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FORE WORD 

The author constructs the set-valued feedback map wich allow players 
in a differential game the possiblity of winning, separately or colletively, 
or the certainty of winning or loosing and characterizes the indicator func- 
tions of their graphs as solutions to (contingent) partial differential equa- 
tions. Decisions are defined to be the derivatives of the controls of players, 
and decision rules for each of these set-valued feedback maps allowing the 
players to abide by them as time elapses are provided. 
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1 Description of the Game 

Let our two players Xavier and Yves act on the evolution of the state 
z(t) E Rn of the differential game governed by the differential equation 

by choosing Xavier's controls 

and by choosing Yves's controls 

Here, h, describing the dynamics of the game, maps continuously Rn x 
RP x RQ into Rn, and U : Rn ?.t RP and V : Rn ?.t Rq are closed1 set-valued 
maps describing the state-dependent constraints bearing on the players. 

We shall assume that  the open-loop controls u( - )  and v(.) are absolutely 
continuous and obey a growth condition of the type2 

We shall refer to them as "smooth open-loop controls", the non negative 
parameters3 p and a being fixed once and for all. The domain K of the 
game is the subset of 

( 5 )  
(z, u, v) E Rn x RP E RQ such that 
u E U(z) & v E V(z) 

Roughly speaking, Xavier may win as long as its opponent allows him 
to  choose a t  each instant t 2 0 controls u(t)  in the subset U(z( t ) ) ,  and 
must loose if for any choice of open-loop controls, there exists a time T > 0 
such that  u(T)  4 U(z(T)) .  

'This means that the graph of the set-valued map is closed. Upper semicontinuous 
set-valued maps with compact values are closed, and thus, closedness can be regarded as 
a weak continuity requirement. 

2one can replace p((lu(1 + 1) by any continuous function 4(u) with linear growth. 
30r any other linear growth condition 4(.) or $(.) which makes sense in the framework 

of a game under investigation. 



Definition 1.1 Let (uo,  v0, zO) be an initial situation such that initial con- 
trols uo € U ( q )  and vo € V ( z O )  of the two players are consistent with the 
initial state zo. 

We shall say that 
- Xavier must win if and only if for all smooth open-loop controls 

u ( - )  and v ( - )  starting at uo and vo, there ezists a solution z ( - )  to  (1) starting 
at zo such that (2) is satisfied. 

- Xavier may win if and only if there ezist smooth open-loop 
controls u ( - )  and v ( - )  starting at uo and vo and a solution z ( - )  to (1) starting 
at zo such that (2) is satisfied. 

- Xavier must loose if and only if for all smooth open-loop control 
u ( . )  and v ( . )  starting at uo and vo and solution z ( . )  to  (1) starting at zo, 
there ezists a t ime T > 0 such that 

- The initial situation is playable if and only if there ezist open- 
loop controls u ( . )  and v ( . )  starting at uo and vo and a solution z ( . )  to  (1) 
starting at zo satisfying both relations (2)and (3). 

Naturally, if both Xavier and Yves must win, then both relations (2)and 
(3) are satisfied. This is not necessarily the case when both Xavier and Yves 
may win, and this is the reason why we are led to introduce the concept of 
playability. 

2 The Main Theorems 

Theorem 2.1 Let us assume that h is continuous with linear growth and 
that the graphs of U  and V  are closed. Let the growth rates p and a be 
fized. 

There ezist five (possibly empty) closed set-valued feedback maps from 
Rn to RP x RQ having the following properties: 

- Ru c U  is such that whenever (uo,  vo) E Ru(zo) ,  Xavier may 
win and that whenever (uo,  vO)  @ RU ( z O ) ,  Xavier must loose 

- If h is lipschitzean, Su c Ru is the largest closed set-valued map 
such that whenever (uo,vo)  E Su(zo) ,  Xavier must win. 



- Sv C Rv c V, which have analogous properties. 
- Ruv C Ru n Rv is the largest closed set-valued map such that 

any initial situation satisfying (uo, uo)  E Ruv(zo) is playable. 

Knowing these five set-valued feedback maps, we can split the domain 
K of initial situations into ten areas which describe the behavior of the 
differential game from the position of the initial situation. 

Graph(&) 

- 
Xavier must loose 

K\Graph(Rv) 
Yves must loose Yves must loose I Yves must loose 

' Graph(Rv) I I Yves may win 

The 10 areas of the domain of the diferential game 

Xavier must win 

Yves must win 
Xavier must win 

? 1 PLAYABILITY 1 
? ? 

?~ ? Yves may win 

In particular, the complement of the graph of Ruv in the intersection 
of the graphs of Ru and Rv is the instability region, where either Xavier 
or Yves may win, but not both together. 

The problem is to  characterize these five set-valued maps, the existence 
of which is now guaranteed, by solving the "contingent extension" of the 
partial differential equation4 

4U is a solution to  this partial differential equation, one can check that  for any initial 
situation (20, uo, vo) E Dom(O), there exists a smooth solution ( z ( . ) ,  u(.), v(.))  such that  

I Xavier may win Xavier must loose 1 

t - @(z(t ) ,  u ( t ) ,  u(t))  is non increasing 

Yves must win 
? ? ? 

This property remains true for the solutions to  the contingent partial differential equation 

(9). 

Yves must win 
Xavier must loose 



which can be written in the following way: 

a@ a@ 
- . h ( z , u , v ) +  inf - .  u l +  inf - . v  a@ I = O  a z I IU~II<P(IIUII+~) a~ I I V ~ I I S U ( I I ~ I I + ~ )  a v  

We shall also introduce the partial differential equation5 

which can be written in the following way: 

a@ a@ 
- - h ( z , u , v ) +  SUP - -  u l +  sup - . v  a@ I = O  a2 I IU~ I ISP( I IU I I+~ )  a" I I V ~ I I S U ( I I V I I + ~ )  av 

The link between the feedback maps and the solutions to  the solutions 
to  these partial differential equations is provided by the indicators of the 
graphs: we associate with the set-valued maps Su ,  RU and Ruv the func- 
tions Gu,  \ku and \k from Rn x RP x Rq to R+ U {+oo) defined by 

and the functions Qv and Qv associated to the set-valued map Rv and 
Sv in an analogous way. 

These functions being only lower semicontinuous, but not differentiable, 
cannot be solutions to  either partial differential equations (6) and. (7). But 
we can define the contingent epiderivatives of any function @ : Rn x 

5 0 n e  can check that if f is lipschitzean and iP is a solution to this partial differ- 
ential equation, for any initial situation (20, uo, uo) E Dam(@), any smooth solution 
( z ( . ) ,  u ( . ) ,  u( . ) )  satisfies 

' 0  if ( u , v ) E S ~ ( Z )  
$00 if (u,v)  4 SU(Z) 

' 0  if ( u , v ) E R u ( z )  
$00 if (u ,v)  $ Ru(z)  
0 if ( u , v ) E R u v ( z )  

, +00 if (v) 4 Ruv(z)  

(8) < 

t - O ( z ( t ) ,  u(t) ,  u(t)) is non increasing 

I 

i) Gu(z,  u,v)  := < 

ii) \ku(z ,u ,v)  := 

iii) \k(z,u,v)  := < 

This property remains true for the solutions to the contingent partial differential equation 

(10). 



RP x RQ -+ R U {+m) and replace the partial differential equations (6)and 
(7) by the contingent partial differential equations 

(9) inf Dt@(z,  u ,v) (h(z ,  21, v), u', v') 
1 1 ~ ' I l  5 ~ ( 1 1 ~ 1 1  + 1) 
IIv'II 5 4IIvII + 1) 

and 

(10) SUP DT@(z,  21, v)(h(z,  21, v), u', v') 
I l ~ ' 1 1  5 P ( I I u I I  + 1) 
IIv'II 5 o(IIvII + 1) 

respectively. 
Let Ru and Rv be the indicators of the graphs of the set-valued maps 

U and V defined by 

Theorem 2.2 We posit the assumptions of Theorem 2.1. Then 
- Qu is the smallest lower semicontinuous solution to the contingent 

partial diflerential equation (9) larger than or equal to Ru 
- \kv is the smallest lower semicontinuous solution to the contingent 

partial diflerential equation (9) larger than or equal to RV 
- \k is the smallest lower semicontinuous solution to the contingent 

partial diflerential equation (9) larger than or equal to max(Ru, Rv)  
- If h is lipschitzean, aU is the smallest lower semicontinuous 

solution to the contingent partial diflerential equation (10) larger than or 
equal to  Ru 

- If h is lipschitzean, igv is the smallest lower semicontinuous 

solution to the contingent partial diflerential equation (10) larger than or 
equal to RV 

If any of the above solutions is the constant + m ,  the corresponding 
feedback map is empty. 



Proof of Theorem 2.1 - Let us denote by B the unit ball and 
introduce the set-valued map F defined by 

The evolution of the differential game described by the equations (1) and 
(4) is governed by the differential inclusion 

- Since the graph of U is closed, we know that there exists a largest 
closed viability domain contained in Graph(U) x RQ, which is the set of 
initial situations (20 ,  uo, vo) such that there exists a solution (z( .) ,  u ( - ) ,  v(.)) 
to this differential inclusion remaining in this closed set. This is the graph of 
Ru.  Indeed, if (uo,vo) E Ru(zo), there exists a solution to the differential 
inclusion remaining in the graph of U ,  i.e., Xavier may win. If not, all 
solutions starting at  (20, uo, vo) must leave this domain in finite time. 

The set-valued feedback map is defined in an analogous way. 
- For the same reasons, the graph of the set-valued feedback map 

Ruv is the largest closed viability domain of the set K of initial situations. 
- When h is lipschitzean, so is F. Then the solution-map S (20, uo, vO) 

is also lipschitzean thanks to Filippov's Theorem6, so that the subset of ini- 
tial situations such that all the functions of S(zo,  uo, vo) remain in a closed 
subset is also closed. This is the largest closed invariant domain by F of 
this closed subset. Then the largest closed invariant domain contained in 
Graph(U) x R Q  is the graph of the set-valued feedback map Su. 

Proof of Theorem 2.2 - We recall that thanks to Haddad's viability 
Theorem, a subset L c Rn x R P  x RQ is a viability domain of F if and only 
if 

V(z ,u ,v )  E L ,  T t (z ,u ,v )  n H ( z , u , v )  # 0 
Let \kL denote the indicator of L. We know that the epigraph of the 
contingent epiderivative Dt\kL(z, u,v)  of \kL is the contingent cone to the 
epigraph of \kL a t  ( (2 ,  u,  v ) ,  0). Since the latter subset is equal to L x R + ,  its 
contingent cone is equal to TL(z, u, v) x R + ,  and coincides with the epigraph 
of the indicator of T ~ ( z , u , v ) .  Hence the indicator of the contingent cone 



TL(z, u, v) is the contingent epiderivative DT\kL(z, u ,  v) of the indicator QL 
of L at (z ,u ,v) .  

Therefore, the above tangential condition can be reformulated in the 
following way: 

V (z, u, v) E L, 3 w E H ( z ,  u, v) such that DT\EL(z, u, v) (w) = \kTL(z,U,V) (w)  = 0 

Since the epiderivative is lower semicontinuous and the images of F are 
compact, this is equivalent to  say that 

v ( z , u , v ) E L ,  WEH(Z,U,V) inf D t \ k L ( ~ , u , v ) ( w ) = 0  

By the very definition of the set-valued map F ,  we have proved that  L is a 
closed viability domain if and only if its indicator function \kL is a solution 
to  the contingent partial differential equation (9). 

- Hence to  say that the graph of Ru is the largest closed viability 
domain contained in the graph of U amounts to  saying that  its indicator 
\ku is the smallest lower semicontinuous solution to  the contingent par- 
tial differential equation (9) larger than or equal to  the indicator Ru of 
Graph(U) x Rq. The same reasoning shows that indicator \kv of Rv is the 
smallest lower semicontinuous solution to the contingent partial differential 
equation (9) larger than or equal to  Rv and that the indicator Q of the 
graph of Ruv is the smallest lower semicontinuous solution to  the contin- 
gent partial differential equation (9) larger than or equal to  the indicator 
of K, which is equal to  max(Ru, Rv).  

- We know that the a closed subset L c Rn x RP x RQ is "invariant" 
by a lipschitzean set-valued map F if and only if 

This condition can be reformulated in terms of contingent epiderivative of 
the indicator function \EL of L by saying that 

V ( z , u , v ) E L ,  sup D t \ k ~ ( z , u , v ) ( w ) = 0  
w€H(z,u,v) 

Hence to  say that  the graph of Su is the largest closed invariance domain 
contained in the graph of U amounts to  saying that  its indicator Q U  is the 
smallest lower semicontinuous solution to  the contingent partial differential 
equation (10) larger than or equal to the indicator Ru of Graph(U) x RQ. 
13 



3 Closed-Loop Decision Rules 

When the initial situation (20, UO,  vO) belongs to  one of the following subsets: 

then the players has nothing to  worry about because both of them must 
either win or loose whatever the choice of their control. 

In the other areas, at least one of the players may win, but for achieving 
victory, he has t o  find open-loop or closed-loop controls which remain in 
the appropriate set-valued feedback map. 

Let us denote by R one of the feedback maps Ru ,  R v ,  Ruv and assume 
that  the initial situation belongs to  the graph of the set-valued feedback 
map R (when it is not empty). The theorem states only that there exists 
a t  least a solution (z(.), u(.),  v(.)) to the differential game such that  

To implement these strategy, players have to make decisions, i.e., to 
choose velocities of controls in an adequate way: 

We observe that playable solutions 

Proposition 3.1 The solutions to the game satisfying 

are the solutions to the system of diflerential inclusions 

(13) ) (.'(t),vl(t)) E G R ( z ( ~ ) , u ( ~ ) , v ( ~ ) )  

where we have denoted by GR the R-decision map defined by 

For simplicity, we shall set G := GR whenever there is no ambiguity. 
Proof - Indeed, since the absolutely continuous function (z(.), u( - ) ,  v(.)) 

takes its values into Graph(R), then its derivative (zl(-) ,  ul(.), v l ( - ) )  belongs 
almost everywhere to  the contingent cone 



We then replace zl(t) by h(z(t) ,  u (t), v(t)).  
The converse holds true because equation (13) makes sense only if 

( ~ ( t ) ,  u( t ) ,  v(t)) belongs to the graph of R. 
The question arises whether we can construct selection procedures of the 

decision components of this system of differential inclusions. It is convenient 
for this purpose to introduce the following definition. 

Definition 3.2 () We shall say that a selection (5'2) of the contingent 
derivative of the smooth regulation map R in the direction h defined by 

is a closed-loop decision rule. 
The system of diflerential equations 

i) zl(t) = h(z(t) ,  ~ ( t ) ,  ~ ( t ) )  
(16) ii) ul(t) = c(z( t ) ,u( t ) ,v( t ) )  

iii) vl(t) = d(z(t) ,  u( t ) ,  v(t)) 

is called the associated closed-loop decision game. 

Therefore, closed-loop decision rules being given for each player, the 
closed-loop decision system is just a system of ordinary differential equa- 
t ions. 

It has solutions whenever the maps c and d are continuous (and if such 
is the case, they will be continuously differentiable). 

But they also may exist when c or d or both are no longer continuous. 
This is the case when the decision map is lower semicontinuous thanks to 
Michael's Theorem: 

Theorem 3.3 Let us assume that the decision map G := GR is lower 
semicontinuous with non empty closed convex values on the graph of R .  
Then there exist continuous decision rules c and d, so that the decision 
system 16 has a solution whenever the initial situation (uo, vo) E R(zo) 

But we can obtain explicit decision rules which are not necessarily con- 
tinuous, but for which the decision system 16 has a still solution. 

It is useful for that  purpose to introduce the following definition: 



Definition 3.4 (Selection Procedure) A selection procedure of the reg- 
ulation map G : Rn - RP x R4 is a set-valued map SG : Rn - RP x R4 

(17)  
V Z  E K,  S ( G ( z ) )  := S G ( z )  n G ( z )  # 0 

ii) the graph of SG is closed 

and the set-valued map S ( G )  : z 2.t S ( G ( z ) )  is called the selection of G .  
It is said convex-valued or simply, convex if its values are convex and 

strict if moreover 

(18)  V z  E D o m ( G ) ,  So ( z )  n G ( z )  = { d ( z ) ) ,  ~ ( z ) )  

is a singleton. 

Hence, we obtain also the following existence theorem for closed-loop 
decision rules obtained through sharp convex selection procedures. 

Theorem 3.5 Let SG be a convex selection of the set-valued map G .  Then, 
for any initial state ( 2 0 ,  uo, vo)  E graph(R), there exists a starting at ( z o ,  uo, vo)  
t o  the associated system of diflerential inclusions 

i )  z' ( t )  = h ( z ( t ) , u ( t ) ,  v ( t ) )  

(19)  { ii) t ,  ' t  E S ( D ~ ( z ( t ) , 4 t ) ,  v ( t ) ) h ( z ( t ) ,  4% ~ ( t ) ) )  
:= G ( z ( t ) , u ( t ) , v ( t ) )  n s ~ ( z ( t ) , u ( t ) , v ( t ) )  

In  particular, if we assume further that the selection procedure SG is sharp, 
then the single-valued map 

is closed-loop decision rule, for which decision system 16 has a solution for 
any initial state ( 2 0 ,  uo, vo)  E graph(R). 

Proof - We shall replace the system of differential inclusions (13)  
by the system of differential inclusions 



Since the convex selection procedure SG has a closed graph and convex 
values, the right-hand side is upper semicontinuous set-valued map with 
nonempty compact convex images and with linear growth. It remains to 
check that  GraphR is still a viability domain for this new system of dif- 
ferential inclusions. Indeed, by construction, we know that there exists an 
element w in the intersection of G(z, u, v) and SG(z, u, v). This means that  
the pair (h(z, u, v),  W )  belongs to  h(z ,u ,  v) x SG(z, u, v) and that  it also 
belongs to 

Graph(G) := TGraphR (2, U )  

Therefore, we can apply Haddad's Viability Theorem. For any initial situa- 
tion (20, UO, vO), there exists a solution (z(.), u ( - ) ,  v( - ) )  to  the new system of 
differential inclusions (20) which is viable in Graph(R). Consequently, for 
almost all t > 0, the pair (zl(t),  u l ( t ) ,  vl(t)) belongs to the contingent cone 
to the graph of R a t  (z(t),  u( t ) ,  v(t)),  which is the graph of the contingent 
derivative DR(z( t ) ,  u( t) ,  v(t)).  In other words, 

for almost all t > 0, (ul( t) ,  vl(t)) E G(z(t) ,  u( t ) ,  v( t))  

We thus deduce that  for almost all t > 0, (ul(t),  vl(t)) belongs to the selec- 
tion S ( G )  (z(t),  u( t ) ,  v(t)) of the set-valued map G(z(t) ,  u( t ) ,  v( t)) .  Hence, 
we have found a solution to the system of differential inclusions (19). 

We can now multiply the possible corollaries, since we have given several 
instances of selection procedures of set-valued maps. 

Example- COOPERATIVE BEHAVIOR 

Let a : Graph(G) ++ G be continuous. 

Corollary 3.6 Let us assume that the set-valued map G is lower semi- 
continuous with nonempty closed convez images on Graph(R). Let a be 
continuous on Graph(G) and convez with respect to the pair (u,v) .  Then, 
for all initial situation (uo, vo) E R(zo), there ezist a solution starting at 
(zo, uo, vo) and to the diflerential game (1)-(4)  which are regulated by: 

for almost all 2 0, (ul(t),  vl(t)) E G(z(t) ,  u( t ) ,  v(t)) and 

a (z ( t ) ,  ~ ( t ) ,  v(t),  ul( t) ,  vl(t)) 
= inful,ul~c(z(t),u(t),v(t)) a (z ( t ) ,  ~ ( t ) ,  v (t) ,  ul, vl) 



In particular, the game can be played b y  the heavy decision of minimal 
norm: 

Proof - We introduce the set-valued map SG defined by: 

S G ( Z )  := { ( c ,  d )  E Y ( a ( z , u ,  v ,  c, d )  5 inf a ( z ,  u ,  v ,  u ' ,  v ' ) )  
(uf  , v l )€G(z ,u , v )  

It is a convex selection procedure of G. Indeed, since G  is lower semicon- 
tinuous, the function 

( z , u , v , c , d )  ++ a( z ,u , v , c , d )  + sup ( -a ( z , u , v , u l , v ' ) )  
(u',v')€G(z,u,v) 

is lower semicontinuous thanks to  the Maximum Theorem. Then the graph 
of SG is closed because 

Graph(SG) = 

{ ( z ,  u ,  v )  1 ~ ( z ,  u ,  V ,  C ,  d )  + S U P ( u ~ , v ~ ) ~ ~ ( z , u , v )  ( - a ( z ,  u ,  V ,  ~ ' 9  v ' ) )  5 0 )  

The images are obviously convex. Consequently, the graph of G  being 
also closed, so is the selection S ( G )  equal to: 

S ( G ) ( z , u , v )  = { ( c ,d )  E G ( z , u , v )  I a( z ,u , v , c , d )  5 inf a ( z , u , v , u ' , v l ) ) )  
(u ' ,v ' )EG(z ,u ,v)  

We then apply Theorem 3.5. We observe that  when we take 

the selection procedure is strict and yields the decisions of minimal norm. 

Example- NONCOOPERATIVE BEHAVIOR 

We can also choose controls in the regulation sets G ( z , u , v )  in a non 
cooperative way, as saddle points of a function a( z ,  u ,  v ,  ., .). 

Corollary 3.7 Let us assume that the set-valued map G  is lower semi- 
continuous with nonempty closed conuez images on Graph(R) and that 
a :  Rn x RP x RQ + R satisfies 

i )  a  is continuous 

ii) V ( Z ,  u ,  u,  d ) ,  c I-+ a(z ,  u ,  v ,  C ,  d)  is conuez 
iii) V ( Z ,  u ,  v ,  c ) ,  d I-+ a(z ,  u ,  v ,  C ,  d )  is concave 



Then, for all initial situation (uo,  vo) E R ( z O ) ,  there ezist a  solution starting 
at ( 2 0 ,  U O ,  vO) and to the differential game (1) - (4)  which are regulated b y :  

I 1 ( ~ ' ( t ) ,  v l ( t ) )  E G ( z ( t ) ,  ~ ( t ) ,  v ( t ) )  
ii) V ( u ' , v l )  E G ( z ( t ) , u ( t ) , v ( t ) ) ,  

for almost all t  2 0, a ( z ( t ) ,  ~ ( t ) ,  ~ ( t ) ,  ~ ' ( t ) ,  v ' )  
i a(.(t), ~ ( t ) ,  v ( t ) ,  ~ ' ( t ) ,  v l ( t ) )  
i a(.(t), ~ ( t ) ,  ' l ~ ' ,  v l ( t ) )  

Proof - We prove that the set-valued map SG associating to any 
( 2 ,  u ,  v )  E Graph(R) the subset 

SG(z ,  u ,  v )  := { ( c ,  d )  such that 
V ( u l ,  v') E G ( z ,  u ,  v )  , a( z ,  u ,  v ,  C ,  v ' )  i a ( z ,  u ,  v ,  u ' ,  d )  ) 

is a convex selection procedure of G. The associated selection map S ( G ( - ) )  
associates with any ( z ,  u ,  v )  the subset 

S ( G ( z ,  u ,  v ) )  := { ( c ,  d )  E G ( z ,  u ,  v )  such that 
V ( u l ,  v ')  E G ( z ,  U ,  v ) ,  a ( z ,  u ,  v ,  C ,  v ' )  5 a ( z ,  u ,  v ,  u',  d )  ) 

of saddle-points of a ( z ,  u ,  v ,  ., -) in G ( z ,  U ,  v ) .  Von Neumann' Minimax The- 
orem states that the subsets S ( G ( z ,  u ,  v ) )  of saddle-points are not empty 
since G ( z ,  u ,  v )  are convex and compact. The graph of SG is closed thanks 
to the assumptions and the Maximum Theorem because it is equal to the 
lower section of a lower semicontinuous function: 

Graph(&) = { ( z ,  u ,  v ,  C ,  d )  I SUP ( ~ ( 2 ,  u , ~ ,  C ,  v l ) - a ( z , ~ , v ,  u ' ,  d ) )  5 0) 
( u f , v l ) ~ G ( z , u , v )  

We then apply Theorem 3.5. 13 

Remark - Whenever the subset Ruv ( z ( t ) )  \ Rv ( z ( t ) )  is not empty, 
Xavier may be tempted to choose a control u ( t )  such that 

because in this case, Xavier may win and Yves is sure to loose eventually. 
Naturally, Yves will use the opposite behavior. 



Hence we can attach to the game two functions 

and look for closed-loop controls (Q(z),  B (2)) which are Nash equilibria 
of this game: 

Unfortunately, the selection procedure which could yield such behavior 
are not convex. The answer to this question remains unknown for the time. 
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