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FOREWORD

The purpose of this paper is to characterize classical and lower semicon-
tinuous solutions to the Hamilton-Jacobi-Isaacs partial differential equa-
tions associated with a differential game and, in particular, characterize
closed subsets the indicators of which are solutions to these equations. For
doing so, the classical concept of derivative is replaced by contingent epi-
derivative, which can apply to any function.

The use of indicator of subsets which are solutions of either one of the
contingent Isaacs equation allows to characterize areas of the playability
set in which some behavior (playability, winability, etc.) of the players can
be achieved.
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Contingent Isaacs Equations of a Differential
Game

Jean-Pierre Aubin

1 Introduction

Let us consider a differential game described by

) 2() = (), u(t), (1)
(1) i) u(t) € U(z(t))
11) v(t) € V(z(t))
where h : R"” x R? x R? — R" describes the dynamics of the game
and where the set-valued U : R®™ ~ RP and V : R® ~» RY are the a
priori feedback maps of our players Xavier and Yves which represent the
state-dependent constraints bearing on the controls of each player.
We denote by K, the playability set, the intersection of the domains of
U and V.
The purpose of this paper is to characterize the solutions ® to the fol-
lowing four Hamilton-Jacobi-Isaacs partial differential equations associated
with this differential game.

1) infuer(e) infuev(s) B2 - h(z,u,v) = 0
do(e) h(z,u v) =0

”) SupuEU SuvaV z
117) SUP,ey(, )mfueU )JJ h(z,u,v) = 0

w) infuey( )supvev() -h(z,u,v) = 0

We shall study the properties of the solutions (classical of lower semi-
continuous) to these partial differential equations, and in particular, char-
acterize the solutions which are indicators of closed subsets L, defined by

0 if z€ L
Vi (z) “{+oo if 2¢ L



which are only lower semicontinuous. For that purpose, we shall weaken
the concept of usual derivative and replace it by the concept of contingent
epiderivative, which can apply to any function?, and generalize these Isaacs
partial differential equation to corresponding contingent Isaacs equations?.

The use of indicator of subsets which are solutions of either one of the
contingent Isaac’s equation allows to characterize areas of the playability
set in which some behavior (playability, winability, etc.) of the players can
be achieved.

Example Let us consider our two players, Xavier and Yves. Xavier
acts on a state space X and Yves on a state space Y. For doing so, they
have access to some knowledge about the global state (z,y) of the system
and are allowed to choose controls u in a global state dependent set U(z,y)
and v in a global state dependent set V(z,y) respectively.

Their actions on the state of the system are governed by the system of
differential inclusions:

) D i) ul) e U u)
y L) VO = ga)u),00)
i) ot) € Via(t)(0)

We now describe the influences (power relations) that Xavier exerts on
Yves and vice-versa through rules of the game. They are set-valued maps
P:Y ~ X and Q : X ~ Y which are interpreted in the following way.
When the state of Yves is y, Xavier’s choice is constrained to belong to
P(y). In a symmetric way, the set-valued map Q assigns to each state z
the set Q(z) of states y that Yves can implement?.

1See [2, Chapter VII| for an introduction to nonsmooth and set-valued analysis

2In the extent where Isaacs are partial differential equations, they have, under
adequate assumptions, unique “viscosity solutions”, which are only continuous (See
(3,4,8,9,10,20,21] and the references of theses papers). In the case of control problems,
it has been shown in [12,13,14] that any viscosity solution is a solution to an adequate
contingent version of Hamilton-Jacobi-Bellman equation. The comparison of the solutions
in the case of differential games remains to be done.

3We can easily extend the results below to the time-dependent case using the methods
of [1].



Hence, the playability domain of the game is the subset K C X x Y
defined by:

(3) K = {(z,y) e XxY | z€ P(y) and y € Q(z) }

Naturally, we must begin by providing sufficient conditions implying
that the playability domain is non empty. Since the playability domain is
the subset of fixed-points (z,y) of the set-valued map (z,y) ~ P(y) x Q(z),
we can use one of the many fixed point theorems to answer this type of
questions?.

From now on, we shall assume that the playability domain associated
with the rules P and @ is not empty.

By denoting by z := (z,y) € Z := X xY the globalstate, by h(z,u,v) :=
(f(z,u,v),9(y,u,v)) the values of the map A : R* X R x R? — R" describ-
ing the dynamics of the game, by L := Graph(P) Xavier’s closed domain,
by M := Graph(Q™!) Yves’s one and by K := L N M the playability
domain. We shall also identify the set-valued maps U and V with their
restrictions to L and M respectively by setting U(z) := @ whenever z ¢ L
and V(z) ;=0 when z¢ M. O

2 Contingent Isaacs Equations

Since we want to include indicators of subsets among the solutions of Isaacs
equations and also, look for smaller lower semicontinuous solutions to such
an equation satisfying such or such property, we are led to weaken the
concept of usual derivatives involved in these partial differential equations
by replacing them by contingent epiderivatives, since any extended func-
tion ® : X —» R U {+oo} has contingent epiderivative®, and in particular,

4For instance, Kakutani’s Fixed Point Theorem furnishes such conditions: Let L ¢ X
and M C Y be compact conver subsets and P: M ~+» L and Q : L ~ M be closed maps
with nonempty conver images. Then the playability domain 18 not empty.

®the contingent epiderivative of ® at z € Dom(®) in the direction v is defined by

D ®(2)(v) := mitx}iu(d>(z + hu) — &(z))/h

li
h-=0+,

It is characterized by the fact that its epigraph is the contingent cone to the epigraph of
® at (z, ®(z)).




indicators, for which we have the relation

D) = nt) = { O UET

Theorem 2.1 Let us assume at least that h : R* X R?P x R? — R" 15
conttnuous, has linear growth , and that the set-valued maps are closed with
linear growth.

We assume that the all extended functions ® are nonnegative and con-
tingently epidifferentiable® and that their domains are contained in the in-
tersection K of the domains of U and V.

1 — If the values of the set-valued maps U and V are convezr and
tf h ts affine with respect to the controls, ® 1s a solution to the contingent
equation
(4) ueigf('z)ueigfz)DTQ(Z)(h(Zvuvv)) =0

if and only if
Vze®, F2() € 8(2) |Vt >0, d(2()) < ®(2)

2 — Assume that h is uniformly lipschitzean with respect to x. Then
® 1s a solution to the contingent equation

(5) sup sup D;®(z)(h(z,u,v)) = 0
u€U (z) vEV (2)

if and only if

Vz € Dom(®), V 2(-) € §(2),Vt >0, ®(2(t)) < ®(2)
§ — Assume that V is lower semicontinuous, that the values of U
and V are convez and that h 1s affine with respect to u. Then ® 1s a solution
to the contingent equation

(6) sup inf Dy®(z)(h(z,u,v)) = 0

veV (z) v€U (2)

SThis means that for all z € Dom(®), V v € X, D;®(z)(v) > —oo and that
D;®(z)(v) < oo for at least a v € X.



tf and only if for any continuous closed-loop control v(z) € V(z) played
by Yves and any initial state z € Dom(®), there exists a solution z(-) to
Xavier’s control problem

(7)

starting at z and satisfying YVt > 0, ®(z2(t)) < ®(2).
4 — Assume that V s lower semicontinuous with convezr values.
Then & 1s a solution to the contingent equation

(8) inf sup D;®(z)(h(2,u,v)) = 0
uel(z) veV (2)
if and only if Xavier can play a closed-loop control i(z) € U(z) such that,

for any continuous closed-loop control 4(z) € V(z) played by Yves and for
any initial state z € Dom(®), there ezists a solution z(-) to

(9) 2(t) = h(z(t),a(2(t), 5(2(t)))

starting at z and satisfying V't > 0, ®(2(t)) < ®(z). The converse 1s true
if

By :={u € U(z) : sup D1®(2)(h(z,u,v)) = inf sup D:1®(z)(h(z,u,v))}

veV (2) u€l(2) yev(z)

1s lower semicontinuous with closed convez values.

Proof — It is based on the properties of lower semicontinuous Lyapunov
functions and universal Lyapunov functions of a differential inclusion which
are stated in the appendix.

— The two first statements are translations of the theorems char-
acterizing Lyapunov and universal Lyapunov functions applied to the dif-
ferential inclusion 2'(t) € H(z(t)) where H(z2) := f(z,U(2),V (2)).

— Let us prove the third one. Assume that & satisfies the stated
property. Since V is lower semicontinuous with convex values, Michael’s
Theorem implies that for all zg € Dom(V) and vg € V(20), there exists a
continuous selection %(-) of V such that v(z) = vo. Then & enjoys the

5



Lyapunov property for the set-valued map Hy(z) := h(z,U(z2),9(2)), and
thus, there exists ug € U(20) such that

D1®(20)(h(20,u0,9(20))) < O

Hence @ is a solution to (6).

Conversely, assume that ® is a solution to (6). Then for all closed-loop
control v, the set-valued map Hj satisfies the assumptions of the theorem
characterizing Lyapunov functions, so that there exists a solution to the
inclusion 2! € Hj(z) for all initial state z € Dom(®) satisfying vV t >
0, ®(z(t)) < ¥(2).

—  Consider finally the fourth statement. Assume that Xavier’s
can find a continuous closed-loop control @ such that for all closed-loop
control v, ¢ enjoys the stated property. Since V is lower semicontinuous
with convex values, Michael’s Theorem implies that for all zo € Dom(V)
and vy € V(z), there exists a continuous selection #(:) of V such that
v(z0) = vo. Since for any continuous closed-loop control ¢(-), ® enjoys
the Lyapunov property for the single-valued map 2z — h(z,%(z}),9(2)), we
deduce that for all zo € Dom(®), that there exists u := 4(z) such that for
all v € V(2), D1®(z)(h(z,u,v)) <0, so that ® is a solution to (6).

Conversely, assume that the set-valued map By is lower semicontinuous
with closed convex values. Hence Michael’s Theorem implies that there
exists a continuous selection u of Bg. Then for any continuous closed-loop
control #(-) € V(-), we deduce from (8) that & is a Lyapunov function for
the single-valued map 2 — h(z,4(z),9(z)), so that, for all z € Dom(®),
there exists a solution z(-) to the system (9) satisfying Vt > 0, ®(2(t)) <
®(z). O

3 Characterization of some behavioral prop-
erties

Let L be a closed subset of the intersection K of the domains of U and V.
The problem we investigate is to find that a ( or all) solution(s) 2(-) of the
game which is (are) viable in L. There are several ways to achieve that
purpose, according to the cooperative or non cooperative behavior of the
players. We shall examine here six of them.

6



Definition 3.1 We shall say the a subset L enjoys:
1 — the “playability property” if and only if

Vze L, 3z()e $(z) |Vt>0, 2(t) € L
2 — the “winability property” if and only if
Vze L,V 2(-) € §(2),Vt >0, 2(t)€ L

3 — “Xavier’s discriminating property” if and only if for any con-
tinuous closed-loop control 1(z) € V(z) played by Yves and any initial state
z € L, there ezists a solution z(-) to Xavier’s control problem

i) Z'(t) = h(z(t),u(t),d(2(2))
(10) { i) u(t) € U=(t))

starting at z and which ts viable in L.

4 —  “Xavier’s leading property” if and only if Xavier can play a
closed-loop control i(z) € U(z) such that, for any continuous closed-loop
control 7(z) € V(z) played by Yves and for any initial state z € L, there
ezists a solution z(-) to (9) starting at z and viable in L.

We shall characterize these properties: for that purpose we associate
with L the following set-valued maps:
— The regulation map R defined by

Vze€ L, Ry(2) := { (v,v) € U(2) x V(2) | h(z,u,v) € Tp(2) }
— Xavier’s discriminating map AL defined by
VzeL, AL(z,v) :={ueU(z) | (u,v) € Rr(2) }
— Xavier’s leading map By, defined by

Vze L, B(z) := [ A(z,v)
veV (z)

Definition 3.2 We shall say that
— L is playability domain ifVz€ L, R (z) # 0
— L is a winability domain if

7



Vze L, R(z) :=U(z) x V(z)

— L 1s a Xavier’s discriminating domain if
(11) Vze L, VveV(z), AL(z,v) # 0
— L is a Xavier’s leading domain if Vz € L, Br(z) # 0

We begin by translating these properties in terms of contingent Isaacs
equations:

Proposition 3.3 Let us assume that h : R" x R? x R? — R"” 1s continu-
ous, has linear growth , and that the set-valued maps are closed with linear
growth.

— L 1is playability domain if and only if ¥ 1s a solution to (4)

— L 1s a winability domain if and only if ¥, 1s a solution to (5)

— L 1s a discriminating domain for Xavier if and only if ¥ 1s a
solution to (6)

— L is a leading domain for Xavier if and only if ¥ 1s a solution

to (8)

Therefore, Theorem 2.1 implies the following characterization of these
domains:

Corollary 3.4 Let us assume at least that h : R x RP x R? — R" 1s
continuous, has linear growth , and that the set-valued maps are closed with
linear growth.

1 — If the values of the set-valued maps U and V are conver and if h
1s affine with respect to the controls, then L enjoys the playability property
if and only if 1t 1s a playability domain.

2 — Assume that h 1s uniformly lipschitzean unth respect to z. Then
L enjoys the winability property if and only if it 1s a winability domain.
8 — Assume that V 1s lower semicontinuous, that the values of

U and V are convezr and that h 1s affine with respect to u. Then L enjoys
Xavier’s discriminating property if and only tf it 1s a discriminating domain
for Xavier.

4 — Assume that V 1s lower semicontinuous with convez values. If
L enjoys Xavier’s leading property, then it is a leading domain for him. The
converse 1s true if By 1s lower semicontinuous with closed convexr values.




The existence theorems of the viability and invariance kernels imply the
following consequence:

Proposition 3.5 Let us assume that h: R" x R? x R? — R" s continu-
ous, has linear growth , and that the set-valued maps are closed with linear
growth.

1 — If the values of the set-valued maps U and V are conver and
if h 1s affine with respect to the controls, then there exists a largest closed
playability domain contained in L, whose indicator ss the smallest lower
semicontinuous solution to (4) larger than or equal to the indicator ¥ of
L.

2 —  Assume that h 1s uniformly lipschitzean with respect to .
Then there ezists a largest closed winability domain contained in L, whose
indicator is the smallest lower semicontinuous solution to (5) larger than
or equal to the indicator ¥V of L.

Remark — The question whether there are largest closed discrimi-
nating and leading domains remains an open question. O

4 Appendix: Lower Semicontinuous Lyapunov
Functions

We consider now a differential inclusion

(12) for almost allt >0, z'(t) € F(z(t))

and time-dependent functions w(-) defined as solutions to a differential
equation
(13) w'(t) = —¢(w(t)), w(0) = V(z(0))

where ¢ : R, — R is a given continuous function with linear growth.
This function ¢ is used as a parameter in what follows.

The main instance of such a function ¢ is the affine function ¢(w) :=
aw — b, the solutions of which are w(t) = (w(0) — 2)e™* + 2.

Our problem is to characterize either ¢ -Lyapunov functions, i.e., non-
negative extended functions V : X — R, U {+oo} satisfying

9



(14) Vt>0, V(z(t)) < w(t), w(0)=V(z(0))

along at least a solution to the differential inclusion (12) or ¢- universal
Lyapunov functions, wich satisfy property (14) along all solutions to (12).

Definition 4.1 We shall say that a nonnegative contingently epidifferentiable’
extended function V 1s a Lyapunov function of F assoctated with a func-
tion ¢(-) : R4 — R if and only if V is a solution to the contingent Hamilton-
Jacobt inequalities
(15) V z € Dom(V), 12{ )DTV[II:)(U) +é(V(z)) < 0

vEF(z
and a universal Lyapunov function of F associated with a function
¢ if and only if V 1s a solution to the upper contingent Hamilton-Jacobr
inequalities

(16) Vz € Dom(V), su%))DTV(x)(v) +¢(V(z)) < O

vEF(z
Theorem 4.2 Let V be an nonnegative contingently epidifferentiable ez-
tended function and F : X ~ X be a nontrivial set-valued map.

—  Let us assume that F 1s upper semicontinuous with compact
conver tmages and linear growth. Then V 1s a Lyapunov function of F
assoctated with ¢(-) if and only if for all initial state zo € Dom(V), there
exist solutions z(-) to differential inclusion (12) and w(-) to differential
equation (18) satisfying property (14).

— If F 1s lipschitzean on the interior of its domain with compact
values, then V 1s a universal Lyapunov function associated with ¢ if and
only if for all initial state zo € Dom(V), all solutions z(-) to differential
inclusion (12) and w(-) to differential equation (18) do satisfy property (14).

The proof is based on the viability and invariance theorems of the closed
subset EpV for the differential inclusion:

i) 2'(t) € F(z(t))
(17) { 1) w'(t) = —¢(w(t))

"This means that for all z € Dom(V), V v € X, D;V(z)(v) > —oo and that
D1V {z)(v) < oo for at least a v € X.

10



and these viability and invariance theorems can be reformulated the in the
following way:

Corollary 4.3 Let F : X ~ X be a nontrivial set-valued map.
—  Let us assume that F is upper semicontinuous with compact
convez tmages and linear growth.
A closed subset K enjoys the viability property if and only if its indicator
Vg ts a solution to the contingent equation

inf DiVg(z)(v) = 0
it Di¥x(a)(v)

— If F 1s lipschitzean on the interior of its domain with compact
values, then K is tnvariant by F if and only if its indicator Vi 1s a solution
to the contingent equation

sup D1Vg(z)(v) = O
vEF(z)

The functions ¢ and U : X — R, U{+oo} being given, can we construct
the smallest lower semicontinuous Lyapunov function of a set-valued map F
associated to ¢ larger than or equal to U, i.e., the smallest nonnegative lower
semicontinuous solution U, to the contingent Hamilton-Jacobi inequalities
(15) larger than or equal to U?

Theorem 4.4 Let us consider a nontrivial set-valued map F : X ~ X, a
continuous function ¢ : R, — R with linear growth and a proper nonnega-
tive extended function U.

—  Let us assume that F 1s upper semicontinuous with compact
convez images and linear growth. Then there ezists a smallest nonnegative
lower semicontinuous solution Uy : Dom(F) — RU{+oco} to the contingent
Hamilton-Jacobi inequalities (15) larger than or equal to U (which can be
the constant +oc ), which then enjoys the property:

V z € Dom(U,), there exists solutions to (13) and (14) satisfying
Vi>0, Ulslt) < Uylalt) < wli)

— If F is lipschitzean on the interior of its domain with compact
values and ¢ 1s lipschitzean, then there exzists a smallest nonnegative lower

11



semicontinuous solution U, : Dom(F) — RU{+00} to the upper contingent
Hamilton-Jacobi inequalities (18) larger than or equal to U (which can be
the constant +o00), which then enjoys the property:

V z € Dom(U,), all solutions to (13) and (14) satisfy
V20, Ule(t) < Uplzlt) < wit)

In particular, for ¢(w) := aw, we deduce that
V z € Dom(U,), U(z(t)) < Us(zo)e™* and thus, converges to 0

The proof amounts to show that the largest closed viability domain
(invariance domain) contained in the epigraph of U, called the viability
kernel (invariance kernel) of Ep(U), which does exist under the assumptions
of the first (second) part of the theorem, is actually an epigraph, and thus,
the one of the smallest lower semicontinuous (universal) Lyapunov function.
Actually, the existence theorems of these kernels are equivalent to the above
theorem, since it implies the following

Corollary 4.5 We postt the assumptions of Theorem 4.4.
—  Let us assume that F 1s upper semicontinuous with compact
conver tmages and linear growth.
The indicator \I’Viab(K) of the viability kernel Viab(K) of a closed subset
K (i.e., the largest closed viability domain of F contained tn K) is the
smallest nonnegative lower semicontinuous solution to
(18) Vz € Dom(V), inf D;V(z)(v) < O
vEF(z)
larger than or equal to V.
— Assume that F s lipschitzean on the interior of its domain with
compact values.
The indicator \I’Inv(K) of the invariant kernel Inv(K) of a closed subset
K (i.e., the largest closed invariance domain of F contained in K) is the
smallest nonnegative lower semicontinuous solution to

(19) Vz e Dom(V), sup D;V(z)(v) < O
veF(z)

larger than or equal to V.

12
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