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Foreword 

This report presents an approach to  the local controllability problem for a discon- 

tinuous system. The approach is based on a concept of tangent vector field to  a general- 

ized dynamic system, which makes possible the differential geometry tools to  be applied 

in the discontinuous case. Sufficient controllability conditions are derived. 
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CONTROLLABILITY OF DISCONTINUOUS SYSTEMS 

V. Veliov and M. Krastanov 

1. Introduction 

This paper deals with the instantaneous local controllability (ILC) of a discontinu- 

ous control system. The differential geometry approach, which is widely used in the local 

analysis of control systems is not directly applicable to the discontinuous (non-smooth) 

case. The only results known to the authors which concern the local controllability of a 

system with non-differentiable right-hand side, are those of Sztajnic and Walczak [13], 

where, however, specific approximations by linear systems are used. In our paper [12] a 

necessary and sufficient condition for ILC is given for piece-wise linear systems. Here we 

present two approaches which give the opportunity to study the ILC property of a discon- 

tinuous system (the system model and the corresponding definitions are given in Section 

2) by differential geometry tools. The first approach (presented briefly in Section 3) is 

based on the construction of an appropriate collection of smooth vector fields, whose con- 

trollability properties are equivalent to those of the original discontinuous system, and 

which can be studied by smooth analysis. The second approach (Section 4) is more gen- 

eral and in our opinion can be applied also to other more specific ILC problems (e.g. in 

the state constrained case). It is based on the concept of "tangent" vector field to a gen- 

eralized dynamic system, which is not connected with a priori given family of smooth vec- 

tor fields (cf. Hermes [6], Kunita [9] and Hirshorn [7]). This approach enables us to derive 

sufficient ILC conditions for a discontinuous system (section S), where the attainable set 

may not be generated by a family of smooth vector fields. 

For convenience all proofs are collected in Appendix. 



2. Discontinuous System Model. 

Consider a control system described by the following model: 

where z c Rn is the state vector, 

are control parameters, Ai(.) : Rn+ Rn and Bi(.) : Rn+ RnXr , i = 1,2, are given func- 

tions. Equation ( la)  describes the evolution of the system in the domain x1 c Rn , while 

(lb) describes the evolution in x2. Further we suppose that the sets r1 and r2 are defined 

by the manifold 

where f(.) : Rn + R is a given analytic function, namely 

Since we are interested in the local properties of system (1) around a given point zo, 

we suppose that f(zo) = 0 and f (zo) = a f/az(zo) # 0, the discontinuity set r being then 

locally an analytic manifold. 

Systems of the type of (1) - (2) arise in modeling of physical or economical objects, 

where some parameters (or the structure of the system) change discontinuously on a given 

manifold in the state space (depending on some critical speeds, voltages, masses, etc), as 

well as in case of models, containing maximum of two smooth functions in the right-hand 

side of the differential equation. 

Our concept for a trajectory of (1) is based on the supposition that movements in ac- 

cordance to both equations in (1) are possible on the manifold r .  The definition given 

below is related to that of Filippov [4] and is natural when ul and u2 are interpreted as 

uncertain inputs. Nevertheless, under our further assumptions, the main controllability 

result concerning system (I) ,  (2) would no be affected if the movement on r is governed 

by one (fixed) of the equations ( la)  and (lb),  or even (with appropriate changes in the 

formulations) if the evolution on i~ is described by a specific equation of the same type. 



Definition 1. The absolutely continuous function z(-) : [O,T] + Rn is called trajec- 

tory of ( I) ,  (2), if 

i ( t )  c F(z(t))  for a.e. t c [O,T] (3) 

where the multifunction F(.) ; Rn= Rn is defined by 

Denote by 

R(z,T) = {y  c Rn ; there exists a trajectory z(.) of ( I) ,  (2) on [O,T], such that 

the attainable set of ( I) ,  (2) on [O,T], starting from the point z at t = 0. 

Definition 2. System (I) ,  (2) is called instantly locally controllable (ILC) at zo, if 

zo c int R (zO, T) 

for every T>O. 

Our aim in this paper is to develop an appropriate techniques for investigation of the 

ICL property of ( I) ,  (2). However, the approach presented in Section 4 is much more 

general and can be useful also in the "classical" afine analytic case, as well as in the con- 

trol or state constrained cases (shown in forthcoming publications). 

3. Reduction to ILC Problem for a Smooth System. 

In the present section we shall transform system (I),  (2) to a more convenient form 

without changing its ILC property. Then we shall construct a family of analytic vector 

fields, which can be considered as generating family for a specific projection of the attain- 

able set R(zo,T) on the manifold x .  Then the ILC property of ( I) ,  (2) can be deduced 

from the ILC property of this family. 

Some notations: 

1 . 1  , <.,.> - the norm and the scalar product in Rn ; 



F (  V) = { w  c Rn ; a w c V for all sufficiently small lal) 

- the facial space of the convex set VC Rn. 

Assumptions 

Al .  f(.) is analytic, f(zo) = 0 , f (2,) # 0; 

A2. Ai(.) , Bi(-) are analytic, Ai(zO) = 0 , i = 1,2; 

A3. Ui ia closed and convex and f(zo) is not orthogonal to  the set 

Bi(zo)F(Ui) , i = 1,2. 

Assumptions A1 and A2 are standard, while A3 needs some comment. It is a techni- 

cal condition, which guarantees that  starting from a point being sufficiently closed to zO, 

the state of (1) can reach the manifold x ,  as well as the interior of any of the "half spaces" 

xl and x2. That  is seen from the following assertion: if A3 holds, then there exists 

pi c Rr and convex compact ci c Rr containing the origin, such that  

Since we are interested in sufficient controllability conditions for ( I ) ,  (2), we may re- 

place the control constraints ui c Ui by ui c v;, obtaining thus a system in the following 

form 

where 

Remark 1. The natural question whether the ILC property of (6), (7) not only im- 

plies, but is equivalent to  the ILC property of ( I ) ,  (2) is open, but the analogical question 

is not solved for analytic systems too. 

Define the functions Pi(.) : Rn -+ Rn , Qi(-) : Rn -+ RnXr  and 

Ri(.) : R' -+ Rn ,i = 1,2, by 



where * means the transposition. Now, consider the system 

where a > O  and /3>0 are parameters. 

Proposition 1. If (6), (7) is ILC, then (9), (10) is ILC for a and /3- sufficiently 

large. If (9), (10) is ILC for arbitrarily small positive a and /3, then (6), (7) is also ILC. 

The above proposition shows that ILC property of (9), (10) for every a > 0 , /3 > 0 
implies ILC of ( I ) ,  (2) (a remark analogous to Remark 1 can be made in connection with 

the equivalence). The advantage of (9), (10) is contained in the following relations: 

< Qi(z)u , f ( z )  > = 0 for every u c Rr 

< Ri(z) , f (z) > = 1 

which hold for every z from a neighborhood of zo. Thus if v = 0, then the right-hand 

sides of (9) are vector fields on m. To the end of this section we shall outline the idea of 

passing to a family of vector fields on m, with attainable set - the intersection of the at- 

tainable set of (9), (10) with m. The details will be omitted since further we shall use the 

more general approach developed in the next section. We shall use same notations and 

results concerning exponential presentations of flows, which are developed in Agrachev 

and Gamkrelidze [I.]. 

Let M be a C* - finite dimensional manifold and Der(M) be the algebra of the vec- 

tor filds on M. Given a function Y(-) : [to, TI -+ Der(M) we denote by 



the diffeomorphism (provided Y is in the some sense locally integrable and bounded.) 

defined by K(t)z = z(t), z(-) being the solution of the equation 

If Y(t)-Y we use the notation exp(tY) for the same diffeomorphism. Given X c D e r ( ~ )  

we denote 

adX( Y) = [X, Y] = Xo Y- YoX , Y c Der(M) 

If A : Der(M) -* Der(M) is linear and v(-) : [to ,TI -* R~ is integrable, then for 

X c Der(M). 

can be defined by the expansion of the exponent, using a natural weak topology in 

Der (M). 

Now, let us return to system (9),(10). From the last equality in (11) we can con- 

clude that its ILC property is equivalent to 

zo c int (R(zo,t) n x) , t>O , 

where the interior is in x. Let z(.) be a trajectory of (9), (10) on [0, TI, and suppose that 

[tl,t2] is an interval in which (9a) is satisfied for some ul(t) = u(t) c 0,n 0, and 

v(t) c [-/3,/3], and moreover, z(tl) , z(t2) c x. Using the composition formula proved in 

[I]  we obtain that for t c [tl,t2] 

Denoting y (t) = f(z(t)) we have y (tl) = y (t2) = 0 and from (11) 

Since y(t) 1 0 in [tl,t2] we get 

For t=t2 we obtain 



12 t 2 

v(s)dB = 0 and thus e ~ ~ l v ( e ) ~ ~ d s  = Id. 
t 1 t 1 

The last equality, combined with (12) means that the point z(tl) is transferred to z(t2) 

on [tl t2] also along the trajectory of the (nonstationary) vector field 

where u(-) and v(.) satisfy 

Repeating backwards the same arguments we see that if a point zl c nl can be 

steered to z2 c n on [tl,t2] by a vector field of the type (13) with u and v satisfying (14), 

then z2 can be reached from zl on [tl,t2] also according to system (9), (10). Thus, it is 

possible to investigate the ILC property of (I), (2) by examining the same property of the 

family of nonstationary vector fields on x described by (13),(14) (the fact that z given by 

(13) is a vector field on x follows from (11)). Unfortunately, this family is rather sophisti- 

cated, because of the integral control constraints, the time dependence and the nonlinear 

dependence on the control parameters. However, it is possible to simplify it, considering 

as a new control variable, constrained by 0 5  w 5 M, obtaining this way the family 

The technical complications arising in the above treatment will be overcome by combin- 

ing the same idea with the general approach presented in the next section. 

4. Local Controllability of Generalized Dynamic Syetema. 

Let M be a finite dimensional real analytic manifold and D(-,-) : R + x M = M  be a 

multivalued mapping satisfying the weakened semigroup property 



for all z  c M , tl , t2 2 0.  In the above relation and further we use the notation 

Let zo c M be an equilibrium point for D, i.e. 

zo c D(zO, t )  for every t  2 0 . ( 16) 

Definition 3. The generalized dynamic system defined by D is called ILC, if 

zo c int D(zo, t)  for every t  >O . (17) 

Remark 2. From (15)  it followe that any of the relations (16) and (17) is fulfilled, 

if it holds for all sufficiently small t  > 0.  Moreover, D(zo,  . ) is monotone in t  with 

respect to inclusion. 

We shall study the ILC property of D under the following conditions: 

B1. D ( z ,  t )  is closed for every t  c [0, T o ] ,  z  c M ( T o  is some given fixed positive number), 

and satisfies (15) and (16). 

Together with Der(M) defined in Section 3, we shall use 

(the isotropy subalgebra of Der(M) at zo) and for F c Der(M) 

M, being the tangent space to M at z. We shall use the norm 1 1 . ) )  in Der(M) ,  defined as 

llXll = sup {I X ( Z )  I ; z c K O ) ,  where KO is a fixed neighborhood of zo. 

By o ( t ) ,  o ' ( t ) ,  we shall indicate any family (parametrized by t )  of vector fields 

on M ,  which is continuous in t  and for some p>l the ratio J J o ( t )  / tPll is bounded when t  

goes to zero. A function of the type 

with ai 2 0 , qi > 0 will be called positive polynomial. 

Let us define the following subset E+ of Der(M).  

Definition 4. Z c E+ iff there exist T c (O,To], compact neighborhood K of zo, 

finite number of Zi c Dero(M) ( i  = 1, ...., I )  , o ( t )  and positive polynomials S ( t )  and 
1 

C pitQi, such that 
i= 1 
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exp (tZ + a(t)  + o(t))z c D(z, S(t)) for every z € K , t € [O,T] , (18) 

where 

The above definition is related to the one given in Hermes [6] for a specific affine con- 

trol system. The main difference here is that our definition is not based on a priori given 

family of vector fields. The set D(z,t) may not be generated by such a family as in the 

case of a discontinuous system. AB it will be seen from the proofs, an important technical 

difference is the presence of the sufficiently general term a( t)  in the lefthand side of (18). 

On the other hand Definition 4 is related also to the concept of variational cone, in- 

troduced by Frankowska [S]. Namely, if Z € E+, then 

lim dist (Z(zO) , D(zo,S(t)) - Zo 

t+O t ) = o ,  

where dist is defined in an arbitrarily fixed local coordinate chart on M. 

Theorem 1. Let 

o € int E + ( Z ~ )  . (19) 

then zo int D(zo,t) for every t>O, i.e. the generalized dynamic system D is ILC at zo. 

Condition (19) can be replaced by 

0 c int co {Z, (zO) ; i = 1 ,...., k) (20) 

for some Z1 ,...., Zk € E+, as it follows from the following lemma. 

Lemma 1. E+ is a convex cone. 

Lemma 1 throws some light on the structure of the set E+, but gives no information 

about its content, which to help to the verification of (20). For this reason we introduce a 

subset F+ of E+, which can be used for finding "new" elements of E+, provided that F+ 

and some other elements of E+ are already known. 

Definition 5. Z € F+ iff there are T (0, To], a compact neighborhood K of zo and 

a real number 8, such that 

exp (tZ) z € D(z, st) for every t €(O,T] and z € K. (21) 



Vector fields with the property (21) are used by Kunita [9] and Hirshorn [7]. As in 

[9] it can be proved that F+ is a convex cone. 

An obvious but very useful construction of elements of E+ is given by the next lem- 

ma. 

Lemma 2. Let Z1 ,...., Zk c F+. Consider the diffeomorphism 

K ( t )  = exp ( tZK) o ..... o exp ( t Z 1 ) .  

By using Campbell - Hansdorff formula (see (25) in the appendix) K ( t )  can always 

be presented in the form 

~ ( t )  = exp (fi t i y ;  + tp+' x + o ( tp+ l ) )  , 
i=l 

where Yi(zo)  = 0  ,i=l ,..., p. Then X belongs to E+. The same is true for arbitrary 

vector fields Z1 ,...., Zk such that K ( t ) z  c D ( z , e ( t ) )  for some positive polynomial s(-). 

The next lemma is related to first order ILC conditions and if D(zo , t )  is the attain- 

able set of an analytic affine control system it directly leads to the result of Hermes [6 ] .  

Lemma 3. Let Y c F+ , Z1,Z2 c E+ and 

then [ Y , Z 1 ] ,  [Y ,Z2]  c E+. 

Lemma 4. Let Z, c F+ , Zi(zO) # 0  , i=l  ,...., k and 

k 
C Zi(z0) = 0  
i= 1 

Then [Zi,Zj] c E+ for i , j  = 1 ,...., k . 
The above result is an analogy to a result of Sussmann [ lo ]  and can be proved by the 

same idea. 

Lemma 5. Let Z1,Z2 c F+ and 

Then 



One can derive also other rules for constructing "new" elements of the set E+. 

Every such construction, together with Theorem 1 gives a sufficient condition for ILC. 

That is obvious for affine system 

since A + Biu c F+ and BiU c E+ for every u c [-1,1]. In the next section we shall show 

how one can use the above results in case of a discontinuous system. 

5. Sufficient ILC Conditions for a Discontinuous System. 

Let us return again to the system (I),  (2). Instead of it, using Proposition 1, we 

shall deal with system (9), (10) where a and will be arbitrarily fixed. Denote by R(z,t) 

its attainable set on [O,t], starting from z and consider the mapping 

From the last equality in (11) it follows that the ILC property of (9), (10) is 

equivalent to z0 c int D(zo,t) , t>O. The weakened semigroup inclusion (15) is obviously 

satisfied (but not as equality!). Condition B1 is also satisfied because of the convexity 

and the upper semicontinuity of the mapping F defined for (9), (10) analogously as in (3). 

Thus we can apply the results from the previous section to investigate the ILC property 

of D. 

First of all we shall prove that 

Pi€ F+ , Qiui, [Pi,Ri] c E+ for ui € o i ,  i=1,2 . 

The first inclusion is obvious, since thanks of (11) Definition 5 is satisfied for 8 = 1. 

Let u c oi and let for convenience i = 1. Denote by z(.) the solution of (9a) correspond- 

ing to ul = a u / (u l  and v = 0, which starts a t  some z € r .  From (11) it follows that z(.) 

is a solution of (9)) (10) and z(t)  c D(z,t). Since 

and Pl(zo) = 0, we get Qlu € E+. 

Now, take u = 0 ,  V(S) = 1 on [0,t] and v(s) = -1 on [t,2t]. Denote by z(.) the 

corresponding solution of (9a) initiating from z € r .  From (11) it follows that 



Thus z(.) is a trajectory of (9)) (10) and z(2t)  c x ,  which impliea z (2 t )  6 D(z12t).  

On the other hand 

z(2t)  = exp(t(P1 - R1))  o exp ( t ( P 1  + R l ) ) z  = exp (2tP1 + t 2 [ ~ 1 , ~ 1 ]  + o( t2 ) ) z ,  

which together with Pl(zo)  = 0 yields [P1,R1] c E+. 

Thus we already know two elements P1,P2 c F+ and the set So = {Q1ul , Q2u2, 

[P1,R1],  [P2,R2] : u1 c 01,u2 c 0 2 }  of elements of E+. Given an integer k ,  define a mul- 

tivalued mapping 

Then using lemmas 1 and 3 we obtain that  for each kl 

where 

F(S0) = { Y So ; Y (2,) 6 F (coSo(zo))) 

and as in Section 2, F ( K )  is the facial space of the convex set K a t  the origin. Using 

again Lemma 1 we conclude that  

and so on. Thus given a sequence of integers kl,k2 we can define the sequence of convex 

sets Sp by 

Sp+l = co {Akp(F(Sp ) )  U 1 

where 

Since by induction Sp c E+ for every p, we obtain 

Theorem 2. Let conditions A1-A3 hold and Pi,Qi , Pi and oi be defined by (8) 

and (4)) respectively. If for some integers p , kl ,  ...., kp it is fulfilled. 



dim F (Sp) (zO) = n- 1 , 

then system (1) is ILC at zo. 

To prove the theorem it remains only to observe that condition (22) does not depend 

on a and /3 and thus guarantees ICL of (9), (10) for every a,/3 > 0. 

The condition (22) can be simplified if Qi(zo) oi have non-empty relative interiors. 

In this case obviously Qi oi c F(So). If we denote 

A,(X) = {[Pi, , [Pi,-..[Pi, , XI...]] ; k10 , ij c {1,2)) 

Theorem 3. Let in addition to the assumptions of Theorem 2 also reintQi(zo) oi # 0 

which holds if reintUi # 0. Then each of the following conditions implies ICL of (I) ,  (2): 

(i) dim Ho (zO) = n-1 , 
where 

Ho = {A,(@) ; i = 1,2 , j = 1 ,..., r )  , Q/ - the j-th column of Q; ; 

(ii) X [PI, R,] (20) + p [P2, R2] (20) c Ho for some X,/3 > 0 

and 

dim Lin {A, (g/)(zo) , A, ([Pi , Ri])(zo) , i = 1,2,j = ,... 7 )  = n-1 . 

It is proved in [12] that the sufficient condition given by Theorem 3 is also necessary, 

when the original system (1) is linear and ~r is a hyperplane 

Using the ideas of Brammer [3], Bianchini [2] or Veliov [12] it is possible to prove 

that condition (22) is also necessary in the linear case (23) without supposing 

reintUi # 0, but replacing the operator co in the definition of Sp by ZZZii3 - the closed 

convex cone hull. 

Condition (22) is not necessary in the general nonlinear case, since it is of first order 

only. Using Lernrnaa 2, 4, 5 and other similar results based on Lemma 2 one can obtain 

also higher order sufficient conditions. This can be done by replacing the "initial" set SO 

in the construction of the sets Sp by a richer subset of E+, which can be obtained making 

use of the above mentioned lemmas. This is shown in the following example. 

Example 1. Consider the system 



The above system is just in the form (9), (10) with 

In this example So = {Z = a /az l  + + a /az3 )  and So(0) = {(1,1,1,0) *), so 

that F(So)(0)  = (0 ) .  But we can obtain other elements of E+ using Lemma 2 and then 

to apply the construction of Theorem 2. Namely, we have obviously 

a a 
exp ( t ( p l  - u-)) 0 exp ( t ( P 1  + u-1) z  D ( z ,2 t )  . 

a 2 4  a 2 4  

Since 

a a 
Pl (0)  = [pl,ql(o) = [P1,[P1,-1I (0 )  = 0 , 

824 

and 

a a a a 
[ [ P I ,  3-1, -1 = - 2 0  - - 2- 

4 824 az2 az3 

applying Campbell - Hausdorff formula (25) we get 

t3 exp (2tP1 + t2a - (a - 
a a + -) + 0 ( t 4 ) )  z  € D ( 2 ,  2 t )  az2 az3 

with a(0) = 0 , which yields 

a y1 = -a- - - a C E +  az, 

Similarly we obtain that 



and thus we can take So = {Z,Yl,Y2). Then 

F (So(0)) = (0) if a + p # 1 and 

F (So(0)) = Lin{(l,l,l ,o) * , (- 1,-p,0,0) * ) if a + p = 1 . 

Since 

and is independent from F(So(0)) if p # 1 we obtain that the system (24) is ILC a t  

z = 0, if 

It is easy to verify that the above condition is not only sufficient, but also necessary 

for ILC of (24). If a + p # 1, then points of the type c (- 1,- 1 ,- l,O),c > 0 can not be 

reached for small t. If a + p = 1, but a = 0, then p = 1 and the first two equations in 

the lower halfspace z4<0 coincide. But in the upper halfspace i2 is always greater than or 

equal to il, which in combination gives z2(t) 2 zl(t) for every t and (24) can not be ILC. 

Appendix 

Proof of Proposition 1. Equation (6i) can be rewritten as 

and denoting 

Taking into account A2 and (5) we get I vi(z, u i ,  uo)( 5 c = const, if only 

J z (  5 1 , ui c oi and luol -< 1. Then obviously, if z(.) is a trajectory of (6), (7), it is a 

trajectory of (9), (10) for a = max{l u J  ; u c oi} and /3 = c which implies the first asser- 

tion of the lemma. 



Solving with respect to uo the equation 

and using A2 and (5)  we obtain 

where C is an appropriate constant, 7 = min {a l  , a t )  and 4 s )  goes to zero with e. Thus 

every trajectory of (9), (10) with a 5 7 /6C ,  /3 5 716 , on a sufficiently short interval 

[0, TI (such that 4 ( ~ ( t )  1 )  5 716) is a trajectory of (6 ) ,  ( 7 ) ,  Q.E.D. 

Before starting with the results in Section 3 we shall remind the Campbell - 
Hansdorff formula up to order three: 

1 exp ( X )  o exp ( Y )  = exp ( X  + Y + l [ X , Y ]  + (25) 

First we shall prove the following technical proposition. 

Proposition 2. Let Zi c E+ , 1 = 1 , ..., k .  Then there exist numbers q > 1 , c 

and T > 0 and a family 4( t l  ,. .., t k )  c Der(M) parametrized continuously by 

t l  , . . ., tk  c [0, TI such that 

where A is a polynomial of t l  ,. . ., tk with coefficients from Der(M) and (S i ( - )  come from 

the definition of the relation Zi c E+. 

Proof. Since Zi c E+ 

for z  c Ki, ti c [0, TI and ai , oi and Si as in (18). Then from the sernigroup property of D 



On the other hand from ( 2 5 ) ,  applied for sufficiently small t i ,  L1 0. so Lk can be 

presented in the form of the left-hand side of ( 2 7 ) ,  where A summarizes all the terms from 

Dero(M)  with degrees with respect to  t l  , . . . , tk not greater than one. The reminder 4 is 

continuous in t l  ..., tk and satisfies ( 2 7 ) ,  if only T >O is sufficiently small. 

Proof of Theorem 1. Inclusion ( 1 9 )  implies the existence of Z1 , . . . , Zk c E+ such 

that 

Denoting the left-hand side of (27)  by L ( t l  ,..., t k ) z  and using Proposition 2  for 

z = zo ,  we obtain in view of the property A e Dero(M)  that 

Applying ( 2 5 )  we get 

with 6 satisfying the inequality ( 2 6 ) .  The left hand side of the above inclusion can be 

presented aa 

with a continuous function p : R$ -. M ,  also satisfying ( 2 6 )  (possibly with another con- 

stant e ) .  Since S i ( t i )  tends to zero with t i ,  the assertion of the theorem follows from Lem- 

ma 4 [lo]. 

Proof of Lemma 1. The invariance of E+ with respect to positive scalar multipli- 

cation follows directly from Definition 4. Applying Proposition 2  for k = 2  , t l  = t 2  = t  

we also get the additive invariance of E+. 

Proof of Lemma 3. In this proof we exploit an idea used by Hermes [ 6 ] .  Since 

Z1 , Z2 e E+ and Y  e F'+, we have 

exp ( tZ i  + a i ( t )  + o i ( t ) ) z  e D ( z ,  S i ( t ) )  , i = 1,2 

exp ( t Y ) z  c D ( z , a t )  

for t  - sufficiently small and z from a neighborhood of zo. Let d be the minimal degree of 

t  in a; ( . ) .  There is p > 1  such that I(O;(t) / tpJI is bounded when t  tends to zero. Let 



q c (0.5 , 1) be such that pq > 1 and q(l + d) > 1. From the semigroup property of D 

K ( t ) z  = exp ( tQZ1 + al(tq) + ol ( tQ))  0 exp ( t l -QY)  0 exp ( tqZ2 + a2(tq)) + 02(tq))z 

c D ( z  , Sl ( t q ) )  + S2 (tq) + st1-? . 

Using twice (25) we obtain that 

K ( t )  = exp ( tq (Z1  + Z2) + t l - q ~ +  0 . 5 t ( [ Y ,  Z2] + [Z1 , Y ] )  + i ( t )  + o"(t)) . 

since (Z l  + Z2)(z0) = Y(z0)  = d(t)(zo)  = 0 we get from Definition 4 

But 

and the second term in the right-hand side also belongs to  E+, since 

[ Y  , Z1 + Z2](zO) = 0. Thus from Lemma 1 [ Y  , Z2] c E+ . Q.E.D. 

Proof of Lemma 5. (Krastanov [8]). Let s1 and s2 be the numbers from the 

definition of the relations Z1 , Z2 c F+. Then 

K ( t ) z  = exp (t1J3Z1) o exp (2t1J3Z2) o exp ( t lPZ1) z  r D(2 , 2(S1 + s2)t1J3)  . 

Denoting Y = [Z1 , [Z1 , Z2]] + [Z2 , [Z2 , Z1]] and using (25) we obtain 

K ( t )  = exp ( t1 l3(z1  + Z2) + 0.5t2J3 [Z1 , Z2] + t /12Y + o ' ( t ) )  

o exp ( t 1J3 ( z2  + Z l ) )  + 0.5t2J3 ( [Z2  , Zl] + t /12 Y  + o w ( t ) )  

= ~ X P  (2t1J3(zl  + 2 2 ) )  + t / 6 ( Y  + 3[[Z1 , Z2] , Z1 + Z2] )  + o ( t ) )  

which implies 

Y + 3 [ [ z 1  , Z2] , Z1 + Z2] € E+ . 

Lemma 4 gives us f [Z1 , Z2] c E+ and from Lemma 3 and Lemma 1 we conclude 

that Y E E+. Q. E. D.. 
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