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FOREWORD 

The paper deals with the problem of specifying the assembly of all solutions to a 
differential inclusion that  satisfy a preassigned constraint on the state space variables (the 
"viability" tube). A "funnel equation" that  describes the evolution of the cross-section of 
this tube (the "attainability domain") is then proposed and a feedback control problem 
for a system with state constraints is then proved to be solved on the basis of these con- 
structions. 
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1. Introduction 

The topic of this paper is motivated by problems of evolution, estimation and control of 

uncertain dynamic processes described by differential inclusions. [I-61 One of the important 

problems for these systems is to specify the tube of all solutiona to a differential inclusion that 

also satisfy a given state constraint (the "viability" property). [5,6] 

It is known that the tube of all viable trajectories may be described by a new differential 

inclusion whose right-hand side is formed with the aid of a "tangent cone" to the multivalued 

map that gives the phase restriction [5,8]. Here however, we develop another approach to the 

problem that allows to  avoid the procedure of constructing the cone-valued mappings mentioned 

above. 

In the problem discussed here it occurs that the time-cross-sections of the set of viable tra- 

jectories represent the "state" of the uncertain system (the phase vector for the standard control 

system). Then the problem of discovering the evolution law for the "states" of the uncertain pro- 

cess becomes relevant. 

An evolutionary "funnel equation" for the tube of viable solutions is described in the paper 

in terms of set-valued calculus. For the linear-convex case the solution to this equation is given 

through set-valued Lagrangian techniques in the form of a set-valued "convolution integral". An 

application to the solution of a feedback control problem with state constraints is also intro- 

duced. 

2. Statement of the Problem 

Let R n  be the n-dimensional Euclidean space. For z , y E R n  let z' y ( or (z , y) denote the 

usual inner product of z and y with the prime as the transpose, 1 )  z 1 1  = (2' z)lJ2 , 
S = {z E R n  : ( I  z I  1 5 1). Also denote conv R n  to be the set of convex compact subsets of Rn 

and h ( A  , B) to be the Hausdorff metric for A  , B E conv R n  . 

Consider the following differential inclusion 



where z E Rn , F is a continuous map from [ to  , t l ]  x R n  into conv Rn.  We will assume the 

Lipshitz condition for F to be satisfied (L > 0): 

Assuming set X ,  E conv R n  to be given, denote z[ t ]  = z ( t  , to , z,) ( t o  5 t < t l )  to be the 

Carathhodory-type solution to  (2.1) that starts at z[t,] = z,  E X,. We further require all the 

solutions z ( t  , to , z,) I z ,  E X,) to  be extendable until the instant T [ lo] .  

Let Y ( t )  be a continuous map from [to , t l ]  into conv R n ,  X ,  C Y(t ,) .  

Definition 2.1 [2-51 A trajectory z [ t ]  = z ( t  , to  , z,) ( z ,  E X ,  , to < t 5 t l )  of the differential 

inclusion (2.1) will be said to be viable on [to , r] (r  5 t l )  if 

z [ t ]  E Y ( t )  for all t E [ to  , r] (2.2) 

For every z ,  E X ,  the set of all viable on [to , r] trajectories z( .  , to , z,) will be denoted as 

X ( .  ; r , to , z,), X ( -  ; r , to  , X,) = U { X ( .  ; r , to , z,) I z,  E X,), and its cross-section at  

instant r as X ( r  , to , z,) and X ( r  , to , X,) respectively. 

Let X*(.  , to , X,) be the set of all solutions to the differential inclusion (2.1) that emerge 

from X 0  (the "solution assembly" for X O ) .  Under our assumptions the set 

Q = U { X * ( t  , to , X,) I to  I t 5 t l )  of cross sections X*(t  , to  , X,) is compact in R n  [9,10]. 

Let us denote the graph of the map F ( t  , .) as grtF ( t is fixed): 

grt F = { ( z  , y) E R n  x R n  : y E F ( t  , z ) )  

and the interior of A C R n  as int A 

Assumption A: 

( 1 )  For some D E convRn  such that Q c int D, the set D grt F is convex for every 

t E [to , t l l .  

( 2 )  There exists a solution z,[-] of inclusion (2.1) such that z ,  [ to]  E X ,  and z ,  [ t ]  E int Y ( t ) ,  

V t E [to , t l l .  

Under assumption A the bundle X ( -  ; r , to  , X,) of viable trajectories is a convex compact 

subset of the space C [ t ,  , t l ]  of all continuous n-vector functions, and its r-cross-section 

X ( r  , to , X,) is a convex compact subset of Rn.  



It is known that sets X ( t  , to  , X,) satisfy a semigroup property: 

Therefore they define a generalized dynamic system. The construction of an adequate evolution 

equation describing this system is the first objective of this paper. 

The situation will then be reduced to the linear case where it will be shown that the solution 

to the evolution equation derived here may be given in the form of a set-valued convolution 

integral. 

3. The Evolution Equation 

We will further demand that one of the following assumptions would be fulfilled. 

Assumption B. The graph gr Y E conv Rn + 

Assumption C. For every t E R n  the support function f ( t  , t) = p( t  I Y ( t ) )  = 

max { t ' y  I y E Y ( t ) }  is differentiable in t and its derivative a f ( t  , t )  / a t  is continuous in 

(t , t ) .  

The following basic theorem will be proved. 

Theorem 3.1. Suppose assumption A i s  fulfilled and the map Y ( - )  satisfies either assumption B or 

assumption C .  Then the r-cross-section X[r]  = X ( r  , to , X,) of the set X ( -  ; r , to  , X,) of all 

viable trajectories to the diferential inclusion (2.1) will satisfy the following evolution equation: 

- 
lim u h ( X [ r + u ]  

u + o+ , U ( z + u F ( r , z ) )  n Y ( r + u ) ) = O ,  
E XI4 

X[t,] = X , ,  to 5 r 5  t l .  

The proof of this theorem will follow from a number of lemmas given in the next section. 

Concluding this paragraph we will remark that under the hypotheses of theorem 3.1 the 

set-valued map X[r]  = X ( r  , to , X,) will be continuous in r. However if one replaces assumption 

A (2) in theorem 3.1 by one which requires that z,[ t]  E int Y ( t )  only for almost all t E [ to  , t l ] ,  

then the equation (3.1) for X(r]  will be fulfilled almost everywhere on [ to  , t l ] .  In this case X[r]  

may also be discontinuous on a set { r}  of a measure zero. (It is known that in general the func- 

tion X[r]  is continuous from the left and upper semicontinuous from the right at every point 

E [to , tll [61). 



4. Proof of the Basic Theorem 

Let r E [ to  , t l ]  be fixed, X[r] = X ( r  , to  , X,). First we have the following estimate 

Lemma 4.1 Under Assumption A for every r > 0 there ezi8ts a a ,  > 0 such that 

X [ r +  a]  C U ( z  + a F ( r ,  z ) )  r) Y ( r +  a )  + S 
Z E X[?j 

for every a E [0 , a,] 

Since X [ r  + a ]  = X ( r  + a , T , X [ d )  the definition of viable trajectories yields 

Being the cross section a t  instant r + a of the solution assembly to  the differential inclusion 

(1.1) that starts a t  { r  , X [ r ] ) ,  the set X*[r] = X*( t  , T ,  X [ r ] )  satisfies the "funnel equation", (9,101 

Therefore 

X * ( r +  a ,  r ,  X [ r ] )  C ( z  + a F ( r ,  z ) )  

where a-l o ( a )  + 0 ,  with a - O.* 

If P , Q , W are given subsets of R n  with Q = - 9 ,  then it is possible to verify the inclu- 

sion 

From this inclusion and from (4.2), (4.3) it follows that 

* Here and in the sequel a function denoted by O ( U )  without or with any type of indices (e.g. o k ( a )  , 0 ,  , ( a ) ,  etc.) 
will always be presumed t o  satisfy U-l O ( U )  - 0 if a 4 +0. * 



Denoting R(a , T )  = {U ( Z  + Q F(T , 2 ) )  1 2 E X [ T ] )  

we observe due t o  assumption A1 that  the set R(a , T )  is convex and compact for every value of 

a > 0. We will now verify the following inclusion 

for some function ol(a) .  

From assumption A it follows that  there exist vectors z,  E X[T] ,  v, E F ( T ,  2,) and 

numbers r > 0, a,  > 0,  K > 0 such that  for every a E [0 , a,] we have 

Then however 

Indeed, suppose a number o E ( 0 ,  a,] and a vector z E R ( a ,  T )  n ( Y(T  + a )  + o (a )  S )  are 

given. We will show that  

Selecting vector 

y = ( 1  - r-' o(a)) z + r-' o(a) ( 2 ,  + a v,) 

we observe that  y E R(a , T ) ,  and 

1 ( y - 211 5 2 KT-' o(a) 

From the above we arrive a t  two inclusions 



where Y ( r  + a) is convex-valued. Taking the sums of the respective elements a t  the left and 

right hand parts of these relations we come to 

or otherwise, to the inclusion y E Y ( r  + a )  (since in this relation o ( a )  is a specific function of a ) .  

This immediately yields (4 .6)  and the inclusion (4 .5)  is therefore established. The result 

given in Lemma 4.1 now follows from relations (4 .5 ) ,  (4 .6) .  

Consider the system 

with Z(r  + a , r  , z , )  being the cross section of the tube of viable solutions to this system. 

Denote 

Lemma 4 .2  Under assumption A for every E > 0 there ezists a a,  > 0 such that for all a E (0 , a,] 

the following inclusions are true 

Lemma 4.2 is a detailed version of Lemma 4.1. It is proved through a similar scheme. 

Lemmma 4.3 With assumption A fulfilled i t  i s  possible for any E > 0 to  indicate a a ,  > 0 such that 

for every a E ( 0  , a, ]  we have 

Inclusion (4 .11)  gives us the next step, relative to (4 .9 ) ,  to prove the Basic Theorem. 

In order to verify the assertion of Lemma 4.3 assume z* E Z ( a  , r ) .  Then there exists a pair 

2,  E X [ r ]  , v ( t )  E F ( r  , z , )  , r  5 t 5 r  + a , 



- 7 -  

such that the respective solution z [ t ]  = z ( t  , r ,  2,)  to equation (4.8)  satisfies the conditions 

z [ r  + a] = z ( r  + a , r  , 2, )  = z* ; z [ t ]  E Y ( t )  , t  E [ r  , r  + a] 

Therefore 

and 

where 

The last relations are derived due to the earlier assumptions that F ( r  , z )  is Lipschitz in z  

(with constant L) and continuous in t  uniformly in z  E M. Here the function O ( a )  - 0  with 

a - + O .  

If we now introduce the differential inclusion 

then from the Gronwall lemma for differential inclusions [5] it follows that there exists a solution 

y ( t )  to (4.12)  that satisfies 

and therefore yields 

1 1  y ( t )  - z ( t )  I I 5 (exp L a )  ( O ( a )  + L N a) a = o*(a )  , t  E [ r ,  r +  a] (4.13)  



Hence 

Due to assumption A the sets X [ t ]  E conv Rm. Following the scheme for Lemma 4.1,  it is 

possible to construct a function w ( t )  that satisfies 

for a certain function o ;  (a ) .  

Therefore 

and in view of ( 4 . 1 3 ) ,  (4 .14)  we have 

where the function o ; ( o )  does not depend upon the vector t* E Z ( a  , r ) .  

The last Lemma leads to 

Corollary 4.1 Under Assumption A we have 

lim a-' h ( X [ r  + a] 
0 ---, +o , Z ( r ,  4 )  = 0 

Assertion (4 .15)  follows from (4 .1  I ) ,  ( 4 . 9 ) .  

In order to  finalize the proof of the basic theorem we will have to establish an inclusion 

opposite to either (4 .10)  or ( 4 . 1 ) .  This however will require some additional assumptions in the 

form of either B or C in 5 2. 

Lemma 4 .4  Under Assumptions A,  B for any a > 0 we have 



Consider the set Z'(r + a , 7 ,  z O )  of viable solutions to (4.8) in the class of constant func- 

tions v ( v ( t )  = const) 

Denote 

Clearly Z'(a , s) z Z ( a  , 7). If we now assume z E R ( a  , 7) n Y(7 + a )  then there exists a pair 

of vectors z E X[r] ,  v E F ( 7 ,  z )  such that 

Since gr Y E conv Rn + we have 

z + s v = ( 1  - s a-') z + ( s  a- l )  ( z  + a v )  E Y ( s )  

for any s E [0 , a ]  

Therefore z E Z'(a  , 7) and (4.16) is proved. 

Relations (4.16), (4.10) yield 

Corollary 4.2 Under assumptions A, B we have 

lim a - ' h  ( Z ( a , r ) ,  R ( a , r )  n Y ( r + a ) )  = O  
0 ---r +O 

Combining the latter equality with (4.15) we arrive at  the proof of the basic theorem under 

Assumptions A, B. 

We will now prove the same theorem under Assumptions A, C. Having already found (4.1), 

we will only need to  establish an opposite inclusion. However prior to  that we will prove an addi- 

tional assertion. 

Let us introduce some auxiliary constructions. Define for an arbitrary closed set P E Rn a 

contingent cone T p ( z )  ( z  E P ) :  

T p ( z )  = { v  E R n  : liminf a-' d ( z  + av , P )  = 0 )  
o+O+ 

and for a multivalued mapping Y(.) a contingent derivative [5,8] 



(here d(z , p )  = min { I I z - P I I :P E P )  , a E R1 , ( t  , Y )  E grY)- 

Determine V ( t  , y )  = DY(t  , y ) ( l )  for ( t  , y )  E gr Y .  Under assumption C for all 

( t  , y )  E gr Y the set V ( t  , y )  is closed and convez in Rn [ 5 ] .  

Following [12] consider a local approzimation Ya(r) for the set-valued map Y(.)  in the 

neighbourhood of a fixed point r: 

Lemma 4.5 [12]. 

1 .  Under Assumption C the fol lo~~ng equality is true for all o > 0 

2. Under Assumptions A(2), C for every 6 > 0 there ezists a a ,  > 0 such that for all o E (0 , o,] 

As a function of o the graph of the map Y,(o) is convex. This allows to establish 

Theorem 4.1  Under Assumptions A, C the set-valued map X[r] is a solution to the equation 

lim a-l h (X[r  + a] , ( z  + oF(r , z ) )  n Y,(o)) = 0 
a + +O I 

From (4.17) and from the scheme for proving Lemma 4.1 (since Assumption A(2) remains 

true for Y,(o)) it follows that there is an upper bound for X[r + o ] ,  namely 

In order to prove the opposite relation 



for some o ( a )  assume 

Then z = z + u v E Y, (a )  for some z E X[r ]  , v E F ( r  , z ) .  Since gr Y ,  E conv R n  we will 

have z + sv E Y , ( s )  for all s  E [0 , a ] .  

As in (4 .12) ,  (4 .13)  it is possible to establish the existence of a solution y ( t )  to the inclusion 

(4 .12)  

that satisfies the inequality 

for a certain 6(a) and therefore yields 

Due to Lemma 4.5 ( 2 )  we may substitute (4 .20)  for y(r + s )  E Y ( r  + s )  + C l ( a ) .  

Then, following the schemes of Lemma 4.1,  we may find due to  Assumption A a solution 

Y , ( t )  to (4 .12)  that satisfies relations 

The latter inequality together with (4 .21)  leads to  (4 .19) .  Theorem 4.1 is therefore proved. 

Now we may come to the proof of the inclusion opposite t o  ( 4 . 1 ) .  From Assumptions A, C 

and from Lemma 4.5 ( 2 )  we observe that 



and that Assumption A(2)  remains true for Y,.(a). Then following the reasoning of Lemma 4.1 

we will have 

From theorem 4.1 and from (4.22), (4.23) we come to the inclusion 

for a certain function o, ( a ) .  

This finalizes the proof of the basic theorem under Assumption A, C, since (4.1),  (4.24) 

yield (3.1). 

5.  The Linear System 

Consider the following system 

where z E R n  , A ( t )  is a continuous n x n-matrix function, P ( t )  is a continuous map from 

[ t o  , t l ]  into conv R n  and therefore F(t  , z) = A ( t )  z + P ( t )  

Here assumption A ( 1 )  will be fulfilled automatically Hence to retain assumption A(2)  we 

will introduce 

Assumption A*. There exists solution z,[.] of (5.1) such that 

z,[t]  E int Y ( t )  , V t E [ to  , TI 

The following result is a direct consequence of theorem 3.1 (it also generalizes theorem 4.1 

of paper [3]) .  

Theorem 5.1 Assume assumption A* to be fulfilled. If the map Y( . )  satisfies either assumption B 

or assumption C then the set-valued function X[r] = X ( r  , to  , X,) is the solution to the evolution 

equation 

lim a-' h ( X [ r  + a] , ( ( E  + a A ( r ) )  X[r]  + 
a ---+ O+ 

+ U P ( $ )  n Y(' + a ) )  = 0 , X[to]  = Xo , 



to  < r 5 tl (here E is the identity n x n-matriz). 

A separate question is how to solve equation (5.1). We will further demonstrate that this 

solution may be given by a certain multivalued "convolution integral". 

6. The Linear System. A Direct Solution 

We will now pursue a direct calculation of the support function p(! I X [TI) based on the 

techniques of convex analysis and the set-valued analogies of Lagrangian techniques. 

Denote Cn(T) (Cl(T))  to  be the set of all n-vector-valued continuous functions defined on 

T (respectively the set of k times continuously differentiable functions with values in R n ,  defined 

on T).  Let Mn(T) stand for the set of all n-vector-valued polynomials of any finite degree, 

defined on T .  Obviously g(-) E Mn(T,) if 

k 
g(s) = C l( ')s ' ,  S E T , ,  h i ) €  R n  

i= 1 

and Mn (T)  C& (T) 

Applying the duality concepts of infinite dimensional convex analysis [8] as given in the 

form presented in [6] we come to the following relations. For any 1 E Rn,  A(.) E Cn(T) denote 

Here, in the first variable the function S(t,r) is the matrix solution for the equation 

the second and third members of the sum (2.1) are Lebesgue-type integrals of multivalued maps 

P(<) , Y(<) respectively (see, for example, [5-71). 

In [6], 3 6, it was proved that 

max {( l , z ) (z  E X[r]) = p(llX[r]) = inf {Q,(l,X(.)) IX(.) E Cn[T,I) . 



A slight modification of the respective proof shows that the class of functions Cn(TT) in the 

last formula may be substituted by either C&(TT) or even Mn(TT). Hence 

From relations (2.2) it is possible to derive the following assertion 

Lemma 6.1 The following equality is true 

where 

and CrXn(T) , (0 5 k 5 oo) , MnXn (T) stand for the respective spaces of (n x n)-matrix-valued 

functions defined on T .  

The proof of Lemma 6.1 follows immediately from (6.2), (6.3) after a substitution 

A'(.) = I'M(-) for 1 # 0. The infimum over A ( - )  in (6.2) is then substituted by an infimum over 

M(.). Hence for every 1 # 0 we have 

for any M(-) E CnX "(T,) (or CLx "(T,) or MnX "(T,)). From (6.1) - (6.5) it now follows that 

X [r] 5 R (r, M ( a ) )  for any M (.) . 

Hence 



(or over Ckx "(T,) or MnX "(T,)). 

Equalities (6.4) now follow from (6.6) and (6.2), (6.3). 

Lemma 6.1 acquires a specific form when X0 = R n .  In this case there are no initial restric- 

tions on z0 = z(to). 

Corollary 6.1 Aesurne X0 = R n .  Then 

over all M(-) E Cn " (T,) that satisfy the equation 

Relations (6.7), (6.8) are the direct analogies of the convolution integral introduced for 

single-valued functions, for example, in [13]. Following the conventional term we will therefore 

refer to  J[r] as the set-valued convolution integral. We will also extend this term to the right- 

hand part of (6.4). 

7. A Generalized "Lagrangian" Formulat ion 

The assertions of the above yield the "standard" duality formulations for calculating 

7,(l) = ~ ( 1  I XI:r]), (see 16, 14, 151). 

Denoting 

we come to the following "standard" 

P r i m a r y  P r o b l e m  



over all 

where z [ t ]  i s  the solution to  the equation 

In other words 

under restriction (7 .2 )  where 

Here 

The primary problem generates a corresponding "standard" 

Dual Problem: 

Determine 

along the solutions s [ t ]  to the equation 

~ [ t j  = - s ~ I A ( ~ )  + q t )  , S [ T ]  = e  

Here a,(! , A( . ) )  may be rewritten as 



Relations (2 .2 ) ,  (2.3) indicate that ~ , ( l )  = f ( l )  and that A(- )  in (6.5) may be selected from 

CS$ (TT) or even from M n ( T T ) .  

A "standard" Lagrangian formulation is also possible here. 

Lemma 7.1 The value ro(l)  = 7 ( l )  may be achieved as the solution to  the problem 

where 

and 

The passage from (6 .2 ) ,  (6 .3 )  to (6.4) yields another form of presenting X [ T ] .  Namely, 

denote S [ t ]  to be the solution to the matrix differential equation 

Also denote 

Obviously 

Lemma 6.1 may now be reformulated as 



Lemma 7.2 The set X[r] may be determined as 

over all 

M(-) E C n X n  (T,), zOEXO ,u(-) E P .  

This result may be treated as a generalization of the standard Lagrangian formulation. How- 

ever here one deals with set X[T] as a whole rather than with its projections p(l I X[T]) on the ele- 

ments 1 E R n .  The results of the above indicate that  the description of set X[T] may be "decou- 

pled" into the specification of sets R(T , M(.)), the variety of which describes the generalized 

dynamic system X( t  , to , XO). 

However it should be clear that  the mapping R(T , M(-)) may not always be an adequate element 

for the decoupling procedure, especially for the description of the evolution of X ( t  , to , XO) in t .  

The reasons for this are the following. 

Assuming function M(-) to  be fixed, redenote R ( r  , M(-)) as R M ( r  , to , p ) .  Then, in general, 

for any fixed M, we have 

RIM(', '0 3 # 8, R M ( s ,  t o ,  XO)) . 

Therefore the map R M ( r ,  to , p) does not generate a semigroup of transformations that 

may define a generalized dynamic system. The necessary properties may be however achieved for 

an alternative variety of mappings, each of the elements of which will possess both the property 

of type (2.4) and the "semigroup" property, [4]. 

8. A n  A l t e r n a t i v e  P r e s e n t a t i o n  of X [T] 

Denote C n X n  (T,) to  be the subclass of CnXn (T)  that consists of all continuous matrix 

functions M(-) that  satisfy 

A s s u m p t i o n  8.1 For any g E T, we have 



In other words, if K  [ t ]  is the solution to  the equation 

~ ( t )  = - K ( t )  A  ( t )  + M ( t )  , K(r )  = E  , ( t o  5 t  1 7) 

then M ( t )  must be such that  det K [ t ]  # 0  for all t  E [ to  , r].  

We will further denote K [ t ]  = K ( t  , r  ; M ( - ) )  for a given function M ( - )  in (7.1). 

Consider the equation 

i = ( A  ( t )  - ~ ( t ) )  z , t o 5 t s r  (8.2) 

whose matrix solution Z [ t ]  ( Z [ r ]  = E )  will be also denoted as Z [ t ]  = Z ( t  , r ;  L ( . ) )  

(2' ( t  , 7 ,  (01 )  = S ( r ,  t ) )  

Under Assumption 8.1 there exists a function L ( - )  E CnXn (T,) such that  

Indeed, if for t  E T ,  we select L ( t )  according to the equation 

L ( t )  = A ( t )  - K-' ( t )  ~ ( t )  = (8.4) 

then, obviously, equation (8.3) will be satisfied. From (8.4) ,  (8.3), (8.4) i t  now follows 

(M(.) E CPXn (T,)) 

However i t  is not difficult to observe that  the right-hand part of (8.5) is 

X L ( . ) ( r ,  to , X')) = X  [r  1 L ( - )  1 which is the cross-section a t  instant r  of the set 

X q . )  ( a  , t o  X')) = X  [. I L(.)] of all solutions to the differential inclusion 



Since the class of all functions L(.) E CnXn (T,) generates a subclass of functions 

M(-) E CnXn (T,) we now come to the following assertion in view of (6.3), (8 .5) ,  (8.6) .  

Lemma 8.1 The following inclusion i s  true 

Therefore X[T] is contained in the attainability domains at  instant T for the inclusion (8.6), 

whatever is the function L ( t ) .  

However the main point is that (8.7) actually turns to be an equality. In order to prove this 

one has to establish an inclusion opposite to (8.7) which is a rather long procedure already 

presented in [4].  The result is given by 

Theorem 8.1 The following equality is true 

Since each of the multivalued functions XL[7] = X [ T  , L ( - ) ]  is a solution to  differential inclu- 

sion (8.6) it may be also considered as a solution to the funnel equation ( X [ t , ]  = X O  

lim up' h ( X L  [ T + u ]  , ( E  + A(r )u  - L ( T ) )  XL[r]  + P ( T )  u + L ( T ) Y )  = O  
a-0 (8.9) 

Combining Theorem 5.1 with (8.8) ,  (8.9) we arrive at  

Theorem 8.2 Under assumptions A * ,  B or A*,  C the solution X[T]  to the "generalized" funnel 

equation (5.2) may be decoupled into the variety { X L [ r ] )  of solutions to the "ordinary" funnel 

equation (8.9) so that equality (8.8) will be fulfilled. 

The results of this paper may be applied to the solution of feedback control problems under 

state constraints. One of the possible schemes is to solve the problem in the class of set-valued 

control strategies this requires the solution of a problem inverse to those of the above. 

9. The Inverse Problem 

Consider system (5.1) ,  (2.2) for t E [ s , t l ] ,  with set A4 E comp Rn.  

Definition 9.1. The viable domain for system (5.1), (2.2) a t  time s is the set W ( s , t l )  that 

consists of all vectors w E R n  such that 

( 9 .  I.) 



Using the duality relations of convex analysis as given in [6] it is possible to observe that 

W ( a , t l )  C_ R - ( a , M ( - ) )  , V M(. )  E CnXn [ T 8 ]  , 

where 

Similar to 5 6 we come to 

Lemma 9.1. The set W ( a , t l )  may be determined as 

Under assumptions A*, B or A*, C it also satisfies the funnel equation 

An important technical element is the directional derivative in t of the support function 

P ( !  l W[r1)- 

10. A Directional Derivative 

Let us calculate the left derivative a- p(! I W [ T ] )  / a t  for a given direction ! E Rn.  Since 

we observe that the increments 

~ ~ ( 0 )  = ~ - l ( p ( !  I ~ [ t  - 81) - P(! I ~ [ t ] )  



and 

A,(4 = a-l (p(e  I ( ( E - a A ( t ) )  W[t l  - a P ( t ) )  n Y ( t  - a ) )  - ~ ( t  I W [ t l )  

are such tha t  

lim I A l ( a )  - A 2 ( a )  1 = O  u+o 

Therefore it  suffices to  calculate the left derivative 

d- g(a) / do Iu=0 

for the function 

The calculation of (10.1) then follows the techniques of [16]. The results are given by 

Lemma 10.1 Under the assumptione of theorem 5.1 the directional derivative 8-  p ( t  I W [ t ] )  / at  

ezists for every 4! E Rn and almost all t E T .  It is given b y  formula 

where at k ( t  , l )  ie the subdifferential in the variable t of the function 

The formula of the above may be used for proving the existence of a feedback solution strategy in 

a control problem with state constraints. We will pursue this solution following the "external 

aiming" rule of [ I ]  and the schemes of [6].  



11. A Feedback Control Problem 

Consider the system 

ZE A ( t ) z +  u 

with control 

and constraints 

The set-valued functions P ( t )  , Y ( t )  are similar to 5 5 8-10, M E conv Rn. 

Problem 11.1 Devise a feedback strategy in the form of a set-valued function 

that would ensure for a certain range W ,  = ( (8  , w ) )  of positions ( s  , w) ( s  E R , w E Rn) that 

restrictions (9. I), (9.2) would be fulfilled. 

The admissible class of multivalued strategies U(t , z )  will consist of those that ensure the 

existence of a solution to the inclusion 

Lemma 11.1 Assuming instant r is given, the set W ,  positions for which there ezists a solution to 

problem 11.1 may be defined as 

Assuming that the set W ( r  , t l )  of 8 9 is already specified, the solution to problem 11.1 is 

given by 

Theorem 11.1 The solution U(t  , z )  to problem 11.1 may be given b y  the set-valued function 



Here a f ( t )  is the subdifferential of function f at  point t. A standard proof indicates that 

U*(t , z )  is an admissible strategy [6]. 

In order to prove theorem 11.1 it suffices to show that the derivative 

if calculated along the solutions of (11.1) with u  = U*(t , z ) ,  for any z ( t )  E W ( t  , t l ) .  

Without loss of generality we may assume A ( t )  - 0 .  (Since by substituting i = S ( t  , t l ) z  

the equation (11.1) may be reduced to z = S ( t  , t l ) u )  

Therefore we ought to differentiate the function 

in t .  If E W ( t  , t l )  then 

where to = t o ( t  , z ) .  

Using the result of Lemma 10.1 and the formula for differentiating a function of the "max- 

imum" type [16] we have 

a- 
= ( -  to , u )  - min {+ p ( -  p I ~ ( t ) )  - x p ( t O  - P I ~ ( t ) )  I p € ~ ( t  , t ) }  > 

The last inequality is true if u  E U*(t , z ) .  It follows from the definition of U*(t , z )  

Since ~ ( t  I W  ( t  , t l ) )  is differentiable both from the left and the right, inequality (11.4) 

proves (11.3). The latter in turn ensures that (9.1))  (9.2) would be fulfilled. (Otherwise if z ( t )  

would belong to the boundary of W ( t  , t l )  and z ( t  + a )  E W ( t  + a  , t l )  for some a  > 0, then 

there would exist an instant t  + a' , a' < a  such that z ( t  + a')  E W ( t  + a  , t,) and 

d d W ( t  + a' , t l )  / dt > 0. This contradicts with (11.3)). 
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