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FOREWORD

Some of the most exciting current work in the environmental sciences involves
unprecedentedly close interplay among field observations, realistic but complex
simulation models, and simplified but analytically tractable versions of a few basic
equations. IIASA's Environment Program has developed such parallel and comple-
mentary approaches in its analysis of the impact of environmental change on the
world’'s forest systems.

Two previous papers (WP-B87-70 and WP-87-71) have demonstrated the pro-
gress that has been made. In this new work, the conceptual ideas and experimental
results contained in those papers have been fused together. In particular, a sim-
ple model of multiple-aged forests, their predators and their abiotic environment
has been developed and successfully tested with data on budworm populations in
North American eastern spruce forests.

R.E. Munn,
Leader, Environment Program
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ABSTRACT

This paper is devoted to the investigation of the simplest mathematical models
of non-even-aged forests affected by insect pests. Two extremely simple situations
are considered: 1) the pest feeds only on young trees; 2) the pest feeds only on old
trees. The parameter values of the second model are estimated for the case of bal-
sam fir forests and the eastern spruce budworm. It is shown that an invasion of a
small number of pests into a steady-state forest ecosystem could result in intensive
oscillations of its age structure. Possible implications of environmental changes on
forest ecosystems are also considered.



SOFTWARE SUPPORT

Software is available to allow interactive exploration of the models described
in this paper. The software consists of plotting routines and models of the systems
described here. It can be run on an IBM-PC/AT with the Enhanced Graphics
Display Adapter and 256K graphics memory.

For further information or copies of the software, contact the Environment
Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg,
Austria.
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FOREST-PEST INTERACTION DYNAMICS;
THE SIMPLEST MATHEMATICAL MODELS.

M.Ya. Antonovsky, R.A. Fleming®,
Yu.A. Kuznetsov** and W.C. Clark***

1. Introduction

The influence of insect pests on the age structure dynamics of forest systems

has not been extensively studied in mathematical ecology.

Several papers (e.g. Antonovsky and Korzukhin, 1983; Korzukhin, 1980) have
been devoted to modelling the age structure dynamics of a forest not affected by
pests. Dynamical properties of insect-forest systems under the assumption of age
and species homogeneity can be derived from the theoretical works on predator-
prey system dynamics (May, 1981; Bazykin, 1985). In the present paper we attempt
to combine these two approaches to investigate the simplest models of non-even-
age forests affected by insect pests. This paper is based upon IIASA WP-87-70 (An-

tonovsky et al., 1987); and WP-87-71 (Fleming et al., 1987).

The model from Antonovsky and Korzukhin (1983) is a simple model of age
structure dynamics of a one-species system. It describes the time evolution of only

two age classes ("young'' and "old" trees). The model has the following form:

z =py —yy)z —fz

v =fz - hy, (4.0)

® Forest Pest Management Institute, Canadian Forestry Service, Sault Ste Marie, Ontario, Canada.
*x Research Computing Centre, Academy of Sciences of the USSR, Puscheno, USSR.
=xx Science and Public Policy Program, J.F. Kennedy School of Government, Harvard University,
Cambridge, Mass., USA.
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where £ and y are densities of "young"” and "old"” trees, p is fertility of the
species, A and f are death and aging rates. The function y(y) represents a depen-
dence of "young'' tree mortality on the density of "old’ trees. Following Antonovsky
and Korzukhin (1983) we suppose that there exists some optimal value of "old" tree
density under which the development of "young' trees goes on most successfully. In
this case it is possible to choose 7(¥) =a(y — )2 +¢ (Figure 1).

Model (A.0) serves as the basis for our analysis. Let us therefore recall its
properties. By setting s =f+c, scaling variables (z,y), parameters
(a,b,c,p.f,h,s) and the time, system (A.0) can be transformed into ""dimensionless”

form:

z=py —(¥y —1)%z —sz 01)
=z —hy, (0.

where we have preserved the old notations.

The parametric portrait of system (0.1) on the (p,h)-plane for a fixed s value
is shown in Figure 2. Relevant phase portraits are also presented there.

Thus, if parameters (p.h) belong to region 2, system (0.1) approaches a sta-
tionary state with constant age class densities (equilibrium E,) from all initial con-
ditions. In region 1 between lines D; and D, the system demonstrates a low density
threshold: a sufficient decrease of each age class leads to degeneration of the
system (equilibrium E ). The boundary of initial densities that result in the degra-
dation is formed by separatrices of saddle £,. Finally, in region 0 the stationary

existence of the system becomes impossible.

Let us now introduce an insect pest into model (A.0) and consider the two ex-

tremely simple situations.

1) the pestsfeed only on the "young" trees (undergrowth);
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2) the pestsfeed only on the "old” (adult) trees.

Assume that in the absence of food the pest density declines exponentially and
that forest-insect interactions can be described by bilinear terms as in the case of

predator-prey system models (e.g., May, 1981; Bazykin, 1985).

Thus, for the case where the pest feeds on undergrowth we obtain the follow-
ing equations:
z =py —7¥)z —fz - Azxz

v =Sz -hy (A.1)
z = -tz + Bzz,

while for the case where the pest feeds on adult trees

r =py —7(W)xz — Sz
=fz —hy —Ayz (A.2)
= -tz + Byz.

N Q.

Here 2z is insect density, & is the mortality rate of the insect, and the terms with

zz and yz represent the insect-forest interaction.

The goal of this paper is the comparative analysis of models (A.0), (A.1) and
(A.2). In the final part of the paper we consider biological implications of the
results and outline possible directions for elaborating the model. The main tools
for our investigation are the bifurcation theory of dynamical systems and the nu-

merical methods of this theory.

2. Results of the investigation of model] (A.1)

By a linear change of variables, parameters, and time, the system (A.1) can be

transformed into the form:

——

z =py - (y —1)2.1: - sz —z2
=z —-hy (1.1)
z = —¢tz +Bzz,

<.
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where the previous notations are preserved for new variables and parameters
which have the same sense as in system (0.1). The new parameters can be presented

in terms of the old ones as:

+
p::—fL S:=f2c,h:_L2,€=L2,B=£-‘
ab ab ab ab

In the first octant (i.e. where the variables take on biologically possible

values)

R:={(z.y.z):z,y.2201,

system (1.1) can have from one to four equilibria. The origin, E, = (0,0,0), is
always an equilibrium point. On the invariant plane z =0, where the system coin-
cides with system (0.1), either one or two equilibria with nonzero coordinates may
exist. As in system (0.1), the two equilibria £, =(z,,¥,,0) and E, = (z,,%,.0)

where

—sh
Y2 =1% \/Lh' Ti2 =hvy2.
appear in system (1.1) on the line:
D1={(p,h):p=sh. }
On the line
Dg=[(p,h):p=(s + 1A ] .

equilibrium E, coalesces with equilibrium £y and disappears from Ri. Besides the

equilibria E'j,j =0,1,2, system (1.1) could have an additional equilibrium

2
F.={Lf £ p-sh _| & _,
3 B'Bh’' h Bh :

* : means that new variables were introduced but, for the sake of simplicity, the old notations

were preserved M and p
a’s?
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This equilibrium appears in R?_ for parameter values (p,h) falling to the right of

.

in the parametric portrait (Figure 3). E,; passes through the plane z=0 and

the line:

£
Bh

- sh _
h

S ={(p.h): L -1

coalesces on this plane with either equilibrium E, or E, (Figure 4). Line S is

tangent to line D, at point

in the (p,h)-plane. Line S is divided by point M into two parts: S, and S, on which

equilibrium E'5 collides with either E; or E,, respectively.

In addition to these bifurcations of the equilibria, autooscillations (i.e. neu-
trally stable oscillations) can "emerge" and "vanish” in system (1.1). These events
take place on lines X and P on the parameter plane, while the autooscillations ex-

ist in regions S and 6.

Equilibrium E 4 loses its stability on line R due to the transition of two com-
plex conjugated eigenvalues from the left to the right half of the complex plane.
This stability change results in the appearance of a stable limit cycle in system

(1.1) (Andronov-Hopf bifurcation).

There is also a line corresponding to destruction of the limit cycles: line P on
the (p.,h)-plane. On line P, a separatrix cycle formed by outgoing separatrices of
saddles E, and £, exists (Figure 5). As the system approaches line P in parameter
space (Figure 3), the period of the limit cycle increases to infinity, and at the crit-
ical parameter value, the limit cycle coalesces with the separatrix cycle and

disappears.
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The point M plays a key role in the parametric plane. This point is a common
point for all bifurcation lines: §,,5,,0{,D0,,R and P. It corresponds to the ex-
istence of an equilibrium with two zero eigenvalues in the phase space of the sys-

tem. This fact allows us to predict the existence of lines R and P.

For parameter values close to the point M there is a two-dimensional stable-
center manifold in the phase space of system (1.1) on which all essential bifurca-
tions take place. The center manifold intersects with invariant plane z =0 along a
curve. Thus we have a dynamical system on the two-dimensional manifold with the
structurally unstable equilibrium with two zero eigenvalues and the invariant
curve. This bifurcation has been treated in general form by Gavrilov (1978) in con-
nection with another problem. It was shown that the only lines originating in point

M are the bifurcation lines mentioned above.

The locations of the R and P lines were found numerically on an IBM-PC/XT
compatible computer with the help of standard programs for computation of curves
(Balabaev and Lunevskaya, 1978). The additional associated numerical procedures
are described in the Appendix. We also used an interactive program for the in-
tegration of ordinary differential equations - PHASER (Kocak, 1986). Figures 5, 7,
and 8 show the changes in system behavior as increases in A move the system

through regions 3, 6, and 7.

3. Results of the investigation of model (A.2)

Model (A.2), which represents a pest attacking exclusively old trees, can be

transformed by scaling into the following form:

z=py —(y —1)°z —sz
Y =z -hy —yz 2.1)
z = —tz + Byz,

where the meaning of variables and parameters is the same as in system (1.1).
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System (2.1) can have from one to four equilibrium points in the first octant
RE : £y =(0,0,0), Ey =(24,¥4.0), E; = (2,,%,.0). and E5 = (x3,¥3.23)- Equilibria
E, and E; on the invariant plane z =0 have the same coordinates as in system
(1.1); they also bifurcate in the same manner on lines Dy and D,. As in system (1.1),

there is an equilibrium point of system (2.1) in Rg :

(¢ —B)? +sB?’ B ' (¢ —B)? + sB?
This equilibrium appears in Rg below the line

2
E'3= p&B [ PB —h.] .

2
S ={(p.h): LB ~h =0}.
4(‘0 ) (¢ —B)? + sB? ]

But equilibrium E ; does not lose its stability so autooscillations in system (2.1)
are not possible. Figure 9 shows the parametric portraits of system (2.1). The re-

gion numbers in Figure 9 correspond to those in Figure 4.

Consider in more detail the system behavior in parameter region 3 where
damped oscillations are possible. In the absence of pests (i.e. z=0 ) the system
tends to equilibria £, with constant densities of "young"” and "old" trees. If a small
number of pests then invades the forest, an outbreak occurs and the system moves
to equilibria E5 with lower tree densities and a low density insect population. The
maximum insect density reached during the outbreak exceeds that of equilibrium
Eq4.

A potentially unexpected system behaviour can occur if the system is at
equilibrium E'; but the pest density then declines, perhaps due to pest control
operations or the influence of random environmental variation. A new pest out-
break results (Figure 10). Therefore, random declines in pest density may result in

repeated outbreaks.
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4. Parameter estimation for model (A.2)

Our goal here is to demonstrate how the model (A.2) might be applied to a real
forest-pest ecosystem. This could lead to insight about the dynamics of the ecosys-
tem or to a determination of the range of applicability of the model for describing

ecosystem dynamics.

The eastern spruce budworm-forest system was picked as an appropriate can-
didate because of the availability of suitable information for many parts of the
model, because of the similarity of the main model features with some key aspects
of the budworm-forest system, and because previous models (e.g., Jones 1979,
Stedinger 1984) of the budworm-forest system have emphasized different elements

(e.g., foliage, insect predators, insect dispersal) of this system.

The eastern spruce budworm, Choristoneura fumiferana (Clem.), is a natur-
ally occurring defoliator of balsam fir (dbies balsamea [L.] Mill.) in the boreal
forests of eastern North America. Outbreaking populations kill their host trees
over wide areas. Outbreak cycles range from 26-40 years in length with outbreaks
lasting for 6-15 years. During outbreaks, insect numbers can increase over four
orders of magnitude in stands of mature and overmature balsam fir which are par-

ticularly vulnerable to attack.

In accordance with the simplistic nature of the model, which reduces the com-
plex budworm-forest ecosystem to a system of three differential equations, we take
a '"broad brush” approach to parameter estimation. First we identify realistic
ranges for the parameter values and then we select from the range to see how well

the model can simulate the behaviour of the ecosystem.

We begin by estimating A, the natural mortality rate of old trees in equation
(A2). MacLean (1985) gives the "annual net probability of natural mortality (before

outbreak)" as 1-3.8% for balsam fir. Hence, if n, is the number of trees in a
-h Ng ~Mg 44
cohort of old trees of age a, then n; 4y =n;e™ ,and .01 =< e <.038.
a



Hence Olshs< 04yr 1. (3.3)

The parameter f represents the aging of trees in the model. However,
depending on how one defines ''old” trees, f can take on different values. For in-
stance, Bakuzis and Hansen (1965) report that balsam fir reaches sexual maturity
at 30-35 years; becomes moderately susceptible to attack at over 40 years of age,
and becomes very susceptible at over 60 years of age. Moreover, stands are gen-
erally 40-60 years of age when established seedlings first appear. Thus we assume
that trees spend a mean duration of 30-70 years in the physiologically young age
group. If this duration has an exponential distribution with a mean of 30-70 years,

then

1/70sf s1/30

or

014 <f <.033 yr 1. (3.4)

The function y(y) describes the dependence of the natural mortality of young
trees on v, the density of old trees. MacLean (1985) suggests that natural tree
mortality might fall in the range .01 ~ .04 per year. Hence, since ¢ = minimum of

¥(v ), we approximate

¢ =.01 yr -1, (3.5)
The increased mortality at low ¥ (old tree density) could be ascribed to competi-
tion with ferns, shrubs, and hardwoods (Bakuzis and Hansen 1965) invading sites
opened up by the removal of the fir overstory. Competition with older trees ac-
counts for the increase in young tree mortality at large ¥. Assuming that the in-
terspecific competition is much less detrimental than the suppression by the older

age group, then b <K Y., -

Taking ¥pey ® 2.471 (in units of 10° trees/ha),
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indicating a fairly good site (Bakuzis and Hansen, 1965, Table 90), we arbitrarily

set

b ~.1 Xy, N.2471 (in units of 107trees / ha) . (3.6)

Then, since 7(¥qy) =~ -04 (MacLean 1985),

Vmax = & Y max—0)? +¢ =.04

Substituting with (3.5), (3.6), and then solving for a,
a = .00606 (in units of ha?(103 trees) 2 yr 1). 3.7)
We have now estimated all the parameters of the forest section of the model
(A.2) except p, the rate of production of seedlings. This parameter combines fer-
tility, germination rate, and survivorship well past the first year of life (i.e., into
the middle of the range of ages of the 'young' age group). Hence, it is a difficult

parameter to estimate.

Qur approach is to solve the system (A.0) for p using reasonable x and y
values for the equilibrium without pests. For instance, y =0 in system (1) with
z=0 when z =yh/f. From y,, ~2.471, and from Bakuzis and Hansen (1965,
Table 90), the corresponding value of z lies in the range 4.94 -~ 7.42 103 trees/ha.
Hence, if we choose f =.017 yr ! say (after equation (4)) and A =.04 yr 1 after

(3), then the value of z at the upper equilibrium (&, in Figure 2) is approximately

Z nax = 5-B1 103 trees / ha.

Since this is a reasonable value of z.,. (Bakuzis and Hansen 1965 Table 90) we
adopt

s =.017yr1 (3.8)

and

h =.04yr 1 (3.9)

as reasonable initial guesses for these parameters.
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For a forest equilibrium to occur near (z ) ~ (5.81,2.47) requires that

max'ymax
the first equation in system (A.2) with 2 =0 also meet equilibrium conditions at this

point. Therefore, using (3.5), (3.6), (3.7) and (3.8),

p=.134 yr 1. (3.10)

This completes the estimation of parameters for the forest section of the
model and leaves parameters &, A and B to be estimated. These three parameters
represent the natural pest mortality and the interaction between the forest and

the pest.

First we estimate &, the instantaneous rate of pest mortality. After an out-
break there are often few mature and overmature balsam fir trees left. Hence, we
assume Yy is small after an outbreak, so the pest equation in model (A.2) becomes
approximately z ~ —ez. This equation has the solution 24,9/2, xe ~¢, Thus, after
comparison it can be seen that € corresponds to the negative part of the vertical
axis of Royama's (1984) Figure 8. From the minimum of his smooth eye-drawn curve

we estimate

1<se<15yr 1. (3.11)

Next consider A, the instantaneous rate of tree mortality caused per pest.
During outbreaks annual budworm-caused tree mortality peaks at 8 - 151 per year
(MacLean 1985). Hence, considering budworm-caused tree mortality in isolation,
v = —Ayz. Then, assuming z is relatively constant during the peak of an outbreak
(Royama, 1984, Figure 1), ¥;,1/v; Ne Az Hence, in analogy with the derivation

of (3.3), .08 £1 —e 4% <.15. Since z peaks on the order of

Z max =20 10% larvae / tree

(Miller 1975), this relationship becomes:

.00417 < A <.0081 in 1072 trees larvae 1 yr 1 (3.12)
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The per capita rate of pest increase per tree, B, remains to be estimated.
When z is small and y is near its equilibrium density, ¥ is relatively constant so
the pest equation in system (A.2) gives z;,,/2, ®™ e Bv-o) 1 analogy with the
derivation of (3.11), we note that (By —¢) corresponds to the positive vertical axis

of Royama's (1984) Figure 8. From the maximum of his curve we estimate

l1<py —e=<2.

Since Yy N Y ey > 2-47 and substituting (3.11)

08<B=<1.42 10 %ha tree 1 yr1 (3.13)

We thus arrive at the following table of parameters for the model:

Table 1.
parameter units range initial
guess
a ha? (103 trees) 2 yr-1 .00606
b 103 trees/ha .247
c yr -1 .01
P yr1 134
t yr-1 .01 -.03 .017
h yr—1 .01 - .04 .04
P yr1 1-15 1.5
A 10 3 treeslarvae lyr 1 .004 - .008 .004
B 10 3 hatreel yr1 .08 -1.42 0.8
Table 2.
initial state units value
conditions: variable
Z (young trees) 103 trees/ha 5.81
Y (old trees) " 2.47
L Z (insect larvae) 103 1arvae/tree .005
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The results of model (A.2), numerically integrated by a computer, are
presented in Figure 11. The parameters and initial conditions are chosen in accor-
dance with Tables 1 and 2. It can be seen that the chosen parameter values belong
to region 3 on the right parameter portrait in Figure 9, so an outbreak is
expected. Computer simulation shows the outbreak has characteristics resembling
aspects of real forest data. The outbreak length is about 15 years which coincides
well with observations (Royama, 1984). So the model, despite its extreme simpli-
city, could reproduce limited time series of a real outbreak and can be considered

as a compressed representation of some aspects of available forest data.

There are two obvious differences between the computed outbreak shape and
real forest outbreaks. First, the time of intensive tree mortality is different. In
the model this takes place at the peak of the outbreak, while in the forest the mor-
tality of trees comes after the insect peak. It may be the result of excluding con-
sideration of foliage in the equations. In reality, the insects first defoliate trees
and only then do trees begin to die due to defoliation. Nonetheless, this distinction
is essentially a minor detail given the "broad brush” treatment of the problem

employed here.

A more important problem with the model's behaviour as far as representing
budworm-forest dynamics is the inability of the modelled stand to fully recover
after the initial outbreak. For instance, in simulated years 50-60, the density of
old trees (y) peaks at about 3/4 of its original (t=0) value. This behaviour
(damped oscillation) is determined by the model’s structure and parameter values
which place the system (A.2) in phase portrait 3 of Figure 4. An obvious question
is whether random variation within the given ranges of parameter values (Table 1),
as might occur with changes in weather from year to year, could occasionally move

the system into different phase portraits and thus maintain the oscillations.
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Maintenance of the oscillations (perhaps as a limit cycle) might also be accom-
plished by a more accurate representation of the ecological processes considered
in model (A.2). An obvious starting point here would be with the term py . This term
represents the rate of seedling establishment as a linear function of mature tree
density. In fact, although a dense overstory of mature trees may produce many
seeds, it can inhibit seedling establishment by limiting the available light. Hence,
forest reproductivity, p, may be better described by a saturating function of

mature tree density:
PW) =[P+ Y/ (Tpee)]?

Thus p(y )y — py when y is small.

— ZT,..x When y is large.

Here z ... a constant, is the upper limit to seedling establishment when ¥ is large.

3. Discussion of the results

The basic model (0.1) with two age classes describes either a forest approach-
ing an equilibrium state with a constant ratio of "young” and '"old" trees
(z = hy ), or degradation of the ecosystem (and, presumably, replacement by

other species).

Models (1.1) and (2.1) have regions on the parameter plane (0,1 and 2) in
which their behavior is completely analogous to the behavior of system (0.1). In
these regions the system either degenerates or tends to the stationary state with
zero pest density. In this case the pest is "poorly adapted” to the tree species and
can not survive in the ecosystem.

In systems (1.1) and (2.1) there are also regions (4 and 3) where the station-
ary forest state with zero pest density exists, but is not stable to small pest "inva-

sions”. After a small invasion of pests, the ecosystem approaches a new stationary
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state with nonzero pest density. The pest survives in the forest ecosystem.

The main qualitative difference in the behavior of models (1.1) and (2.1) is in
the existence of density oscillations in the first system but not in the second one.
This means that a small invasion of pests adapted to feeding upon young trees in a
two-age class system could cause periodical oscillations in the forest age structure
and repeated outbreaks in the number of pests (i.e., z,¥4.2/% and z become
periodic functions of time). It should be mentioned that the existence of such oscil-

lations is usual for simple models of even-aged predator-prey interactions.

In our case, however, the "prey" is divided into interacting age classes and
the "predator’ feeds only on one of them. It is the pest invasions which induce the
oscillations in the ratio, z /¥, of the age class densities. Moreover, in the case of
model (2.1), the pest invasion can include damping oscillations in the age struc-

ture.

When we move on the parameter plane towards separatrix cycle line P, the
amplitude of the oscillations increases and their period tends to infinity. The
oscillations develop a strong relaxation character with intervals of slow and rapid
variable change. For example, in the dynamics of the pest density z(¢) there
appear periodic long intervals of almost zero density followed by rapid density
outbreaks. Line P is a boundary of oscillation existence and a border above which
a small invasion of pests leads to complete degradation of the system. In regions ?
and 8 a small addition of insects to a forest system, which was in equilibrium

without pests, results in a pest outbreak and then tree and pest extinction.

It can be seen that the introduction of pests feeding only upon the 'young"
trees dramatically reduces the region of stable ecosystem existence. The

existence becomes impossible in regions 7 and 8.

We have considered the main dynamical regimes possible in models (1.1) and

(2.1). Before proceeding, however, let us discuss a very important topic of time
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scales of the processes under investigation. It is well known that insect pest
dynamics reflect a much more rapid process than the response in tree density. It
seems that this difference in the time scales should be modeled by introduction of a
small parameter u<<1 into the equations for pest density in systems (1.1) and (2.1):
z-»uz. But it can be shown that the parametric portraits of the systems are
robust to this modification. The relative positions of lines D;,D, and S as well as
the coordinates of the key point M depend on ratio ¢/ B8 which is invariant under
substitutions £-+&/ u, BB/ u. The topology of the phase portraits is not affected
by the introduction of a small parameter u, but in the variable dynamics intervals
of slow and rapid motions appear. Recall that model (1.1) had oscillations of a simi-
lar relaxation character near line P of the separatrix cycle without any additional
small parameter u. So we could say that we have an "implicit small parameter’” in

system (1.1).

To demonstrate potential extensions of this approach, we now consider some
qualitative implications that atmospheric change might have on forest-pest ecosys-
tems. As suggested by Antonovsky and Korzukhin (1983), an increase in the amount
of SO, or other pollutants in the atmosphere could lead to a decrease of the growth
rate p and an increase of the mortality rate A. Thus, increase in atmospheric pol-

lution could result in a slow drift along some curve on the (p,h )-plane (Figure 12).

Suppose that the parametric condition has moved from position 1 to position 2
on the plane but remains in a region (8) where a stable equilibrium can exist
without pests (Figure 4). But now, if the system is exposed to pest invasions, both
the forest and the pest become extinct. Therefore, slow atmospheric changes could
induce both vulnerability of forests to pests, and forest death unexpected from the

point of view of the forest's internal properties.
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6. Summary

It is obvious that both models (A.1) and (A.2) are extremely schematic.

Nevertheless, they seem to be among the simplest models allowing the complete

qualitative analysis of a system in which the predator differentially attacks vari-

ous age classes of the prey.

The main qualitative implications from the present paper can be formulated in

the following, to some extent metaphorical, form:

1.

Pests feeding on young trees destabilize forest ecosystems more than pests
feeding on old trees. This suggests a possible explanation of the common
observation that in real ecosystems pests more frequently feed upon old trees
than on young trees. Perhaps systems in which the pest feeds on young trees
are less stable and more vulnerable to external impacts than systems with the
pest feeding on old trees. This may have led to the elimination of the less

stable systems over evolutionary time.

An invasion of a small number of pests into an existing stationary forest
ecosystem could result in intensive oscillations of the age structure of the

tree population.
The oscillations could be either damping or periodic.

Slow changes of environmental parameters may make the forest vulnerable to

previously unimportant pests.

There are a number of possible directions for extending the model. It seems

natural to take into account the following factors:

1)

2)

3)

more than two age classes for the specified trees;
coexistence of more than one tree species affected by the pest;

introduction of more than one pest species having various interspecies rela-

tions;
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4) the role of variables like foliage which are important for describing the

effect of defoliation by the pest;
5) feedback relations between vegetation, landscape and microclimate.

Finally, we express our belief that careful analysis of simple nonlinear
ecosystem models will lead to a better understanding of real ecosystem dynamics

and to a better assessment of possible environmental impacts.

Appendix: Numerical procedures for the bifurcation lines X and P

1. Andronov-Hopf bifurcation line X.

On the (p,h)-plane there is a bifurcation line R along which system (1.1) has
an equilibrium with a pair of purely imaginary eigenvalues >\1'2 = +iw (A3 <0). It
is convenient to calculate the curve R for other fixed parameter values as a pro-
Jection on the (p,h)-plane of a curve I' in the direct product of the parameter
plane by phase space Rf (Bazykin et al., 1885). The curve I in the 5-dimensional
space with coordinates (p,h,z,%.2) is determined by the following system of alge-
braic equations:

py —(y —1)%z —sz —zz =0
z —-hy =0

—&z + Bzz =0 *
G(ph.z,y,2)=0,

where G is a corresponding Hurwitz determinant of the linearization matrix

v ~-1%-s5s -2 | p-2(y -1z -z
= 1 | —h 0
Bz | 0 - + Bx

Each point on curve I implies that at parameter values (p,A) a point (z,v,z) is an
equilibrium point of system (1.1) (the first three equations of (*) are satisfied) with

eigenvalues )‘1,2 = +1i w (the last equation of (*) is satisfied).
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One point on the curve I' is known. It corresponds to point M on the parameter
plane at which system (1.1) has the equilibrium (%,1,0) with Ay =X, =0 (e.g.,

+t w = 0). Thus, the point

o h W' =( .%.%.1.0)

|

lies on curve I' and can be used as a beginning point for computations. The point-
by-point computation of the curve was done by Newton's method with the help of a

standard FORTRAN-program CURVE (Balabaev and Lunevskaya, 1978).

2. Separatrix cycle line P.

Bifurcation line P on the parameter plane was also computed with the help of
program CURVE as a curve where a "split" function F for the separatrix connect-
ing saddles Ez'1 vanishes:

F(p.h) =0.

For fixed parameter values this function can be defined following Kuznetsov
(1983). Let W{ be the outgoing separatrix of saddle E, (the one-dimensional
unstable manifold of equilibrium E, in RJ). Consider a plane z = § , where § is a
small positive number; note the second intersection of W{ with this plane (Figure
13). Let the point of intersection be X. The two-dimensional stable manifold of sad-
dle E, intersects with plane z = § along a curve. The distance between this curve
and point X, measured in the direction of a tangent vector to the unstable manifold
of E,, could be taken as the value of F for given parameter values. This function is
well defined near its zero value and its vanishing implies the existence of a separa-

trix cycle formed by the saddle £, , separatrices.

For numerical computations separatrix Wz+ was approximated near saddle E,

by its eigenvector corresponding to A; > 0. The global part of W{ was defined by
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the Runge-Kutta numerical method. Point X was calculated by a linear interpola-
tion. The stable two-dimensional manifold of E; was approximated near saddle £,
by a tangent plane, and an affine coordinate of X in the eigenbasis of £, was taken

for the value of split function F'.

The initial point on the separatrix has z, = 0.005. The plane z = 4 was defined
by é = 0.1 and the integration accuracy was 10~7 per step. The initial point on P
was found through computer experiments. A family of the separatrix cycles

corresponding to points on curve P is shown in Figure 14.

Figure 15 presents an actual parametric portrait of system (1.1) for

s =R =1¢=2.
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Figure 1. The dependence of ''young' tree mortality on the density of “old" trees.

Figure 2. The parametric portrait of system (0.1) and relevant phase portraits.
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Figure 3. The parametric portrait of system (1.1).
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Figure 4. The phase portraits of system (1.1).
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£,

Figure 5. The separatrix cycle in system (1.1).

Figure 6. The behavior of system (1.1): s =& =1, ¢=2, p=6, h =2 (region
3). The Y-axis extends vertically upward from the paper.
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Figure 7. The behavior of system (1.1): s =b =1, £ =2, p=6, h =3 (region
6).
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Figure 8. The behavior of system (1.1):s =& =1, £€=2, p =6, h =3.5 (region
D.
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Figure 9. The parametric portraits of system (2.1).

Figure 10. A small decrease in the pest density may result in an insect population
outbreak.
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Figure 12. The probable parameter drift under SO, increase.
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Figure 13. The separatrix split function.
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Figure 14. The separatrix cycles in system (1.1).

BIFURCARTION CURVES: S=B=1 E=2

XZ-MODEL

Figure 15. A commuted parametric portrait of system (1.1).




