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FOREWORD 

Some of the  m o s t  exciting cu r r en t  work in the  environmental sciences involves 
unprecedentedly close interplay among field observations, realist ic but complex 
simulation models, and simplified but analytically t ractable  versions of a f e w  basic 
equations. IIASA's Environment Program has developed such parallel  and comple- 
mentary approaches in i ts  analysis of the  impact of environmental change on the  
world's fores t  systems. 

Two previous papers  (WP-87-70 and WP-87-71) have demonstrated t he  pro- 
gress  tha t  has  been made. In this new work, t he  conceptual ideas and experimental 
results contained in those papers  have been fused together. In par t icular ,  a sim- 
ple model of multiple-aged forests,  their  predators  and the i r  abiotic environment 
has  been developed and successfully tested with data on budworm populations in 
North American eastern spruce  forests. 

R.E. Munn. 
Leader, Environment Program 



ABSTRACT 

This paper  is devoted t o  t he  investigation of the  simplest mathematical models 
of non-even-aged fores t s  affected by insect pests. Two extremely simple situations 
a r e  considered: 1) the  pest feeds only on young t rees ;  2) t he  pest feeds only on old 
trees. The parameter values of t he  second model are estimated fo r  t h e  case of bal- 
s a m  f i r  forests  and the  eastern spruce budworm. It  is  shown that  an  invasion of a 
small number of pests into a steady-state forest  ecosystem could resul t  in intensive 
oscillations of i ts  age s t ructure .  Possible implications of environmental changes on 
forest ecosystems are also considered. 



SOFIWARE SUPPORT 

Software is available to  allow interactive exploration of the  m o d e l s  described 
in this paper.  The software consists of plotting routines and m o d e l s  of the  systems 
described here.  It  can be run on an IBM-PC/AT with the Enhanced Graphics 
Display Adapter and 256K graphics memory. 

For fur ther  information o r  copies of the software, contact the  Environment 
Program, International Institute f o r  Applied Systems Analysis, A-2361 Laxenburg, 
Austria. 
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FUREST-Pm INTERACTION DYNAMCS; 
THE SIMP- MA-TICAL MODELS. 

M.Ya. A n t o n o v s k y ,  R.A. Fleming* ,  
Yu.A. K u z n e t s o v * *  and W.C. Clark*** 

1. Introduction 

The influence of insect  pes t s  on  t h e  age  s t r u c t u r e  dynamics of f o r e s t  systems 

has  not been extensively studied in mathematical ecology. 

Severa l  p a p e r s  (e-g. Antonovsky and Korzukhin, 1983; Korzukhin, 1980) have 

been devoted to modelling t h e  a g e  s t r u c t u r e  dynamics of a forest not af fec ted by 

pests. Dynamical p r o p e r t i e s  of insect-forest systems under  t h e  assumption of a g e  

and species  homogeneity c a n  be  derived f r o m  t h e  theore t i ca l  works on  p reda to r -  

p r e y  system dynamics (May, 1981; Bazykin, 1985). In t h e  p resen t  p a p e r  we a t tempt  

to combine t h e s e  t w o  approaches  to investigate t h e  simplest models of non-even- 

age  f o r e s t s  af fec ted by insect  pests .  This p a p e r  i s  based upon IIASA WP-87-70 (An- 

tonovsky e t  a l . ,  1987); and WP-87-71 (Fleming et al., 1987). 

The model from Antonovsky and Korzukhin (1983) i s  a simple model of a g e  

s t r u c t u r e  dynamics of a one-species system. I t  desc r ibes  t h e  time evolution of only 

t w o  a g e  c lasses  ("young" and "old" t rees) .  The model h a s  t h e  following form: 

* Forest Pest Management Institute, Canadian Forestry Service, Sault Ste Marie, Ontario, Canada. 
** Research Computing Centre. Academy of Sciences of the USSR, Puscheno, USSR. 

*88 Science and Public Policy Program, J.F. Kennedy School of Government, Barvard University, 
Cambridge, Mass., USA. 



where z and y are densities of "young" and "old" t r e e s ,  p i s  fert i l i ty of t h e  

species,  h and are death  and aging rates. The function 7 ( y )  r e p r e s e n t s  a depen- 

dence of "young" tree mortality on t h e  density of "old" trees. Following Antonovsky 

and Konukhin (1983) w e  suppose t h a t  t h e r e  exis ts  some optimal value of "old" tree 

density under  which t h e  development of "young" trees goes on most successfully. In 

th is  case i t  i s  possible to choose 7 ( y )  = a ( y  - b)2 + c (Figure 1). 

Model (A.0) s e r v e s  as t h e  basis f o r  o u r  analysis. Let us t h e r e f o r e  reca l l  i t s  

proper t ies .  By se t t ing s = f +c ,  scaling var iables  ( z  , y ), paramete rs  

(a, b ,c ,p,f , h  ,s ) and t h e  time, system (A.0) can b e  transformed into "dimensionless" 

form: 

where w e  have p rese rved  t h e  old notations. 

The parametr ic  p o r t r a i t  of system (0.1) on t h e  (p,h)-plane f o r  a fixed s value 

is shown in Figure 2. Relevant phase  por t ra i t s  are also presented t h e r e .  

Thus, if pa ramete rs  ( p , h )  belong t o  region 2, system (0.1) approaches  a sta- 

tionary state with constant a g e  c lass  densities (equilibrium E 2 )  from al l  initial con- 

ditions. In region 1 between lines Dl  and D2 t h e  system demonstrates a low density 

threshold:  a sufficient d e c r e a s e  of each a g e  c lass  leads t o  degeneration of t h e  

system (equilibrium Eo) .  The boundary of initial densities t h a t  r esu l t  in t h e  degra- 

dation i s  formed by s e p a r a t r i c e s  of saddle El. Finally, in region 0 t h e  s ta t ionary 

exis tence of t h e  system becomes impossible. 

Let us  now introduce a n  insect  pes t  into model (A.0) and consider  t h e  two ex- 

tremely simple situations. 

1 )  t h e  pes t s  feed only on t h e  "young" trees (undergrowth); 



2)  t h e  pes t s  feed only on t h e  "old" (adult) t r e e s .  

Assume t h a t  in t h e  absence  of food t h e  p e s t  density declines exponentially and 

t h a t  forest- insect  in teract ions  c a n  b e  descr ibed by bil inear t e rms  as in t h e  case of 

predator-prey system models (e.g., May, 1981; Bazykin, 1985). 

Thus, f o r  t h e  case where  t h e  pes t  feeds  on undergrowth w e  obta in  t h e  follow- 

ing equations: 

while f o r  t h e  case where t h e  pes t  f eeds  on adult  trees 

Here  z i s  insect  density,  r i s  t h e  mortality r a t e  of t h e  insect ,  and t h e  t e rms  with 

z z  and yz r e p r e s e n t  t h e  insect-forest  interaction.  

The goal  of th i s  p a p e r  i s  t h e  comparative analysis  of models (A.O), (A.l) and 

(A.2). In t h e  final p a r t  of t h e  p a p e r  w e  consider  biological implications of t h e  

resu l t s  and outline possible d i rec t ions  f o r  elaborating t h e  model. The main tools 

f o r  our investigation are t h e  bifurcation theory  of dynamical systems and t h e  nu- 

merical  methods of th is  theory .  

2. R d t s  of the investigation of model (kl) 

By a l inea r  change of var iables ,  pammete r s ,  and time, t h e  system (A.l) can  b e  

t ransformed into t h e  form: 



where t h e  previous notations are prese rved  f o r  new var iables  and parameters  

which have t h e  same sense  as in system (0.1). The new paramete rs  can  be  presented 

in terms of t h e  old ones as: 

In t h e  f i r s t  octant  (i.e. where t h e  var iables  t a k e  on biologically possible 

values) 

system (1.1) can have from one t o  four  equilibria. The origin,  Eo  = (0,0,0),  is 

always an  equilibrium point. On t h e  invariant plane z = 0, where t h e  system coin- 

cides with system (0.1), e i t h e r  one o r  two equilibria with nonzero coordinates may 

exist .  A s  in system (0.1), t h e  two equilibria El = (z l ,y l ,O)  and E 2  = (z2 ,y2 ,0 )  

where 

a p p e a r  in system (1.1) on t h e  line: 

On t h e  line 

equilibrium El  coalesces with equilibrium E,, and disappears  from R:. Besides t h e  

equil ibria E l ,  j =0,1,2, system (1.1) could have a n  additional equilibrium 

* : means that new variables were introduced but, for the sake of simplicity, the old notations 

were preserved : A,, 
a 2 b 4  



This equilibrium a p p e a r s  in R: f o r  pa ramete r  values ( ~ , h )  falling to t h e  r i g h t  of 

t h e  line: 

in t h e  pa ramet r i c  p o r t r a i t  (Figure 3). Eg passes  through t h e  plane z=0 and 

coalesces on  th i s  plane with e i t h e r  equilibrium El or Ez (Figure 4). Line S i s  

tangent to line Dl  at point 

in t h e  (p,h)-plane.  Line S i s  divided by point M into t w o  p a r t s :  S1 and SZ on which 

equilibrium E 3  collides with e i t h e r  El or E2,  respectively.  

In addition to t h e s e  bifurcations of t h e  equil ibria,  autooscillations (i.e. neu- 

t ra l ly  s t ab le  oscillations) can "emerge" and "vanish" in system (1.1). These even t s  

t a k e  place  on l ines R and P on t h e  pa ramete r  plane, while t h e  autooscillations ex- 

ist  in regions  5 and 6. 

Equilibrium E3 loses i t s  stability on line R due  to t h e  transit ion of t w o  com- 

plex conjugated eigenvalues from t h e  l e f t  to t h e  r i g h t  half of t h e  complex plane. 

This stabil i ty change resu l t s  in t h e  a p p e a r a n c e  of a s t ab le  limit cycle  in system 

(1.1) (Andronov-Hopf bifurcation).  

There  i s  also a line corresponding to dest ruct ion of t h e  limit cycles:  line P on  

t h e  (p,h)-plane.  On l ine P, a s e p a r a t r i x  cycle  formed by outgoing s e p a r a t r i c e s  of 

saddles El and Ez exis ts  (Figure 5). As t h e  system approaches  line P in parameter 

s p a c e  (Figure 3), t h e  per iod of t h e  limit cycle  inc reases  to infinity, and at t h e  c r i t -  

ica l  pa ramete r  value, t h e  limit cycle  coalesces with t h e  s e p a r a t r i x  cycle  and 

disappears .  



The point M plays a key role in t h e  parametr ic  plane. This point i s  a common 

point for a l l  bifurcation lines: SI,S2,D1,D2,R and P. I t  co r responds  to t h e  ex- 

istence of a n  equilibrium with t w o  z e r o  eigenvalues in t h e  phase  s p a c e  of t h e  sys- 

tem. This f a c t  allows us  to pred ic t  t h e  exis tence  of lines R and P. 

For  pa ramete r  values c lose  to t h e  point M t h e r e  i s  a two-dimensional stable-  

c e n t e r  manifold in t h e  phase  s p a c e  of system (1.1) on which all essent ia l  bifurca- 

t ions t a k e  place. The c e n t e r  manifold in te r sec t s  with invariant  plane z =O along a 

curve .  Thus w e  have a dynamical system on t h e  two-dimensional manifold with t h e  

s t ruc tu ra l ly  unstable equilibrium with t w o  z e r o  eigenvalues and t h e  invariant  

cu rve .  This bifurcation has  been t r e a t e d  in genera l  form by Gavrilov (1978) in con- 

nection with a n o t h e r  problem. I t  was shown t h a t  t h e  only l ines originating in point 

M are t h e  bifurcation lines mentioned above. 

The locations of t h e  R and P lines were found numerically on a n  IBM-PC/XT 

compatible computer with t h e  help of s tandard programs f o r  computation of c u r v e s  

(Balabaev and Lunevskaya, 1978). The additional associated numerical p rocedures  

a r e  descr ibed in t h e  Appendix. W e  a lso  used a n  in teract ive  program f o r  t h e  in- 

tegra t ion of o rd ina ry  differential  equations - PHASER (Kocak, 1986). Figures 6, 7, 

and 8 show t h e  changes in system behavior  as inc reases  in h move t h e  system 

through regions 3, 6, and 7. 

3. Results of the investigation of model ( k 2 )  

Model (A.2), which r e p r e s e n t s  a pes t  at tacking exclusively old trees, can  b e  

transformed by scaling in to  t h e  following form: 

where t h e  meaning of var iables  and pa ramete r s  i s  t h e  same as in system (1.1). 



System (2 .1 )  can have from one t o  four  equilibrium points in t h e  f i r s t  octant  

R: : Eo = (0 ,0 ,0 ) ,  E l  = ( z l , y  1 ,0 ) ,  E2 = ( z 2 , y 2 , 0 ) ,  and E 3  = ( z ~ , Y ~ , z ~ ) .  Equilibria 

El  and E 2  on t h e  invariant  plane z  = 0 have t h e  same coordinates  as in system 

(1 .1 ) ;  they a l so  bi furcate  in t h e  same manner on l ines Dl and D 2 .  AS in system (1 .1 ) ,  

t h e r e  i s  a n  equilibrium point of system (2 .1 )  in R: : 

This equilibrium a p p e a r s  in B: below t h e  line 

But equilibrium E 3  does  not lose i t s  stability so autooscillations in system (2 .1 )  

are not possible. Figure 9 shows t h e  parametr ic  p o r t r a i t s  of system (2 .1 ) .  The re- 

gion numbers in Figure 9 correspond t o  those  in Figure 4. 

Consider in more deta i l  t h e  system behavior in pa ramete r  region 3 where 

damped oscillations are possible. In t h e  absence of pes ts  (i.e. z  =O ) t h e  system 

tends t o  equilibria E 2  with constant densit ies of "young" and "old" trees. If a small 

number of pes t s  then invades t h e  fo res t ,  a n  outbreak o c c u r s  and t h e  system moves 

t o  equil ibria E3 with lower tree densities and a low density insect  population. The 

maximum insect  density reached  during t h e  outbreak exceeds  t h a t  of equilibrium 

A potentially unexpected system behaviour can o c c u r  if t h e  system i s  at 

equilibrium E 3  but  t h e  pes t  density then declines, p e r h a p s  due to pes t  control  

operat ions  or t h e  influence of random environmental variation. A new p e s t  out- 

break resu l t s  (Figure 10) .  Therefore ,  random declines in pes t  density may resu l t  in 

repea ted  outbreaks .  



4. Parameter  e s t imat ion  f o r  model  ( k 2 )  

Our goal h e r e  is t o  demonstrate how t h e  model (A.2) might be  applied t o  a r e a l  

forest-pest  ecosystem. This could lead to insight about  t h e  dynamics of t h e  ecosys- 

tem o r  to a determination of t h e  range  of applicability of t h e  model f o r  describing 

ecosystem dynamics. 

The eastern s p r u c e  budworm-forest system was picked as a n  appropr ia te  can- 

didate because of t h e  availability of suitable information f o r  many p a r t s  of t h e  

model, because of t h e  similarity of t h e  main model f e a t u r e s  with some key aspec t s  

of t h e  budworm-forest system, and because previous models (e.g., Jones 1979, 

Stedinger  1984) of t h e  budworm-forest system have emphasized di f ferent  elements 

(e.g., foliage, insect  p reda to rs ,  insect  dispersal)  of th i s  system. 

The e a s t e r n  s p r u c e  budworm, Choristoneura fimiJerana (Clem.), i s  a natur-  

ally occurr ing defoliator of balsam f i r  (Abies balsamea [L.] Mill.) in t h e  boreal  

fo res t s  of e a s t e r n  North America. Outbreaking populations kill t h e i r  host  trees 

o v e r  wide areas. Outbreak cycles range  from 26-40 y e a r s  in length with ou tbreaks  

lasting f o r  6-15 years .  During outbreaks ,  insect  numbers can increase  o v e r  four  

o r d e r s  of magnitude in s tands  of mature and overmature  balsam f i r  which are par -  

t icularly vulnerable t o  a t t ack .  

In accordance with t h e  simplistic na tu re  of t h e  model, which reduces  t h e  com- 

plex budworm-forest ecosystem to a system of t h r e e  differential  equations, w e  t ake  

a ' b r o a d  brush" approach to paramete r  estimation. F i r s t  w e  identify real is t ic  

r anges  f o r  t h e  pa ramete r  values and then w e  se lec t  from t h e  range  to see how well 

t h e  model can  simulate t h e  behaviour of t h e  ecosystem. 

W e  begin by estimating h ,  t h e  natural  mortality rate of old trees in equation 

(A2). MacLean (1985) gives t h e  "annual net  probability of natura l  mortality (before  

outbreak)"  as 1-3.8% f o r  balsam f i r .  Hence, if na i s  t h e  number of trees in a 

cohor t  of old trees of a g e  a ,  then na +l = na e -h , and . O 1  S 
-a +I 

4 . 0 3 8  . 



Hence .O1 S h S .04 yr . (3.3) 

The parameter 1 represents  the  aging of trees in the  model. However, 

depending on how one defines "old" trees, 1 can take on different values. For in- 

stance, Bakuzis and Hansen (1965) r epo r t  tha t  balsam f i r  reaches  sexual maturity 

at 30-35 years;  becomes moderately susceptible to attack a t  over  40 yea r s  of age, 

and becomes very susceptible at ove r  60 yea r s  of age. Moreover, stands are gen- 

erally 40-60 yea r s  of age  when established seedlings f i rs t  appear .  Thus w e  assume 

tha t  trees spend a mean duration of 30-70 years  in t he  physiologically young age  

group. If this  duration has  an  exponential distribution with a mean of 30-70 years ,  

then 

The function y ( y )  describes t he  dependence of t he  natural mortality of young 

trees on y ,  the  density of old trees. MacLean (1985) suggests tha t  natural tree 

mortality might fall in t he  range . O 1  - .04 p e r  year .  Hence, since c = minimum of 

y(y ), w e  approximate 

c = .OI yr - I .  (3.5) 

The increased mortality at low y (old tree density) could be  ascribed to competi- 

tion with f e n s ,  shrubs,  and hardwoods (Bakuzis and Hansen 1965) invading s i tes  

opened up by t h e  removal of t he  f i r  overstory. Competition with older trees ac- 

counts for the  increase in young t r e e  mortality at la rge  y .  Assuming tha t  t h e  in- 

terspecific competition is  much less  detrimental than the  suppression by the  older  

age group, then b << y,,, . 

3 Taking y ,,, W 2.471 ( i n  units 01 10 trees / ha)  , 



indicating a fa i r ly  good s i t e  (Bakuzis and Hansen, 1965,  Table go), we a r b i t r a r i l y  

set 

3 b -N .I X ymax RJ .2471 ( i n  units of 1 0  t r ees  / ha ) . (3.6) 

Then, s ince  7(yma,) a .04 (MacLean 1985), 

Ymax = a ( y m a x + ) 2  + c a . 0 4  

Substi tut ing with (3.5), (3.6), and then solving f o r  a ,  

a = .00606 ( i n  units of ha 2 ( ~ ~ 3  t rees)-2  y r  -I). (3.7) 

W e  have now estimated a l l  t h e  pa ramete r s  of t h e  f o r e s t  section of t h e  model 

(A.2) excep t  p,  t h e  rate of production of seedlings. This pa ramete r  combines f e r -  

tility, germination rate, and survivorship  well pas t  t h e  f i r s t  y e a r  of life ( i .e . ,  into 

t h e  middle of t h e  r a n g e  of a g e s  of t h e  'young' a g e  group).  Hence, i t  i s  a difficult 

pa ramete r  t o  estimate. 

Our approach  is  t o  solve t h e  system (A.0) f o r  p using reasonable  z and y 

values f o r  t h e  equilibrium without pes ts .  For  instance, y = 0 in system (1) with 

z =O when z = y h / f .  From y,,, =2.471,  and from Bakuzis and Hansen (1965, 

Table go) ,  t h e  corresponding value of z l ies in t h e  r a n g e  4.94 - 7.42 lo3  t rees /ha .  

Hence, if w e  choose f = .017 y r  say ( a f t e r  equation (4)) and h = .04 y r  a f t e r  

(3), then t h e  value of z at t h e  u p p e r  equilibrium (E2 in Figure 2 )  i s  approximately 

zmax = 5.81 lo3 t rees  / ha. 

Since th is  i s  a reasonable  value of z,,, (Bakuzis and Hansen 1965 Table 90)  w e  

adopt  

f = .017 y r - I  

and 

h = .04 y r  

as reasonable  initial guesses for t h e s e  pa ramete r s .  



For a f o r e s t  equilibrium to o c c u r  n e a r  (z,,,, y ,,,) r (5.81,2.47) r equ i res  t h a t  

t h e  f i r s t  equation in system (A.2) with z =O a l so  meet equilibrium conditions at th is  

point. There fo re ,  using (3.5), (3.6), (3.7) and (3.8), 

This completes t h e  estimation of pa ramete r s  f o r  t h e  f o r e s t  section of t h e  

model and leaves  pa ramete r s  c, A and B to b e  estimated. These t h r e e  pa ramete r s  

r e p r e s e n t  t h e  na tu ra l  pes t  mortality and t h e  in teract ion between t h e  f o r e s t  and 

t h e  pest .  

F i rs t  w e  est imate r ,  t h e  instantaneous rate of pes t  mortality. After  a n  out- 

b reak  t h e r e  are of ten  few mature  and overmature  balsam f i r  trees left .  Hence, w e  

assume y i s  small a f t e r  a n  ou tb reak ,  so t h e  pes t  equation in model (A.2) becomes 

approximately 2 N -&z. This equation h a s  t h e  solution zt zt r e -". Thus, a f t e r  

comparison i t  can b e  seen  t h a t  E cor responds  to t h e  negative p a r t  of t h e  ve r t i ca l  

axis  of Royama's (1984) Figure 8. From t h e  minimum of his  smooth eye-drawn c u r v e  

w e  estimate 

1 S r S 1.5yr- l .  (3.11) 

Next consider A,  t h e  instantaneous rate of tree mortality caused p e r  pes t .  

During ou tb reaks  annual budworm-caused tree mortality peaks  at 8 - 1 5 X  p e r  y e a r  

(MacLean 1985). Hence, considering budworm-caused tree mortality in isolation, 

6 = -Ayz . Then, assuming z i s  relat ively constant  during t h e  peak of an ou tb reak  

(Royama, 1984, Figure I ) ,  yt yt # e Hence, in analogy with t h e  der ivat ion 

of (3.3), .08 r 1 - e -A' S .15. Since  z peaks  on t h e  o r d e r  of 

z,,, m 20 lo3 l a rvae  / tree 

(Miller 1975), th i s  relat ionship becomes: 

.00417 S A S .0081 in  trees l a r v a e  yr  



The p e r  capi ta  rate of pes t  inc rease  p e r  tree, B, remains to b e  estimated. 

When z i s  small and y i s  n e a r  i t s  equilibrium density, y i s  re la t ively  constant  so 

t h e  pes t  equation in system (A.2) gives zt + l / z t  @ e - W - = ) .  In analogy with t h e  

derivation of (3.11). we note  t h a t  (By -c) cor responds  to t h e  positive ve r t i ca l  ax i s  

of Royama's (1984) Figure 8. From t h e  maximum of h is  c u r v e  we est imate 

Since  y yma, r 2.47 and substi tut ing (3.11) 

0.8 s B s 1.42 ha tree yr-I 

W e  t h u s  a r r i v e  at t h e  following t ab le  of pa ramete r s  f o r  t h e  model: 

Table 1. 

I parameter unite 'range I initial I 
guess I 

ha2 (lo3 t r ees ) -2  yr-l 

lo3  trees/ha 

yr-l 

yr-l 

y r  -1 

y r  -1 

y r - I  

10 -3 t rees  l a r v a e  yr 

10 -3 ha tree -1 y r  -1 

Table 2. 

initial 
conditions: 

s ta te  
variable 

2 (young trees)  

y (old trees)  

Z (insect larvae) 

unite value 

lo3 trees/ha 

lo3 larvae/tree 

5.81 

2.47 

.005 



The resul ts  of model (A.2), numerically integrated by a computer, a r e  

presented in Figure 11. The parameters and initial conditions a r e  chosen in accor-  

dance with Tables 1 and 2. I t  can be seen that  the chosen parameter values belong 

to  region 3 on t h e  r ight  parameter por t ra i t  in Figure 9, s o  an outbreak is  

expected. Computer simulation shows the  outbreak has  character is t ics  resembling 

aspects  of r e a l  fores t  data. The outbreak length is  about 15 years  which coincides 

well with observations (Royama, 1984). S o  the  model, despite i ts  extreme simpli- 

city, could reproduce limited time ser ies  of a r ea l  outbreak and can b e  considered 

a s  a compressed representation of some aspects  of available fores t  data.  

There are two obvious differences between the  computed outbreak shape and 

r ea l  fores t  outbreaks.  First ,  the time of intensive t r e e  mortality is  different. In 

the model this t akes  place a t  the  peak of the outbreak, while in the fores t  the mor- 

tality of t r e e s  comes a f t e r  the  insect peak. I t  may be  the result  of excluding con- 

sideration of foliage in the  equations. In reali ty,  the  insects f i r s t  defoliate t r e e s  

and only then do t r e e s  begin t o  die due t o  defoliation. Nonetheless, this distinction 

is essentially a minor detail given the "broad brush" treatment of the  problem 

employed here .  

A more important problem with the  model's behaviour as far as representing 

budworm-forest dynamics is  the  inability of the modelled stand to  fully recover  

a f t e r  t he  initial outbreak. For instance, in simulated years  50-60, the density of 

old trees (y) peaks a t  about 3/4 of i t s  original (t=O) value. This behaviour 

(damped oscillation) is  determined by the  model's s t ruc ture  and parameter values 

which place the  system (A.2) in phase por t ra i t  3 of Figure 4. An obvious question 

is  whether random variation within the  given ranges of parameter values (Table I ) ,  

as might occur  with changes in weather f r o m  yea r  t o  year ,  could occasionally move 

the  system into different phase por t ra i t s  and thus maintain the  oscillations. 



Maintenance of the  oscillations (perhaps a s  a limit cycle) might also be accom- 

plished by a more accura te  representation of the ecological processes considered 

in model (A.2). An obvious starting point h e r e  would be  with the  t e r m  pp .  This t e r m  

represen ts  the rate of seedling establishment as a linear function of mature t r e e  

density. In fact ,  although a dense overstory of mature trees may produce many 

seeds, i t  can inhibit seedling establishment by limiting t he  available light. Hence, 

fores t  reproductivity, p, may b e  be t te r  described by a saturating function of 

mature tree density: 

Thus p(y) .y  -+ py when y is small .  

-4 z,,~ when y i s  Large. 

Here z,,,, a constant, is  the  upper  limit t o  seedling establishment when y is large. 

5. Discusaion of the results 

The basic model (0.1) with two age  classes describes e i ther  a fores t  approach- 

ing an equilibrium state with a constant ra t io  of "young" and "old" t r e e s  

( z  = hy ), o r  degradation of the  ecosystem (and, presumably, replacement by 

o the r  species). 

Models (1.1) and (2.1) have regions on the  parameter plane (0, l  and 2) in 

which the i r  behavior is  completely analogous t o  the  behavior of system (0.1). In 

these regions the  system e i ther  degenerates or tends to the stationary state with 

z e r o  pest  density. In this  case the  pest  i s  "poorly adapted" to t h e  tree species and 

can not survive in t h e  ecosystem. 

In systems (1.1) and (2.1) t h e r e  are also regions (4  and 3) where t he  station- 

a r y  fores t  state with ze ro  pest  density exists, but is not stable t o  small pest  "inva- 

sions". A f t e r  a small invasion of pests, t he  ecosystem approaches a new stationary 



s t a t e  with nonzero pest  density. The pest  survives in t h e  f o r e s t  ecosystem. 

The main qualitative di f ference in t h e  behavior of models (1.1) and (2.1) i s  in 

t h e  existence of density oscillations in t h e  f i r s t  system but  not in t h e  second one. 

This means t h a t  a small invasion of pes t s  adapted to feeding upon young trees in a 

two-age c lass  system could cause  periodical  oscillations in t h e  f o r e s t  a g e  s t r u c t u r e  

and repea ted  ou tbreaks  in t h e  number of pes t s  (i.e., z,y ,z / y and z become 

periodic functions of time). I t  should b e  mentioned t h a t  t h e  exis tence of such oscil- 

lations i s  usual f o r  simple models of even-aged predator-prey interactions.  

In o u r  case ,  however, t h e  "prey" i s  divided into in teract ing a g e  c lasses  and 

t h e  "predator"  feeds  only on one of them. I t  i s  t h e  pes t  invasions which induce t h e  

oscillations in t h e  ra t io ,  z / y, of t h e  a g e  c lass  densities. Moreover, in t h e  case of 

model (2.1), t h e  pes t  invasion c a n  include damping oscillations in t h e  a g e  s t ruc -  

tu re .  

When w e  move on t h e  pa ramete r  plane towards s e p a r a t r i x  cycle  line P, t h e  

amplitude of t h e  oscillations increases  and t h e i r  period tends t o  infinity. The 

oscillations develop a s t rong  relaxation c h a r a c t e r  with in tervals  of slow and rap id  

var iable  change. For  example, in t h e  dynamics of t h e  pes t  density z ( t )  t h e r e  

a p p e a r  periodic long in tervals  of almost z e r o  density followed by rap id  density 

outbreaks .  Line P is  a boundary of oscillation existence and a b o r d e r  above which 

a small invasion of pes t s  leads  to complete degradation of t h e  system. In regions 7 

and 8 a small addition of insects  to a f o r e s t  system, which was in equilibrium 

without pes ts ,  r e su l t s  in a pes t  outbreak and then tree and pest  extinction. 

I t  c a n  b e  seen  that t h e  introduction of pes t s  feeding only upon t h e  "young" 

trees dramatically reduces  t h e  region of s t ab le  ecosystem existence.  The 

exis tence becomes impossible in regions 7 and 8. 

W e  have considered t h e  main dynamical regimes possible in models (1.1) and 

(2.1). Before proceeding,  however, l e t  us  discuss a v e r y  important topic of time 



scales of t he  processes under investigation. I t  is well known tha t  insect pest  

dynamics ref lect  a much more rapid process than the  response in tree density. I t  

seems tha t  this difference in t he  time scales should b e  modeled by introduction of a 

small parameter p < U  into t h e  equations fo r  pest  density in systems (1.1) and (2.1): 

2 +k. But i t  can b e  shown tha t  the  parametric por t ra i t s  of t h e  systems are 

robust to this  modification. The relative positions of lines Dl,Dz and S as well as 

the  coordinates of the  key point M depend on r a t i o  t / B  which is invariant under 

substitutions E + C /  p, B + B /  p. The topology of t h e  phase por t ra i t s  i s  not affected 

by the introduction of a small parameter p, but in t he  variable dynamics intervals 

of slow and rapid motions appear .  Recall tha t  model (1.1) had oscillations of a simi- 

l a r  relaxation cha rac t e r  nea r  line P of the  separatr ix  cycle without any additional 

small parameter p. SO w e  could say tha t  w e  have an  "implicit small parameter" in 

system (1.1). 

To demonstrate potential extensions of this approach, w e  now consider some 

qualitative implications tha t  atmospheric change might have on forest-pest ecosys- 

t e m s .  A s  suggested by Antonovsky and Konukhin (1983), an  increase in the  amount 

of SO2 o r  o the r  pollutants in t he  atmosphere could lead t o  a decrease of the growth 

rate p and an increase of the  mortality rate h .  Thus, increase in atmospheric pol- 

lution could result  in a slow drif t  along some curve on the  (p,h)-plane (Figure 12). 

Suppose tha t  t he  parametric condition has  moved from position 1 to position 2 

on the  plane but remains in a region (8) where a s table  equilibrium can exist  

without pests  (Figure 4). But now, if the  system is  exposed to pest  invasions, both 

t he  forest and the  pest become extinct. Therefore,  slow atmospheric changes could 

induce both vulnerability of forests  to pests, and fores t  death unexpected f r o m  the  

point of view of the  forest ' s  internal properties.  



6. Summary 

I t  i s  obvious t h a t  both models (A.l) and (A.2) a r e  extremely schematic. 

Nevertheless, they seem to b e  among t h e  simplest models allowing t h e  complete 

qualitative analysis of a system in which t h e  p reda to r  differentially a t t acks  vari-  

ous  age  c lasses  of t h e  prey.  

The main qualitative implications from t h e  p resen t  paper  c a n  b e  formulated in 

t h e  following, to some ex ten t  metaphorical, form: 

1. Pes t s  feeding on young trees destabilize f o r e s t  ecosystems more than  pests  

feeding on old trees. This suggests a possible explanation of t h e  common 

observation t h a t  in r e a l  ecosystems pes t s  more frequently feed upon old trees 

than on young trees. P e r h a p s  systems in which t h e  pes t  feeds  on young t r e e s  

are less  s table  and more vulnerable t o  ex te rna l  impacts than systems with t h e  

pes t  feeding on old trees. This may have led t o  t h e  elimination of t h e  less  

s t ab le  systems o v e r  evolutionary time. 

2. An invasion of a small number of pes ts  into a n  existing s ta t ionary f o r e s t  

ecosystem could resu l t  in intensive oscillations of t h e  a g e  s t r u c t u r e  of t h e  

tree population. 

3. The oscillations could be e i t h e r  damping o r  periodic. 

4. Slow changes of environmental pa ramete rs  may make t h e  fo res t  vulnerable t o  

previously unimportant pests. 

There  are a number of possible directions f o r  extending t h e  model. I t  seems 

na tu ra l  t o  t ake  into account t h e  following factors :  

1 )  more than t w o  a g e  classes f o r  t h e  specified t r e e s ;  

2) coexistence of more than one t r e e  species  affected by t h e  pes t ;  

3 )  introduction of more than one pes t  species  having various in terspecies  re la-  

tions; 



4) t h e  r o l e  of va r iab les  like foliage which a r e  important for describing t h e  

ef fect  of defoliation by t h e  pes t ;  

5 )  feedback re la t ions  between vegetation, landscape and microclimate. 

Finally, w e  e x p r e s s  our belief t h a t  ca re fu l  analysis  of simple nonlinear 

ecosystem models will lead to a b e t t e r  understanding of real ecosystem dynamics 

and to a b e t t e r  assessment of possible environmental impacts. 

Appendix: Nl~merical procedures for the bifurcation lines R and P 

1. Andronov-Hopf bifurcation lineR . 

On t h e  (p ,h)-plane  t h e r e  i s  a bifurcation line R along which system (1.1) h a s  

an  equilibrium with a p a i r  of purely imaginary eigenvalues AlV2 = *i o (Ag < 0). I t  

is convenient to calcula te  t h e  c u r v e  R for o t h e r  fixed pa ramete r  values as a pro-  

jection o n  t h e  (p,h)-plane of a c u r v e  r in t h e  d i r e c t  product  of t h e  pa ramete r  

plane by phase  s p a c e  R: (Bazykin e t  al . ,  1985). The c u r v e  l7 in t h e  5-dimensional 

s p a c e  with coordinates  ( p , h  ,z ,y , z )  i s  determined by t h e  following system of alge- 

b r a i c  equations: 

where G i s  a corresponding Hurwitz determinant of t h e  l inearization matrix 

Each point on  c u r v e  r implies t h a t  at pa ramete r  values ( p , h  ) a point ( z  , y , z ) i s  an 

equilibrium point of system (1.1) ( the  f i r s t  t h r e e  equations of (*) are satisfied) with 

eigenvalues AlV2 = *i o ( the  last equation of ( 8 )  i s  satisfied). 



One point on the  curve l? is known. It corresponds t o  point M on the  parameter 

plane at which system (1.1) has the equilibrium 1 0  with A1 = A2 = 0 (e.g.. 
B 

*io = 0). Thus, the point 

lies on curve r and can be  used as a beginning point f o r  computations. The point- 

by-point computation of t he  curve w a s  done by Newton's method with the  help of a 

standard FORTRAN-program CURVE (Balabaev and Lunevskaya, 1978). 

2. Separatrix cycle line P . 

Bifurcation line P on the  parameter plane w a s  also computed with the  help of 

program CURVE as a curve where a "split" function F fo r  the  separatr ix  connect- 

ing saddles E2,1 vanishes: 

F ( p , h )  = 0. 

For fixed parameter values this function can be defined following Kuznetsov 

(1983). Let W; be the  outgoing separatr ix  of saddle E2 (the one-dimensional 

unstable manifold of equilibrium E2 in R:). Consider a plane 2 = d , where d is a 

small positive number; note the  second intersection of w2+ with this plane (Figure 

13). Let the point of intersection be  X. The two-dimensional stable manifold of sad- 

dle El intersects with plane z = d along a curve. The distance between this curve 

and point X ,  measured in t he  direction of a tangent vector to the  unstable manifold 

of El, could be taken as the  value of F f o r  given parameter values. This function i s  

well defined near  i ts  zero value and i t s  vanishing implies t he  existence of a separa- 

t r ix  cycle formed by the saddle separatrices.  

For numerical computations separatr ix  w2+ w a s  approximated near  saddle E2 

by its eigenvector corresponding t o  A1 > 0. The global pa r t  of ~ 2 f  w a s  defined by 



t h e  Runge-Kutta numerical method. Point X was calculated by a l inear interpola- 

tion. The s table  two-dimensional manifold of El was approximated n e a r  saddle El 

by a tangent plane, and a n  affine coordinate of X in t h e  eigenbasis of El was taken 

f o r  t h e  value of spl i t  function F. 

The initial point on t h e  s e p a r a t r i x  h a s  z = 0.005. The plane z = 6 was defined 

by 6 = 0.1 and  t h e  integration accuracy  w a s  p e r  s tep .  The initial point on P 

w a s  found through computer experiments. A family of t h e  s e p a r a t r i x  cycles  

corresponding t o  points on c u r v e  P i s  shown in Figure 14. 

Figure 15 presen t s  a n  actual  parametr ic  p o r t r a i t  of system (1.1) f o r  

s = B  =I ,&  = 2 .  
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Figure 1. The dependence of "young" tree mortality on the density of "old" trees.  

Figure 2. The parametric portrait of system (0.1) and relevant phase portraits. 



Figure 3. The parametric portrait of system (1.1). 



Figure 4.  The phase portraits of system (1.1). 



Figure 5. The separatrix cycle  in system (1.1). 

Figure 6. The behavior of system (1.1): s = b = 1, r = 2. p = 6 ,  h = 2 (region 
3). The Y-axis extends vertically upward from the paper. 



Figure 7. The behavior of system (1.1): s = b = 1, c = 2, p = 6,  h = 3 (region 
6)  

Figure 8. The behavior of system (1.1): s = b = 1, E = 2. p = 6 ,  h = 3.5 (region 
3. 



Figure 9. The parametric portraits of system (2.1). 

Figure 10. A small decrease  in the  pest  density may result in an insect population 
outbreak. 
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Figure 11. An outbreak time equation. 



Figure 12. The probable parameter drift  under SO2 increase .  

Figure 13. The separatr ix  spl it  function. 



Figure 14. The separatrix cycles in system (1.1). 
- 

B I F U R C R T I O N  C U R V E S 1  S=B=l E = 2  

Figure 15. A commuted parametric portrait of system (1.1). 


