methods for solving generalized equations. The author has 
developed a new approach to  the construction of variable metric algorithms for these 
equations. The convergence of the suggested algorithm is proved for X*-antimonotone 
multivalued maps. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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ADAPTIVE VARIABLE METRIC 
ALGORITHMS FOR GENERALIZED 

EQUATIONS 

S. P. Uryas 'ev 

1. INTRODUCTION 

In this paper we study the algorithms to solve generalized equation 

where G :  Rn -+ 2Rn is some multivalued map on Rn. Often such equations appear when 

we formulate necessary and sufficient conditions for different game theoretic and 

mathematical economics problems (saddle points, Nash equilibrium etc.). 

The problem ( I )  is a partial case of variational inequality 

for all z E X C R n  and some g(z*) E G(z*). If X = R n  then problems (1) and (2) are 

equivalent, i.e. if z* is a solution of generalized equation (1) then z* is a solution of varia- 

tional equality (2) and vice versa. 

To solve variational inequality (2) the following projection algorithm can be used 

nX(.)  denotes the projection of z on the set X with respect to Euclidean norm 1 1 .  ( I .  



Many authors (see, for example papers [I]-[7]) studied this algorithm for a antimonotone 

or strictly antimonotone map G(z) . 

We call a multivalued operator G :  R n  -, 2Rn (strictly) antimonotine on X c R n  if 

for all Y ,  z € X, g(z) E G(z), g(y) E G(Y). 

Denote X* the solution set of problem (2). The convergence of algorithm (3) for 

strictly X*-antimonotone multivalued map G(z) was proved in paper [8]. We call a mul- 

tivalued map G :  R n  -, 2Rn (strictly) X*-antimonotone on X c R n  if 

for all z* E X* c X, z E X\X*, g(z) E G(z). It is easy to see that if X* is the solution set 

of variational inequality (2) then (strict) antimonotonicity of the map G(z) implies the 

(strict) X*-antimonotonicity of G(z). Indeed 

consequently 

for all z* E X*, z E X/X*, g(z) E G(z). The X*-antimonotonicity is considerably weaker 

assumption then antimonotonicity. For example the map G(z) = 1 - cosz is not an- 

timonotone on X = {z € R  : z > 01, but G(z) is X*-antimonotone with X* = (0) on X. It 

is also important that map G(z) can be strictly X*-antimonotone, while G(z) is only an- 



timonotone map. For example if X is a compact convex subset of R n  and f :  X + R is a 

concave function then the subdifferential a f(z) of a function f(z) is antimonotone map [9] 

and strictly X*-antimonotone (X* in this case is the set of minimum points of the func- 

tion f ) .  It can be easily seen for the function f(z)  = - 121, z E R. Algorithm (3) is simple, 

but usually it has a low practical rate of convergence. If the inner product 

<z* - 28, g(z8)> (z* E X*) 

is close to  zero then algorithm (3) practically does not reduce the distance between X* 

and zs. Indeed, let X = Rn,  if 

then 

T o  overcome such difficulties we use the following variable metric algorithm 

Algorithm (4) with matrices H8 = G- l ,  8 = 0, 1 ,... where G is some symmetric positive 

definite matrix was studied by M. Sibony [I], J.-S. Pang and D. Chan [6], S. Dafermos 

[lo]. For this case next approximation z8 + can be obtained as the solution of the prob- 

lem 

1 minimize - < z  - zs, g(zS)> + -<z - zs, G(Z - z8)> 
2 ~ s  



subject to z E X 

In this case the projection in algorithm (4) is with respect to the norm llzl = <z,  G Z > ~ / ~ .  

D.P. Bertsekas and E.M. Gafni [ll.] investigated a more complicated algorithm 

where A, is some n x n matrix, but they did not give a rule for changing of the matrix 

A, .  

2. ESSENCE OF THE APPROACH 

Let us consider the algorithm (4) for the case X = Rn 

To constract the matrix H3 we use the following idea. At the sth iteration the natural cri- 

terion defining the best choice of the matrix HS is via the multivalued map 

q 3 : R n x n - +  2 R n  

the best matrix HS is a solution of the generalized equation 

It is easy to  see that problem (6) is a reformulation of the source problem ( I ) ,  since if H* 

is a solution of problem (6), then the point zs + p,H*g(z8) is a solution of the problem 

(1). More than that, problem (6) is more complicated than (1) because the dimension of 

problem (6) is in n times higher the dimension of (1). However, a t  the sth iteration of al- 



gorithm (5) we do not need the optimal matrix, it is enough to correct (update) the ma- 

trix Hs. To make corrections of the matrix we reformulate problem (6). Define 

9, : ~n x n + 2RnXn 

here and below sign T means transposition of a vector or a matrix. It is easy to verify 

that equation (6) is equivalent to the equation 

0 E *,(HI 

if g(z" # 0. Indeed, if for some H* 

then 

Vice versa, if 

then for some g E +,(H*) 

and g = 0, because g(zs) # 0. We prove that if multivalued map G(z) is strictly X*- 

antimonotone, then multivalued map \ks(H) is also strictly H,*pt-antimonotone, where 

Hipt = {H E R n  " : z, + p,Hg(zs) E x*) . 

Let H* E Hipt ,  H E R n  n, zs + P , H * ~ ( ~ ' )  = z* E X* and 



then we have 

Thus we can apply algorithm (3) in space R n  * " t o  correct the matrix in algorithm (5). 

If we already have some matrix H i  a t  the iterations s ,  then the next approximation is 

equal 

where g t  is some element of the set G ( z 8  + p 8 H t g ( z 8 ) ) .  It is possible either to  take 

H 8  = H i ,  or to  continue the iterations of method (3) with respect to the matrix 

where 

and 

For some i ( s )  > 1 assume H 8  = H f [ , ) .  At the next iteration H i + '  = H 8 .  The number 

i ( 8 )  can be taken independently upon s ,  for example i ( s )  = 1 for all s .  



Note that  matrix updating requires additional calculations of the multivalued map 

G ( z )  elements. This can be avoided by taking g s + l  = g 6 ,  i ( s )  = 1 and using the matrix 

Hi a t  (s  + l ) th  iteration. Therefore i t  is ~oss ible  also to  use the following formula for ma- 

trix updating 

In formula ( 9 )  additional calculations fo the multivalued map G ( z )  elements are not re- 

quired. 

3. CONVERGENCE 

Let us consider algorithm (5 ) ,  ( 8 ) .  We suppose that  a t  the sth iteration of the main 

algorithm for the updating of the matrix Ht formula ( 8 )  is used i ( s )  times. At the itera- 

tion a + 1 we take ~ t + '  = Hf(,) .  Denote by g s  some vector from the set G ( z s  + pSH:gs). 

I t  is convenient to normalize the test vector g f ,  therefore denote by 

Let { p , ) ,  { c , )  be some sequences of positive numbers and for each s  = 0 ,  1 , -  - . let the se- 

quence {As i ) ,  i = 0 ,  1 , .  - - of positive values be given. We write the algorithm in more de- 

tail. 



ALGORITHM 

Step I Initialization 

s = 0 ,  a = -  1 ,  z0 = zinit, g O E G(ZO) , 

P = gO/llgO1l, H o l  = I 

Step I1 

1 H; = ~ f < 1 ' ,  i = 0 

2 zf = z8  + p8Hf(3 

3 compute gf E G(zf) ,  if gt = 0 then S T O P ,  otherwise J,? = gf11gf11- 

4 Hf+  1 = Hf + A , ; ( f t ~ ~  

i 
5 if p, Asl 2 c3, then i ( s )  = i and go to  step I11 

l = O  

6 i = i + 1, return to  point 2. 

- Step 111 z 3  + - z? $ 7  c s  + 1 = ti". 

Step IV s = s + 1 and return t o  step 11. 

We now formulate a theorem about the convergence of the algorithm. Here we con- 

sider that  the set X* consists only of one point z*. 

T H E O R E M  1 Let: 

1 there ezist constant a: > 0 such that 

<g(z) ,  z*  - z >  L a:Ilg(z)ll Ilz* - 211 

for all z E R n ,  g(z)  E G(z); 

2 {c,) be a sequence of positive numbers satisfying 



c8 + 00 for s + 00; 

3 {p,) be a sequence of ~ o s i t i v e  numbers, such that 

p8llH;II 5 h = const for s = 0, 1,. . . , 

and 

o _<pa  5 jj for s=O, I,--. ; 

4 {Xdi)s = 0, 1,- - .; i = 0, 1,. . . be a given sequence of posi t ive numbers  satisfying 

> o for s = 0, 1,. . -; i = 0, 1,- , (13) 

00 

C Xdi = 00 for s = 0, 1,- - -  , 
i = O  

00 

C x:~ 5 A = const for s = 0, 1,. . - 
i = O  

T h e n  

JJz*  - z 8 J J + O  for s + 0 0 .  

PROOF We start the proof from the following lemma. 

LEMMA 1 If the sequence {z8) does no t  converge t o  the po in t  z* then there ezists a 

subsequence (2'') such tha t  

for  some 6 > 0 and  

for suf ic ient ly  large k. 



- 1 0 -  

PROOF At first we consider the case when there exists some S such that  for s > S 

If {zS) does not converge t o  z*  then there exists a limit 

lim ( (zS - z*I( = 5 > 0 
a --• 03 

and 

for sufficiently large s.  Next let us consider the case when the sequence { ( ( z S  - z'll) is not 

monotone. Let the subsequence {zm') be such that for all 1 = 0, 1 ,. . . 

Since the sequence {zs) does not converge to  zero, then the subsequence {zS') also does 

31 
not converge t o  zero and a subsequence {z  ") can be selected from the subsequence {zs'} 

such that  

for some 5 > 0. The lemma is proved. 

Using the formulae of point 2 and 4 of step I1 and condition 1 of the theorem we get 

a 2 -  I ~ Z *  - zf+1112 = I ~ Z *  - za - psHf+lt 1 1  - 



i  i  
5 l l z *  - '&.112 - 2 ~ 8  C '81allz* - ' ! I /  + P: C ' 3  

l = m  I =  m 
( 1 9 )  

for 0 5 m 5 i ( s )  - 1 .  Applying t o  the last inequality we have 

1 1 % '  - z S k + l 2  = I /z*  - z1 f [3k )2  5 

2 8 < IIz* - - 1 1 1 2  + p;,i(sk) - I . + pSkASk, i(Sk) - 1 - (20 )  

Consequently, taking into account ( 1 2 ) ,  ( 1 5 )  and ( 1 7 )  we get 

for sufficiently large k.  Substituting the last inequality into ( 2 0 )  we have for sufficiently 

large k 



- 12 - 

Analogously from (19) and (20) we receive 

'k 2 'k > b2 
llz* - z,(3)-211 2 llz* - zi(8)-lll - 

and so on. Thus 

112' - 2211 2 112. - ~ ~ ~ + ~ 1 1  > 6 for 0 6 rn 5 i ( s t )  

From (17) and (22) we obtain 

Sk + 1 'k 
0 < 6 6 112' - 2 1 1  = 112. - Z,%*)l/ 6 z *  - 20 1 = 

= l l z +  - Z3k - 5 I IZ *  - z 8 k 1 1  + P ~ ~ I I H ~ I I  11cSk11 5 

I I Z *  - zSk11 + P~~IIH:II . (23) 

Inequalities (18) ,  (19) ,  (22) and (23) imply for sufficiently large k 



Taking into account point 5 of step I1 and conditions ( l l ) ,  (12), (16) and (17) we have 

from the previous inequality 

But this inequality contradicts condition 2 of the theorem. The contradiction proves the 

theorem. 

4. HOW THE X*-ANTIMONOTONICITY CAN BE CHECKED? 

Below we discuss some important problem examples. Let function \k : X x X -t R, 

X & Rn be differentiable in some generalized sense with respect to  the second group of 

variables and G(z) = ay\k(z, y)Iy=, be a differential with respect t o  y on the diagonal. A 

lot of game theoretic and mathematical economic problems (see, for example papers [12] 

and [13]) can be reduced to  the variational inequality 

for some g(z*) E G(z*), z* E X and for all z E X. 

EXAMPLE A Nash equilibria for n-person games Let z be a convex closed subset of 

the product R m1 x . . x R mn of the Euclidean spaces Rq, i = 1, .  . . , n .  A point z, E R 

is a strategy of a-th player i = I , .  . . , n and pi(z)  = pi(zl , .  . . , z,) is his payoff function. 

The vector ( z l , . .  ., 2,- yi, z i+ ., zi) is denoted by (yi/z).  The point z* = 

(z;, . . ., z*) E X is referred t o  as the Nash equilibrium of n-person game if for i = 1, .  . . , n 

pi(zt) = max {pi(yi/z*) : (yi/zt) E X) . 
Yi 



- 1 4 -  

Let us introduce the function \k(z, y): 

n 

*(z, Y) = C ((P;(Y,l~) - (P;(z)), y = (yl ,..., y,) . 
I= 1 

It is obvious that  *(z, z)  = 0 for z E X. We suppose that  the functions p , ( z ) ,  

i = 1,. .., n are continuous on X. The point z* E X is defined as the normalized equilibri- 

um point if 

max *(z*, y) = 0 
Y E X  

LEMMA 2 (See, for example [14]) The normalized equilibrium point is the equilibrium 

point, the reverse is true if X = X1 x - . . x X,, Xi c R ~ ' .  

Variational inequality (2) is a necessary optimality condition for the problem (26), 

for this reason the problem of finding Nash equilibrium is reduced to the problem (26). 

We consider the case with a weakly convex-concave function Q(z ,  y). The function 

Q(z,  y) is weakly convez on X with respect to the first argument i.e. 

for all z ,  y, z E X ;  al + a2 = 1; a1a2 2 0 and 

rz(z, Y )  + O  if 112- y l l+O forall  Z E X  . 
1 1 %  - YII 

We suppose tha t  the function Q(z,  y) is weakly concave with respect t o  the second argu- 

ment on X i.e. 

for all z ,  y, z E X ;  a1 + a 2  = 1; al,a2 2 Oandalso 



"(" Y )  -0 if 112 - y I( - o for all z E X 
l lz  - YI I  

Denote G ( z )  = a y Q ( z ,  Y ) l y = z  the d i f i r e n t i a l  of the function Q ( z ,  z )  with respect to the 

second argument a t  a point ( z ,  z )  i.e. (see [15]  and [ 1 3 ] )  G ( z )  is a set of vectors g such 

that  

THEOREM 2 [13] L e t  X be an  open convez subset of RnJ a func t ion  Q : X x X -+ R be 

weakly convez-concave, the remainder r,(z, y )  be cont inuous w i t h  respect t o  z,  the func t ion  

Q satisfies equat ion Q ( z ,  z )  = 0 for  al l  z E X. T h e n  

f o r  al l  2 ,  Y E X; 9 ( z )  E G ( Z ) J  9 ( Y )  E G(Y) .  

Let us consider now the case X = Rn. In this case if z* is a solution of problem (25 )  

then 

Inequality (27 )  implies 

Consequently the inequality 

is a necessary condition for condition 1 of theorem 1 



REFERENCES 

[I.] Sibony, M.: MCthodes itkratives pour les Cquations et inCquations aux dCrivCes par- 
tielles non linCaires de type monotone. Calcolo 7 (1970) 65-183. 

[2] Bakushinskij, A.B. and B.T. Polyak: On the solution of variational inequalities. So- 
viet Mathematical Doklady 219 (1974) 1705-1710. 

[3] Goldstein, E.G.: The method of modification of the monotone mappings. Ekon. and 
Matem. Metody, XI, 6 (1975) 1144-1159. 

[4] Bruck, R.: On weak convergence of an  ergodic iteration for the solution of variation- 
al inequalities for monotone operators in Hilbert space. J .  Math. and Appl., 61, 1 
(1977). 

[5] Auslender, A.: Optimization. MCthodes numkriques. Mason, Paris, 1976. 
[6] Pang, J.-S. and D. Chan: Iterative methods for variational and complementary prob- 

lems. Mathematical Programming, 2 4  (1982) 284-313. 

[7] Nemirovskij, A.S.: The efficient methods to solve equations with monotone opera- 
tors. Ekon. and Matem. Metody, XVII, 2 (1981) 344-359. 

[8] Ermoliev, Yu. and S. Uryas'ev: On search of Nash equilibrium in many person 
games. Kibernetika, Kiev, 3 (1982). 

[9] Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970). 

[lo] Dafermos, S.: An iterative scheme for variational inequalities. Mathematical Pro- 
gramming 2 6  (1983) 40-47. 

[ll] Bertsekas, D.P. and E.M. Gafni: Projection method for variational inequalities with 
application to  the traffic assignment problem. Mathematical Programming Study 1 7  
(1982) 139-159. 

[12] Primak, M.E.: On the generalized equilibrium optimal problems and some economic 
models. Soviet Mathematical Doklady 200, 3 (1971) 552-555. 

[13] Uryas'ev, S.: On the anti-monotonicity of differential mappings connected with gen- 
eral equilibrium problem. Working paper (1987) WP-87-6, International Institute for 
Applied Systems Analysis, Laxenburg, Austria. 

[14] Aubin, J.-P.: Mathematical methods of game and economic theory. North Holland 
Publishing Company (1979). 

[15] Nurminski, E.A.: Numerical methods for solving deterministic and stochastic 
minimax problem. Naukova Dumka, Kiev (1979). 


