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PREFACE 

This paper gives an introduction to the theory of parameter identification and state 
estimation for systems subjected to uncertainties with set-membership bounds on the unk- 
nowns. 

The situation under discussion may often turn to be more a propos since here the 
system and the environment are modelled as truly uncertain rather than noisy. The 
described approach is purely deterministic. 

On the other hand the techniques involved here for the treatment of systems with 
nonquadratic constraints on the unknowns are proved to have some nontrivial interrela- 
tions with those developed in stochastic estimation theory. This may lead to some furth- 
er estimation schemes that would combine the deterministic and the stochastic models of 
uncertainty. 

The recurrence procedures of this paper are devised into relations that would allow 
numerical simulations. 

Alexander B. Kurzhanski 
System and Decision Sciences Program 
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IDENTIFICATION - A THEORY OF GUARANTEED ESTIMATES 

A .  B. Kurzhanski 

1. Introduction 

A crucial issue in the process of mathematical  modelling on the basis of available 

observations is the problem of system parameter identif ication under observation noise. 

The conventional area of applied mathematics within which the problem is usually dis- 

cussed is mathematical  stat ist ics 11, 21. The uncertainties in the system parameters and 

the observation noise are taken here to be described by stochastic mechanisms. The infor- 

mational scheme for the identification process usually assumes that there exists an ade- 

quate statistical description for the unknowns. Within this framework a fairly complete 

theory has been developed for linear systems with disturbances modelled by gaussian 

noise and with quadratic criteria of optimality for the estimates 13, 41. A large number of 

investigations is devoted to statistical identification under more general assumptions. 

However, the statistical methods are not the only mathematical tools for the treat- 

ment of system modelling. 

This paper gives an introduction to the theory of guaranteed identif ication.  It 

demonstrates for example that the classical system parameter estimation problem under 

measurement noise may be posed in a deterministic setting rather than in a traditional 

probabilistic framework. The adopted model assumes that there is no statistical descrip 

tion for the measurement "noise" or for the disturbances in the system and that the only 

information on these is restricted to  a set-membership constraint  on their admissible 

values or realizations. A considerable number of applications in engineering and systems 



analysis are treated under informational assumptions that justify this approach (see e.g. 

15-10]). 

The basic techniques that  are necessary for the treatment of the problems given here 

are based on set-valued calculus so that the solutions are formulated in the form of set- 

valued estimators. This approach also assures numerical robustness for the respective 

approximation schemes. Other results related to the topic of this paper may be found in 

(11-181. 

Let us start  with a trivial example. Suppose one is to  identify a vector c E R~ on 

the basis of observations y (k )  = c + € ( k )  , k  = 1 , . . . , N ,... corrupted by "noise" 

€ ( k ) .  

Contrary to the conventional approach we will a t  first assume that  there is no sta- 

tistical data on € ( k )  being available in advance. However we will suppose that  a restric- 

tion 

€ ( k )  E Q ( k )  

is given with set Q ( k )  being known. We will assume that Q ( k )  , k  2 k, is a convex com- 

pact set. 

Every single measurement y (k )  gives us some information on c, namely it indicates 

that the following inclusion is true 

c E ~ ( k )  - Q ( k )  (1 .2)  

Having had m  observations y ( 1 )  ,. .., y ( m ) ,  we observe that  inclusion (1 .2)  should 

be true for every k  = 1 , . . ., m .  Hence, after m  observations we will have 

where the set C  [ l  , m]  is the "guaranteed estimate" for c after m  observations. 

It is thus clear that  every "new" measurement y ( m  + 1)  introduces an innovation 

into the estimation process by means of an intersection of the previous estimate C [ 1  , m]  

with a "new" set { y ( m  + 1 )  - Q ( m  + 1) ), so that 



~ [ l  , ,TI + 11 = ell , m] n < ( ~ ( m  + 1) - Q (m + 1) 1 (1.3) 

Relation (1.3) is a recurrence equation which describes the evolution of the estimate 

C[1 , m] in m. (Figures 1 and 2 demonstrate set C[1 , m] for m = 4 with Q being (1) - a 

square, (2) - a circle; c* stands for the unknown value to be estimated). The "accuracy" 

of the estimate will now depend on the behaviour of the "noise" ((k). Let us trace this 

fact more precisely. 

Assume c* , (*(k)  are the unknown actual values of c , ((k), k E [l ,.. ., m] so that 

the available measurement is 

y ( k )  = c* + (*(k) 

Then the estimate 

where 

is the "error set" of the estimation process. It obviously depends on the behaviour of the 

"noise" (*(k) , k = 1 , .. ., m 

Let us examine the "worst case" solution (from the point of view of the observer). 

Suppose 

("noise" constant, and "Q is stationary" and symmetric about the origin). Then, clearly 

and the range of the error of estimation is precisely Q. The "guaranteed" error is 
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t 
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It is obvious here that  none of the new measurements do bring any innovation into 

the estimation process. 

In contrast an "adequate" behaviour of ((k) may considerably improve the estima- 

tion. For example, assume that  Q is a square: Q = S, 

is the unknown vector to be identified. 

then the error set 

R*(2) = {E*(l) - Q> n {t*(2> - Q> = {o, 
and the estimation is exact, (Figure 3). 

For another example take Q = S(0) to be a unit circle, m = 3, (*(I)  = (1,0), 

<*(2) = (0,1), <*(3) = (0, - I ) ,  and c; = c; = 2.5 (Figure 4).  

Let us now suppose that  the noise <(k) is governed by a random mechanism. Namely 

suppose that  [(k) is a random variable uniformly distributed in Q = S for any 

k = 1 , . . ., oo and that  all the vectors <(k) are jointly independent. 

Taking two points (('1 = (1 , l )  , ((2) = (-  1,- 1) , consider two sets 

where 

S , ( O ) = { q :  ) q ; )  S c , i = 1 , 2 )  

For a random sequence 

([ . I  E {E(k), k = l , . . . , ~ ,  

consider the event A,(k) that  
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C(k) C Q(')(.) u ~ " ' ( 4  

for a given k. Denote A, t o  be the event that  

E(k) $ Q(')(€) U Q(~) ( , ) ,  Qk 

Then 

and 

P(A,(k)) < ~ ( 6 )  < 1,  Qk - 
Due t o  the joint independence of ((k), we have 

If we denote 

and A C ,  A,C t o  be the complements of A ,  A,,  then, obviously, A C A,Ci for any r ,  > 0 and 

A C  = n {A:,), so tha t  
i 

Hence for any r > 0 the sequence ([.I  = {t(k) ,  k = I ,  .. ., oo) will satisfy the inclusions 

with probability 1 for some k = k' , k = k". (Otherwise, we would have I [ . ]  E A,;). 

Thus for any ri > 0, for "almost all" sequences ([.I there exists an M > 0 (depend- 

ing on the sequence) such that  for m > M the error set 

~ * ( m )  c (Q(')([) - Q) n ( Q ( ~ ) ( C )  - Q) = s,(o) 

or otherwise 

where 



h(R*, (0)) = max (llz11 1 z E R*)  

and llzll is the Euclidean norm of vector z E R2. 

It follows that  with probability 1 we have 

h(R*(m) , (0)) --t 0 

m-oo  

where (0) is a singleton - the null element of R2.  

Therefore, under the randomness assumptions of the above the estimation process is 

consistent with probability 1 .  Under the same assumptions it is clear that  the "worst case" 

noise (1.4) (<*(k) G 0 , k = 1 , . . ., oo) may appear only with probability 0. 

The few elementary facts stated in this introduction develop into a theory of 

"guaranteed identification" which appears relevant to  the treatment of parameter estima- 

tion, to  dynamic state estimation problems, to the identification of systems with unmo- 

delled dynamics and even to  the solution of inverse problems for distributed systems [19]. 

It may also be propagated to  the treatment of some problems for nonlinear systems [20]. 

The first part of the present paper deals with the simplest identification problem for 

a linear model describing the respective guaranteed estimates. Here the basic results are 

those that  yield the recurrence relations for the estimates. They also lead to  the discussion 

of the problem of consistency of the identification process. 

The second part,  written in a more compact form, deals with the "guaranteed" state 

estimation ~ r o b l e m  for discrete time linear systems with unknown but bounded inputs. 

This is followed by an introduction into the basic facts of "guaranteed nonlinear filtering". 

The paper mainly deals with nonquadratic constraints on the unknowns. It also 

deals with nonlinearity and nonstationarity. This is partly done with the aim of remind- 

ing the reader that  identification and state estimation problems are not merely linear- 

quadratic and stationary as it may seem from most of the available literature. 

A special item discussed in the sequel is the relation between guaranteed and sto- 

chastic estimation procedures in the case of non-quadratic constraints on the unknowns. 



2. Notations 

Here we list some conventional notations adopted in this paper: 

R n  will stand for the n-dimensional vector space, while R m  " - for the space of 

m x n - dimensional matrices, In will be the unit matrix of dimension n, A @I B - the 

Kronecker product of matrices A , B, so that  

(A @I B)  will be the matrix of the form 

The prime will stand for the transpose and A - for an mn - dimensional vector 

obtained by stacking the matrix A ={a( ' )  ,..., a(")), with columns R m  

( a i  = a ) ,  so that  a - + = a , ( = 1 . n ( j  = 1 . m )  or in other 

terms 

where e ( i )  is a unit orth within R n  (eji) = 6,;, with 6 the Kronecker delta : 6,, = 1 for 
' I  

i = j, 6ij = 0 for i # j). 

If C = {C) is a set of (m x n)-matrices C, then will stand for the respective set of 

mn-vectors C : T: = {C). 

The few basic operations used in this paper are as follows: 

If <A , B >  = tr AB' is the inner product of matrices A , B E R m  " and (p , q) - 

the inner product of vectors p , q E Rn, then for z E R n  , y E R m  we have 

y @ z ' = y z ' ~ R ~ ~ ~  

< A  , y @ z ' > = ( A  z , ~ )  

Other matrix equalities used here are 



( A  , B are n x n dimensional and their determinants I A I # 0 , I B 1 # 0) 

A sequence of integers i = k , . . ., s will be [k , s] .  A finite sequence of vectors 

{c(i) : i = k , . . . ,s) will be denoted as c [k , s] ,  while an infinite one {€(i) , i = s , . .., 00) 

as c [S ; - 1  with ( [ I  , - 1  = € [ . I .  Similar notations will be used for sequences of sets. For 

example R[k , s]  will stand for a sequence of sets R( i )  k 5 i 5 s.  

Symbols conv R n  and co R n  will denote the varieties of all convez compact and 

closed convez subsets of R n  respectively, 

~ ( f  I Q)  = SUP { ( f ,  9) I 9 E Q) 
will be the support function of set Q L R n .  

With Q E conv R n  the operation of sup in the definition of p(f 1 Q) may be substi- 

tuted for maz. Further on int Q will be the set of all interior points of Q. 

S,(zo) = { z :  I I z - z0 1 1  5 r ; z ,  z o €  R n )  

will denote the Euclidean ball with center zo and radius r ,  ( I I z ( 1 = ( z  , z) lJ2) ,  while 

h ( P  , Q) will stand for the Hausdorff distance between sets P , Q E conv R n .  Namely 

h ( P ,  Q) =min { r : P L Q + r S(0) , Q C P + r S(0) ) . 

The symbol epi f stands for the epigraph 

epi f = {z = {z , y )  : y 2 f (z)  , z E R n  + l) 

of function f - a subset of R n  + and co Q stands for the convez hull of set Q with Fo Q 

being the closure of co Q. 

For a given set P C R the symbol PC will stand for the complement PC of P 

The basic scheme will be first interpreted through the following "elementary" param- 

eter estimation problem. 



3. The Basic Problem 

Consider a system 

where y(k) is the available measurement, p(k) is a given input, C is the matriz parameter 

to be identified and ((k) is the unknown disturbance. We further assume 

p E R n  , y E Rm.  Hence ( E R m  , C E R m  n, (where R m  " stands for the space of 

real matrices of dimensions m x n.) 

The  available additional information on C,  ( [l , s] is given through restrictions on 

these values which are taken to  be specified in advance. 

The  types of simple restrictions on C ,  ( [l , s] t o  be considered in the sequel are as 

follows: 

where IL > 0 ,  N(k) > 0 ( L  E Rmn mn , N(k) E R m  m, . (This is the joint quadratic 

constraint), or 

( C  - C*)' L ( C  - C*) < 1 

which is the separate quadratic constraint, or 

c E CO , €(k) E Q(k) (111.c) 

which is the geometrical or instantaneous constraint. Here Co , Q(k) are assumed t o  be 

convex and compact in R m  " and R  respectively. 

The  restriction on the pair { C  , ([l , s]) = ([l , s] (whether given in the form 

(III.A), (1II.B) or (1II.C)) will be denoted by a unified relation as 



With measurement ~ [ l  , s] given, the aim of the solution will be to find the set of all 

pairs ([I , s] consistent with (3.1), (3 .2)  and with given y [l , s ] .  More precisely the solu- 

tion will be given through the notion of the informational domain. 

Definition 3.1. The informational domain C [ s ]  = C[1  , s] consistent with measurement 

y[ l  , a ]  and restriction (3.2) be defined as the set of all matrices C for each of which 

there ezists a corresponding sequence c[l , s] such that the pair  ([l , s]  = { C  , ([l , s ] }  

satisfies both restriction (3.2) and equation (3.1) (for the given y[ l  , s] ). 

Hence the idea of the solution of the estimation problem is t o  find the set C [ l  , s] of 

all the possible values of C each of which (together with an adequate <[1 , a ] )  could gen- 

erate the given measurement sequence y[l  , s] .  

It is obvious that set C [ s ]  = C[1 , s] now contains the unknown actual value C = C' 

which is t o  be estimated. 

With set C [ s ]  being known, one may also construct a minmaz estimate C,[s] of C o  - 

for example through the solution of the problem 

max { d ( C o [ s ]  , Z) I Z E C [ s ] )  = 

where d ( .  , -) is some metric in the space R m  n. 

The element Co[s]  is known as the Chebyshev center for set C [ s ] .  

Once Co[s]  is specified, the estimation error d(Co[s]  , C") 5 ~ ( s )  is guaranteed by 

the procedure. 

However, for many purposes, especially under a nonquadratic constraint (III.C), it 

may be convenient to  describe the whole set C [ s ]  rather than the minmax estimate C,[s] .  

If s varies and even s -, oo it makes sense to consider the evolution of C [ s ]  and its 

asymptotic behaviour in which case the estimation process may turn to be consistent, i.e. 

lim C [ s ]  = {C"} 
8 + 00 



The convergence here is understood in the sense that  

lim h (C[s]  , C") = 0 
8'00 

where h(C' , C") is the Hausdorfl metric (see Introduction), and C" is a singleton in 

~ r n  x n 

In some particular cases the equality (3.4) may be achieved in a finite number so of 

stages s when for example 

CIS] = C", s o >  1, 

The main discussion will be further concerned with the nonquadratic geometrical 

constraint (1II.C). However it is more natural to start with the simplest "quadratic" res- 

triction (1II.A). In this case, as we shall see, the set CIS] turns to  be an ellipsoid and the 

respective equations for C[s]  arrive in explicit form 

4. The Joint Quadratic Constraint. Recurrence Equations 

As equation (3.1) yields 

€(k) = ~ ( k )  - CP(k) 

the set CIS] consists of all matrices C that  satisfy (III.A), i.e 

( C  - C*)' L ( C  - C*) + 

In view of the equality (2.2) which here turns into 

Im C p  = ( ~ ' 8  I,) C 

we may rewrite (4.1) as 

( C  - c*)' P [ s ] ( ~  - c*) - 2(ID[s] , - C*) + 72[s] 5 1 

where 



Hence the result is given by 

Theorem 4.1. The  set C [ s ]  is  an ellipsoid defined by the inequality 

( ( c  - c* - IP-' [ s ]  ID [ s ] ) '  , lP [ s ]  (c - C* - IP-'[s] D [ s ] ) )  5 1 - h 2 [ s ]  (4 .4)  

with center 

c , [ s ]  = lF'-'[s] D l s ]  + C* 

Here 

h 2 [ s ]  = y 2 ( s )  - ( I D  [ s ]  , P-' [ s ]  ID [ s ] )  (4 .5)  

lF'[s] = lF' [ s -  1] + P ( s )  , ID [ s ]  = D [ s -  1] + D ( s )  (4 .6)  

y 2 ( s )  = y 2 ( s -  1.) + y t ' ( s )  N ( s )  y* ( s )  , $ 0 )  = 0 (4.7)  

P[O] = IL , ID(0) = 0 

~ - ' [ s ]  = P - ' [ s  - 11 - P - ' [ s  - 11 G ( s  - 1)  K- ' (s  - 1 )  G ' ( s -1 )  P [ s  - 11 (4.8) 

G ( s  - 1 )  = p ( s  - 1)  @ I ,  

K ( s  - I )  = N- ' ( s -1)  + G ' ( s  - 1 )  IP[s  - 11 G ( s  - 1 )  

Relations (4 .4)  - (4 .8)  are evolutionary equations that describe the dynamics of the 

set C [ s ]  (which is an ellipsoid) and its center C o [ s ]  which coincides precisely with the m in -  

maz  estimate C , [ s ]  for C [ s ]  (assuming d ( C  , Z) of (3 .3)  is taken to be the Euclidean 

metric). 

Remark 6.1 A standard problem of statistical estimation is to find the conditional distribu- 

t ion of the values of a matrix C after s measurements due to equation (3.1) where ( ( k ) ,  

k E [ I ,  oo) are non correlated gaussian variables with given mean values E t ( k )  = ( * ( k )  

and covariance matrices 



The initial gaussian distribution for the vector C is taken to be given with EC = c*, 
E ~ C '  = L- l .  

A standard application of the least-square method or of some other conventional 

(e.g. bayesian or maximal likelihood) techniques yields an estimate 

c , [ s ]  = P-'[B]D[s] + c* 
with P[B], D [ s ]  governed by equations (4.6), (4.8) 141. The estimate is therefore similar to 

that  of theorem 4.1: c , [ s ]  coincides with cO[s] .  Here, however, the analogy ends - equa- 

tions (4.5), (4.7) are specific only for the guaranteed estimates. The estimation errors for 

the stochastic and for the guaranteed deterministic solutions are defined through different 

notions and are therefore calculated through different procedures. 

The next step is to  specify the "worst case" and "best case" disturbances for the esti- 

mation process. From the definition (4.3) of y*(k) it is clear that  if the actual values 

ce[l ,s] = {to [l , s] , C') for ([I , s]  = { t [ 1  , s]  , C) are taken to  be 

sO[l , s]  = (*[l , s ]  , C0 = C* 

then 

y'[l , s] -0 , D [ s ]  - 0 

and therefore 

h2[s] = 0 (4.10) 

The ellipsoid C [ l  , s]  is then the "largest" possible in the sense that  it includes all the 

ellipsoids derived through other measurements than the "worst" one 

y,(k) = C* ~ ( k )  + €*(k) , k E 11 , sl 

(Note that  whatever are the admissible values of ~ [ l  , s] ,  all the respective ellipsoids C[s] 

have one and the same center C,[s] and matrix IP[s]. They differ only through h[s] in the 

right hand part of (4.4)). 

The "smallest" possible ellipsoid is the one that  turns to  be a singleton. It is derived 

through the "best possible" measurement ~ ( ~ ) [ l  , s] .  The latter is defined by the pair 



, €(b)[l , s]) 

where ~ ( ~ 1  = C* and ~ ( ~ ) [ l  , s] satisfies conditions 

With d b )  = C* and with (4.11), (4.12) fulfillled we have 

y(k) = C* p(k) + ~ ( ~ ) ( k )  

y*(k) = ~ ( ~ ) ( k )  - t* (k)  

which yield D(k) r 0, k E [ l  , s] and further on, due to (4.5), (4.12), (4.11) 

h2 [s] = 72[s] = I 

Hence from (4.4) it follows that  C ( s )  is a singleton 

C ( s )  = co[sl 

It is worth to observe that the set Zb(-) of disturbances ~ ( ~ ) [ l  , s] which satisfy (4.11), 

(4.12) is nonvoid. Indeed, to  fulfill (4.12) it suffices that  s > m, det N # 0 and 

(qi[ l  , s], pj[ l  81) = 0 

for any i , j  E [l , m]. Here 

~ ' ( k )  = (€(b)(k) - C*(k))'N(k) 

Relation (4.11) defines a linear subspace L $ ~ )  generated by vectors q(k) and therefore also 

a linear subspace Lt generated by respective "vectors" 

a 1  , s] = €(b)[l , s] - €*(I  , S] 

due (4.14). The required values 

$b)[l , s] = ~ ( ~ ) [ l  , s] - €*[l , S] 

are then determined through the relation 

$b)ll , sl E L[ n 4 1 )  

where ~ ~ ( 1 )  is the sphere 



The last results may be given in the form of 

Lemma 4.1. (a) The "worst case" estimate given by the "largest" ellipsoid C [ s ]  is gen- 

erated by the measurement 

Y w[1 , sl = C*PIl , sl + [*I1 , sl 

(b) The "best case" estimate given by a singleton C [ s ]  = C, is generated by the measure- 

ment 

y ( b ) [ l  , s] = C* p [1 , s] + [ (b )[ l  ,s] 

where [ ( b ) [ l  , s] is  any sequence [ [ I  , s] that satisfies (4.11), (4.12). 

Case (b) indicates that  ezact identifiability is possible even in the presence oj  disturbances. 

The terms used in the relations of the above are also relevant for exact identifiability 

in the absence of disturbances. 

5. E x a c t  Ident i f iabi l i ty  i n  the Absence  of D i s t u r b a n c e s  

The equation 

Y ( k )  = CP(k) 

may be rewritten as 

~ ( k )  = (P '  ('1 8 I m ) c  

which yields 

( ~ ( k )  8 Im) N ( k )  ~ ( k )  = ( ~ ( k )  @ Im) N ( k )  ( ~ ' ( k )  @ I m ) c  

for k E [ l  , s] .  This leads to equation 

ID[s] = IP(s) (? 

Hence for resolving (5.2) it suffices for the matrix IP(s) to  be invertible. 

The matrix IP [s]  may be rewritten as 



8 

The invertibility of P [ s ]  with N ( k )  = I ,  is then ensured if W [ s ]  = p ( k ) p ' ( k )  is 
k = l  

nonsingular. 

L e m m a  5.1 For the ezact identifiability of matriz C i n  the absence of disturbances i t  

i s  su f i c ien t  that 

det P [ s ]  # 0 

2 where IP[s] i s  an m2 x m matr iz .  

Wi th  N ( k )  = I ,  i t  i s  su f i c ien t  that 

det W [ s ]  # 0 

where W [ s ]  i s  m x m dimensional. 

In traditional statistics W l s ]  is known as the informational matr iz .  We shall now 

proceed with the treatment of other types of constraints. 

6. S e p a r a t e  Q u a d r a t i c  C o n s t r a i n t s  

Let us treat constraints- (1II.B) by substituting them with an equivalent system of 

joint constraints. 

CY ( E  - E*)' IL(C - E * )  t 

which should be true for any CY E ( 0  , 11 

For any given CY E ( 0  , 11, the respective domain C,[s] will be an ellipsoid of type 

(4 .4)  with lL substituted for L, = CYIL and N ( k )  for N ,  = ( 1  - c r ) N ( k ) .  The actual 

domain C [ s ]  for constraint (1II.B) should therefore satisfy the equality 

C I S ]  = <n c, [s]  1 0  < 0 5 1 )  (6.2) 

The latter formula shows that  the calculations for C [ s ]  may be decoupled into those 

for a series of ellipsoids governed by formulae of type (4.4)-(4.8) in which the matrices 

lL , N ( s )  are substituted for I L ,  , N,(s) respectively, each with a specific value of 



Thus each array of relations (4.4)-(4.8)) L = IL, , N [ l  , s] = N,[1 , s ] ,  produces an 

ellipsoid C,[s] that  includes C [ s ] .  An approximation c(') [ s ]  to C [ s ]  from above may be 

reached through an intersection of any finite number of ellipsoids 

c ( ~ )  [s ]  = C,,.[s] 
)= 1 

(6-3 

where aj runs through a fixed number of r preassigned values a, E (0  , 11; j = 1 , .. ., r. 

By intersecting over all the values of a E (0  , I ]  we will reach the ezact solution (6.2). 

These facts may be summarized in 

Lemma 6.1 The set C [ s ]  for constraint (6.1) may be presented as an intersection (6.2) of 

ellipsoids C,[s] each of which is given b y  relations (4.4)-(4.8) with IL , N [ l  , s] substituted 

for L, , N,[l , sl. 

Restricting the intersection to a finite number r of ellipsoids C [ s ]  as in (6.9), one 
a i 

arrives at an approzimation of C [ s ]  from above: 

C [ s ]  C c ( ' ) [ s ]  . 

It is not difficult to observe that for obtaining the exact solution C [ s ]  it suffices to  

have only a denumberable sequence of values a, , j = 1 , . . . , oo. 

The relations given here are trivial. However they indicate that  the calculation of 

C [ s ]  may be done by independent parallel calculations for each of the ellipsoids C ,  [ s ] .  

This suggestion may be further useful for the more complicated and less obvious 

problems of the sequel. 

Another option is to approximate C [ s ]  by a polyhedron. This may require the 

knowledge of the projections of set C [ s ]  on some preassigned directions E Rn. 

Since C [ s ]  is obviously a convex compact set, it may also be described by its support 

function, [21] 

p ( t  I C [ s ] )  = m a x  { ( t ,  C )  I C E  c [ s ] ) , t ~  Rmn , 



Denote 

f ( 4  = inf {P (l I Cab1 l a E (0 I 11) 

The function f ( l ) ,  being positively homogeneous, may turn to be nonconvez. 

We may convexify it by introducing (co f ) ( l )  - a closed convex function such that  

CO (epi f )  = epi ( C O  f ) .  

The support function may now be calculated as follows. 

Theorem 6.1 Assume f(0) = 0. Then p (l I c [ s ] )  = (co f )  (1) 

The function f ( l )  defines a convex compact set C[s ]  as one that  consists of all those 

C E R m n  that  satisfy 

( e l  C) 5 f(e) , V ~ E  R*" 

or in other words 

C[S] = { c :  ( e l  C) 5 ~ ( e  I Ca [s]) ,vat ( 0 ,  i ] , e ~  R " )  

However (6.4) is equivalent to 

( e l  C) 5 ( C O ~  (el , V ~ E  R~~ 

according to the definition of co f. Being closed, convex and positively homogeneous, co f 

turns to be the support function for C[s ]  

This result shows that  provided C[s]  is nonvoid, (f(0) = O ) ,  the function p ( l  I C[s])  

may be estimated through a direct minimization of p ( l  I Ca[s])  over a - rather than 

through the procedure of calculating the "infimal convolution" of the supports p ( l  I Ca[s])  

as required by conventional theorems of convex analysis. 

The knowledge of p ( l  I c [ s ] )  allows to construct some approzimations from above 

for C[s] .  Taking, for example r directions di) E R m n  , (i = 1 ,... r )  we may solve optim- 

ization problems in a E (0 , 11 : p;[s] = inf {p(l( ' )  1 Ca[s])  1 a E (0 , 11 ) 

Denoting 



we may observe 

C [ s ]  c { n L,[s] 1 1 I i I r ) = L,[s] 

Where L,[s] is an mn-dimensional polyhedron with r faces. 

7. Geomet r i ca l  C o n s t r a i n t s  

Returning to  equation ( 3 . 1 )  assume that  the restrictions on [ ( k )  and C that  are 

given in advance are taken to  be geometrical (i.e. of type I11 (C)). Namely 

€ ( k )  E Q ( k )  , k  E (1 , sl 
C E C ,  

where Q ( k )  , C o  are convex compact sets in R m  and R m  respectively. The informa- 

tional set CIS] will now consist of all those matrices C that satisfy ( 7 . 2 )  and also generate 

the measured value y [ l  , s] together with some disturbance , s] that  satisfies ( 7 . 1 ) .  

Using standard techniques of convex analysis and matrix algebra we come to  the fol- 

lowing sequence of operations. 

The system equations ( 3 . 1 ) )  ( 7 . 1 )  may be transformed into 

~ ( k )  E ( ~ ' ( k )  8 Im)c + Q ( k )  ; 

since 1, C p  = (p' 8 I,) (? according to ( 2 . 2 ) .  

The set C[s]  will then consist of all matrices C such that  for every k  E [1  , s] we 

have 

together with 

for any $ ( k )  E R m ,  X E  R m n .  

(Recall that  symbol ~ ( $ 1 ,  I Q) stands for the value of the support function 

~ ( $ 1 ,  I Q )  = sup (($1, 9 )  I 9 E Q )  



of the set Q a t  point 4. )  

This leads to  the inequality 

for any $ ( k )  E R m ,  X E  Rmn 

Therefore, with X E Rmn given we have* 

For an  element C E  C I S ]  i t  is necessary and sufficient tha t  relation ( 7 . 5 )  is true for any 

$ ( k )  E R m ,  k E  [l , s ] .  

Hence we come t o  

L e m m a  7 . 1 .  The  informat ional  se t  C [ s ]  consistent  wi th  measuremen t  y [ l  , s ]  and wi th  res-  

t r ic t ions  (7 .1) ,  ( 7 .2 )  i s  defined by the following support  function.  

P ( A  I c Is ] )  = f ( ~ )  

where 

The  proof of Lemma 7.1 follows from ( 7 . 5 )  and from the fact t ha t  f ( ~ )  is a convex, 

positively homogeneous function, [2 11. 

A special case arrives when there is no information on C a t  all and therefore 

C, = R m  n. Following the previous schemes we come t o  

* When using the symbol p ( p  I Q )  for the support function of set Q at  point p we will not distinguish a 
vector-column p from a vector-row p'. 
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Lemma 7.2. Under restrictions (7.1), C ,  = Rm ", the set C [ s ]  is given b y  the support 

function. 

over all vectors + ( k )  that  satisfy 

A question may however arise which is whether in the last case the set CIS] will be 

bounded. 

Lemma 7.9. Suppose C ,  = Rm " and the matriz { p ( l )  ,..., p ( s ) }  = P ( s )  for s 2 n is 

nonsingular. Then the set C [ s ]  is bounded. 

Taking equation (7.8) i t  is possible to solve it in the form 

where as before 

Indeed (7.8) may be transposed into 

and the solution may be sought for in the form 

+(k )  = ( ~ ' ( k )  @ I m ) t  

In view of (7.8) this yields equation 

( Im  O W [ s ] ) t  = K (7.12) 

where the matrix W [ s ]  is invertible (the latter condition is ensured by the linear indepen- 

dence of vectors p (k )  , k = 1 ... s , s > n ) .  Equations (7.10)-(7.11) produce the solution 

(7.9). 



Substituting $(k) of (7.9) into (7 .7)  it is possible t o  observe tha t  the support func- 

tion p ( ~  I C[s])  is equibounded in K over all K E S r n  (0) where S r n ( 0 )  is a unit ball in 

R mn. This proves the boundedness of C [ s ] .  

Remark 7.1 Assuming tha t  ([s] is bounded by a quadratic constraint (1II.B) with lL = 0 

(so tha t  there is no initial bound on C ) ,  and tha t  P ( s )  is nonsingular, the  set C[s]  again 

remains bounded. 

The  result of Lemma 7.3 therefore remains true when the geometrical constraint on 

([k] is substituted by a quadratic constraint on € [ - I .  I t  is not difficult t o  observe tha t  the 

result still remains t rue when ( [ . I  is bounded in the metric of space tp: 

with 1 5 p 5 oo , 

8. Recurrence Equations for Geometrical Constraints 

One could already observe tha t  equations (4.4)-(4.8) of theorem 4.1 are given in a 

recurrent form so tha t  they would describe the evolution of the set C[s]  t ha t  estimates the 

unknown matrix C .  The  next s tep will be t o  derive recurrence evolution equations for the 

case of geometrical constraints. 

Starting with relation (7 .5) ,  substitute 

$'(k) = K' M(k) 

where M(k) E Rmn , 1 5 k < s .  

Then (7.5) will be transformed into the following inequality 

(8 .  I.) 



Denote the sequence of matrices M ( k )  E Rmn , k c  [1,  ..., s]  as M [ 1  , s ]  

Lemma 8.1 In order that C E C [ s ]  it i s  necessary and su f ic ien t  that (8.1) would hold for 

any A E Rmn, and any sequence M [ 1  , s]  E M [ l  , s ] .  

The proof is obvious from (7 .5 ) ,  (8 .1)  and Lemma 7.1. Hence in view of the proper- 

ties of support functions for convex sets we come to the following assertion. 

Lemma 8.2 In  order that the inclusion 

C E C [ s ]  

would be true i t  i s  necessary and su f ic ien t  that 

E C ( s  , G o  , M [ l  , s ] )  

for any sequence M [ l  , s]  E M [ 1  , s ]  where 

From Lemma 8.2 it now follows 

Lemma 8.9. The  set C [ s ]  m a y  be defined through the equality 

GIs1 = n c c ( s  , G o  , ~ 1 1  , 4 )  I ~ [ l  ,sl E ~ 1 1  , sl 1 
In a similar way, assuming the process starts from set C [ s ]  a t  instant s ,  we have 

G [ s  + 11 G ( I n  - M ( s  + 1 )  ( p ' ( s  + 1 )  @ I,)) c [ s ]  + (8 .2)  

+ M ( s  + l ) ( y ( s  + 1 )  - Q ( s  + 1 ) )  = C ( s  + 1 , c [ s ]  , M ( s  + 1 ) )  

for any M ( s  + 1 )  E Rmn and further on 

C [ S  + I . ]  = n { C ( S  + 1 , G [ s ] ,  M )  I M E  R~~~ (8.3) 

This allows us to formulate 

Theorem 8.1 The set C [ s ]  satisfies the recurrence inclusion 

G [ s  + 11 C C ( S  + 1 , C [ S ]  , M ) ,  C[O] = C o  (8.4)  

- whatever i s  the matr iz  M E Rmn " - and also the recurrence equation (8.9). 



The relations of the above allow to  construct numerical schemes for approximating 

the solutions to the guaranteed identification problem. 

Particularly, (8.4) may be decoupled into a variety of systems 

cM I S  + 11 C: C ( S  + 1 , eM(~l , M ( s ) )  , CIO] = C,  (8.5) 

each of which depends upon a sequence M [ 1  , s ]  of "decoupling parameters". It therefore 

makes sense to  consider 

cu [ s I  = <n C ~ [ ~ ]  I ~ ( 1  , sl> 

Obviously C [ s ]  C C U  [ s ]  

From the linearity of the right-hand side of (8.2)  and the convexity of sets C o  , ~ ( s )  

it follows that  actually C [ s ]  = C U [ s ] .  

Lemma 8.4 The set C [ s ]  = C U l s ]  may be calculated through an intersection (8.6) of solu- 

tions C M [ s ]  to a variety of independent inclusions (8.5) parametrized by sequences 

MI1 , 81. 

This fact indicates that  C [ s ]  may be reached by parallel computations due to equa- 

tions (8.5) .  The solution to  each of these equations may further be substituted by 

approximative set-valued solutions with ellipsoidal or polyhedral values. The precise 

techniques for these approximations however lie beyond the scope of this paper. 

An important question to be studied is whether the estimation procedures given here 

may be consistent. It will be shown in the sequel that  there exist certain classes of 

identification problems for which the answer to this question is affirmative. 



9. G e o m e t r i c a l  C o n s t r a i n t s .  C o n s i s t e n c y  C o n d i t i o n s  

We will discuss this problem assuming Co  = R m  n. Then the  support  function 

p ( ~ )  I C[s] )  for set C [ s ]  is given by (7.7), (7.8). 

The  measurement y(k) may be presented as  

y(k) = ( p ' ( k )  @ 1,) c* + € * ( k ) ,  ( k = 1  ,..., 8)  (9.1) 

where c* is the  actual  vector t o  be identified, t * (k )  is the  unknown actual value of t he  

disturbance. 

Substituting (9.1) into (7.7), (7.8) we come t o  

over all vectors 4 ( k )  t ha t  satisfy 

$[I , S] E *[s  ,A] 

where 

This  is equivalent t o  

P(A I CIS]) = (A, C*) + P(A I R*lsl) , 

where 

In other  terms 

GIs] c* + R*[s ]  

where R*[s]  is the  error se t  for the estimation process. T h e  support function for R*[s ]  is 

given by (9.3). 



Since t * ( k )  E Q ( k )  we have 

p ( X )  R * [ ~ ] ) > O , V X E R ~ ~ "  

Hence every sequence 4' [ l  , s]  E @ ( s  , A )  that  yields 

will be a minimizing element for problem (9 .3 ) .  

The estimation process will be consistent within the interval 11 , s ]  if 

R * [ s ]  = ( 0 )  

or, in other terms, if 

p ( ~  I R * [ s ] )  = 0 ,  V A E R m  X n  (9 .4 )  

Lemma 9.1 In order that p(X I R t [ s ] )  = 0 , V X E Rm " it  is  necessary and su f ic ien t  

that there would ezist m n  + 1 vectors di) E Rmn , i = 1 , . . ., m n ,  such that 

mn+ l 
-"I # O ,  { V  C a i A  a : ( a ,  a )  # 0 ,  ai 2 0 ,V  i~ [ l  ,..., m n  + I.]) (9.5) 

i= 1 

( a  = " 1  ~ . . . r a m n  + I )  

and 

p ( ~ ( ~ )  1 R * [ s ] )  = 0 , Q i E [1 ,..., m n  + I ]  

Vectors di) t ha t  satisfy (9 .5)  are said t o  form a simplicia1 basis in Rmn. 

Every vector A E Rmn may then be presented as 

Hence for any X E Rmn we have 

In view of (9.4) this yields R t [ s ]  = ( 0 )  



We will now indicate some particular classes of problems when the inputs and the 

disturbances are such that they ensure the conditions of Lemma 9.1 to be fulfilled. 

Condition 9.A 

(i) T h e  disturbances ( * ( k )  are such that they satisjy the equalities 

( € * ( k )  , + * ( k ) )  = p(+*(k) I Q ( k ) )  

for a certain r-periodic junction + * ( k )  ( r  2 m) that yields 

Rank { + * ( I )  , . .., + * ( r ) )  = m. 

( i i )  T h e  inpu t  function p ( k )  i s  q-periodic with q 2 n + I 

A m o n g  the vectors p ( k )  , ( k  = 1 , . . ., q)  one m a y  select a simplicia1 basis i n  Rn, i.e. 

jor any  z E Rn there ezists  a n  array o j  numbers  crk 2 0 such that 

(iii) Numbers  r and q are relative prime. 

L e m m a  9.2 Under  Condi t ion 9.A the error set R * [ s ]  = 0 l o r  s  2 rq.  

We will prove that R * [ s o ]  = 0 for so = rq. The condition R * ( s ]  = 0 for s L so will 

then be obvious. 

Due to  (9 .3 ) ,  the objective is to prove that under Condition 9 . A  there exists for 

every A E R m  " a set of vectors q O ( k )  , k = 1 ,..., so , such that 

+O 1 1 ,  sol E @ [ s o ,  A1 . 

Condition 9 . A  implies that  there exists such a one-to-one correspondence k = k ( i  , j )  

between pairs of integers { i  , j )  ( i  E [l  , . .., r ]  , j  E [ I  ,. . ., q ] )  and integers k E [l  ,.. ., so] 

that  

~ ( k )  = ~ ( i )  , = + ( j )  

Indeed, if k* is given, then it is possible to  find a pair i* , j * ,  so that  



k* = i* + yr  , k*  = j* + uq , 

where y , a are integers. Then we assume p(k*) = ~ ( i * )  , $(kt) = $( jS)-  

The latter representation is unique in the sense that pair i* , j* may correspond to 

no other number k**  than k*. 

(If, on the contrary, there would exist a k**  2 k*  such that 

* * k = i* + r0 r  , k** = j* + uoq , 

then we would have 

k** - k* = (yo - y ) r  

k** - k* = - 4 9 

and k** - k* would be divided by so = rq without a remainder. Since k f *  - k *  < so, it 

follows that  k** = k*)) .  

As the number of pairs {i , j) is so and as each pair {i , j) 'corresponds to a unique 

integer k E [l , so], the function k = k(i  , j) is a one-to-one correspondence. 

Thus if A E R m  " and sequence t+b* [ I  , s]  satisfies Condition 9.A (i), then there 

exists a sequence z [ l  , so] , (z(k) E Rn) ,  such that 

Due to Condition 9.A ( i i )  

for some values a,, 1 0 

Therefore 

Assigning to every pair {i , j) the value k = k(i , j) we may renumerate the values 

cr i j  with one index, substituting ij  for k = k ( i  , j ) .  Having in mind (9.8), we may rewrite 

(9.9) as 



The transition from (9.9) to  (9.10) is unique. Hence, for each A E R m  " there 

exists a sequence a[ l  , so] of nonnegative elements crk 2 0 such that  

Substituting t,bo(k) = crkt,b'(k) and taking into account equalities (9.6) we observe 

that  (9.7) is fulfilled. Namely 

while (9.1 1 )  yields t,bO [ l  ,s] E 9 [so , A ] .  Lemma 9.2 is thus proved. 

A second class of problems that  yield consistency is described by 

Condition 9.B. 

(i) function p ( k )  i s  periodic with period q 5 n.  The matriz W[q ]  = f: p ( k )  pO(k )  is 
k= 1 

nonsingular, 

(ii) the disturbances c (k )  ate such that if {d i ) )  , i = 1 , . . ., mn + 1 is a given simplicia1 

basis i n  Rmn and vectors t,di)(k) E R m  are those that yield 

5 t,b(i)O(k)(p'(k) 8 Im) = di)  
k = l  

then the sequence ( ( j )  , j = 1 , . . . ,q(mn + 1 )  does satisfy conditions 

(E(k + i )  , d i ) ( k ) )  = p ( d i ) ( k )  I Q ( k ) )  

( k  = 1 ,..., q ;  i =  1 ,..., m ( n  + 1 ) )  

Lemma 9.3 Under Condition 9.B the set R [ s ]  = ( 0 )  for s 2 q(mn + 1 )  

The proof of this Lemma follows from Lemma 7.1 and from direct substitution of 

(9.12), (9.13) into (9.3) (since the required set of vectors ~ ( ~ ) ( k )  does always exist due t o  

condition I W ( q )  ( # 0 )  



A simple particular case when Lemma 9.3 works is when C is a vector ( C  E R n )  and 

when the restriction on [(k) is ( [(k) I 5 p .  

Then E R n  and (9.12) turns into 

5 t$')(k) p' (k) = 
k= 1 

where t+di)(k) are scalars. 

Relations (9.13) now yield 

[(k + i )  = p sign t ~ l ( ~ ) ( k )  (9.14) 

Therefore the "best" disturbance [ ( j )  = f p  now depends only upon the signs of 

t+di)(k) , j = i  + k .  Here the order of pluses and minuses i s  predetermined by relation 

(9.14). However a natural question does arise. This is whether the consistency condition 

would still hold (a t  least asymptotically, with h (R Is]  , (0))  + 0 , s + oo)) if [ ( j )  

would at tain i ts  values a t  random. 

The  answer to  the  last question is given below 

Condition 9.C 

(i) function p(k) , k = 1 , . . ., oo, i s  periodic with period q <_ n ;  the mat r i z  W ( q )  is  non-  

singular. 

(ii) the sequence [ ( i )  i s  formed of jointly independent random variables with identical 

nondegenerate probabilistic densit ies,  concentrated on the set  

Q(k) - Q , Q E comp R m  , in t  Q # 0 
Condition (ii) means in particular t ha t  for every convex compact subset 

Q, & Q , (Q, E comp Rm)  of measure 6 > 0 the  probability 

P{[(k) E Q,) = 6 > 0 , V k E [I , oo] 

At  the  same time i t  will not be necessary for values of the  distribution densities of 

the variables ( ( i )  t o  be known. 
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Lemma 9.4 Under Condition 9.C the relation 

h ( R t [ s ]  , ( 0 ) )  - 0 ,  s - co 
holds with probability 1. 

We will prove tha t  for every 6 > 0 with probability 1 for a sequence c [ . ]  there exists 

a number N > 0 such tha t  for s > N one has 

h ( R * [ s ]  , ( 0 ) )  _< 6 (9.15) 

Since W ( q )  is nonsingular, there exists for a given A E R m  a sequence +O [I , q] 

such tha t  

Let p ( k )  E Q denote a respective sequence of elements that  satisfy the relations 

( p ( k )  , GO(k))  = p(GO(k) I Q )  (9.16) 

It is clear t ha t  elements p ( k )  belong to  the boundary d Q  of set Q.  Without loss of 

generality we may assume tha t  all the vectors p ( k )  are chosen among the eztremal points 

( A  point p E Q is said t o  be eztremal for Q if it cannot be presented in the form 

p =  (Y e ( l )  + (1  - a) ~ ( 2 )  , O  < (Y < 1 ,  

for any pair of elements , c(2)  E Q.) 

Hence each p ( k )  of (9.16) is either already extremal - if (9.16) gives a unique solu- 

tion, - or could be chosen among the extremal points for set 

E, = (6 : (t  , +O(k)) = p(+O(k) I Q )  which yields extremality of p ( k )  relative t o  Q ). 

Consider a sequence of Euclidean balls S6 ( p ( k ) )  with centers a t  p ( k )  and radii 

6 > 0. Denote 

Q d k )  = Q n s d p ( k ) )  

Then with int Q # 0 the measure P ( Q ~ ( ~ ) )  > 0 for any 6 > 0. 



Let us consider q infinite sequences 

( ( q j  + k) , 
( j  = 0 ,..., oo; k = 1 ,..., q) 

generated by the "noise" variable ( ( i ) .  

Denote A6(k) to be the event that 

and 

A ( k )  = IJ {A,5(k) I Si > 0 ,  Si- 0 ,  i -+ co) 

Then obviously P(( [ - I  E A6.(k)) = 0 for any Si > 0 (due to the joint independence 

of the variables ((i)) and due to  a Lemma by Bore1 and Cantelli [22] we have (for any 

k = 1 ,..., q)  

P(< [ . I  E A C ( k ) )  = 1 

Hence with probability 1 for a sequence <[ . ] there exists a number j (k)  such that  

P 
Denoting n x ( k )  = B, we observe 

k = l  

due to  the joint independence of the random variables ( ( i ) .  

Hence each sequence ( * [ . I  may be decoupled into q nonintersecting subsequences 

(9.17) each of which, with probability 1, satisfies for any 6 > 0 the inclusion (9.18) for 

some i = qj(k) + k (due to (9.20)). 

Therefore, with 6 > 0 given, we may select 

$*(;I = $O(k) 

for i =  qj(k) + k ,  k = 1 ,..., q ,  



$*(i) = 0 ,  i # qj(k) + k , (9.21) 

N =  4 9 )  + q 

Substituting * ( ) , * ( )  into (9.3) and using the periodicity of 

we have 

with 

€ * ( ~ j ( k )  + k) Qdk)  

In view of (9.16), (9.21), (9.22) and the definition of Q6(k) one may observe 

Therefore, with A , a given, one may select $O [ I  , q]  , 6, so tha t  

Summarizing the discussion of the above we observe tha t  for every 

, l € R r n x n  , a > 0, there exists a number N(A , a) t ha t  ensures 

p ( ~  I R[s] )  5 0 , s  2 N, N = N(A , a ) .  

If $1 = eci) is an  orthonomal basis in Rmn (eJi) = 6,, ; j = 1 , . . . ,mn) and 

No(,) = m a x { N ( d i )  , 0)  , N(-r;Ai) , a )  } , (i = 1 ,..., mn) , 



then 

p(f e(') ( R [ s ] )  5 a , (V i  = 1 ,..., m n )  , s 1. No (o)  

and 

h { R [ s l  , { O H  I = o 

Taking c = * o , N = No a we arrive a t  the relation ( 9 . 1 5 ) .  Lemma 9 . 4  is now 

proved. 

The examples given in Cases A and C indicate two important classes of disturbances 

€ ( k )  of which one consists of periodic functions and the other of a sequence of equidistri- 

buted independent random variables. In both cases one may ensure consistency of the 

identification process. However this requires some additional assumptions on the inputs 

p ( k ) .  Basically this means that  function p ( k )  should be periodic and its informational 

matrix should be nondegerate as indicated in the precise formulations, (see also [ 2 3 ,  241). 

10. Identification of the Coefficients of a Linear Autonomous Dynamic System 

Consider a dynamic process governed by a linear system 

The input u ( k )  and the output y = z ( k )  are taken here to be given, the constant 

coe f i c i en t s  A, B are t o  be identified and the input noise ( ( k )  is taken to be unknown but 

bounded by a geometrical constraint 

( ( k )  E Q ( k )  , k E [O , $ 1  ( 1 0 . 2 )  

Here as usual z E Rn , u E RP, v E Rq , A E Rn ", B E  Rn P and there is 

some additional information on A,B. Namely it is assumed that  

A E A , B E B ,  ( 1 0 . 3 )  

where A , B are convex and compact sets in the matrix space of respective dimensions. 

We will derive a recurrence equation for the related informational domains. These 

are given by the following definition. 



Definition 10.1 The informational domain A ( s ]  x B [ s ]  = H[s]  consistent with system 

(10 .1) )  restrictions (10 .2 ) ,  (10.3)  and measurement z ( k )  , k  E [0 , s ]  is the set of all matrix 

pairs { A  , B )  for each of which there exists a sequence ([O , s ]  E QIO , s ]  such that  rela- 

tions (10 .1) - (10 .3)  would be fulfilled. 

Since the input u[O , s ]  is taken to be given, the domain H[s]  will obviously depend 

upon u[O , s]: 

H[s]  = H [ s  , u[O , s ] )  = H(s  , .) 

In order to solve the estimation problem we introduce a matrix C and a vector p ( k ) .  

Then taking 

~ ( k )  = z ( k  + 1 )  , 
we come to  the standard measurement equation of 5 3: 

Y(k)  = CP(k) + ( ( k )  

Applying the recurrence equation of (8.2) we come to the relations that  describe the 

dynamics of set H(s  , u[0 , s ] )  = H [ s ] .  

The consistency theorems of 5 9 may be applied if there is some additional informa- 

tion on A , B and on the known inputs u[O , s ]  that  would ensure tha t  the conditions of 

these theorems would be fulfilled. 

Another formal scheme for obtaining a recurrence equation for H[s]  may be 

presented as follows. Introducing a vector 

and an n x n ( n  + m)-  matrix 

G ( k )  = ( z ' ( k )  8 I ,  , u'(k)  8 I , )  

we arrive a t  the system 



z ( k  + 1 )  = z ( k )  , (10.4)  

~ ( k )  = G ( k )  z ( k )  + ( ( k )  , O I  k L 3 ,  (10.5)  

where the aim is to identify the informational domain Z ( s )  = H [ s ]  of the states of system 

(10.4) consistent with measurement y[O , s ]  and constraints (10 .2 ) ,  (10.3)  

Following formally the results of 5 13 (formula (13 .6 )  for the one-stage process) and 

rewriting them in terms of the notations of this paragraph we come to the recurrence rela- 

tion 

z ( k  + 1 )  E n { ( I  - M' ~ ( k ) )  z ( k )  + 
M 

+ M ( Y ( ~ )  - Q ( k ) ) )  , Z(O) = - I:] 
Z E R ~ ( ~  + m, , M E  R ~ ( ~  + m, 

which at each stage is true for any matrix M E Mn(n + m, n. According to the conven- 

tional scheme we arrive a t  

L e m m a  10.1 T h e  set-valued estimate for the vector C of coe f i c i en t s  for sys tem (10.1)  i s  

given by the solution Z ( s )  = H ( s )  for equation (10 .6 ) .  

It is now natural to consider in greater detail the issue of state es t imat ion for linear 

systems with unknown but bounded measurement noise and input disturbances. We will 

start  with the first case. 

11. The Observation Problem 

Consider a recurrence equation 

together with a measurement equation 

y ( k )  = g ' ( k )  z ( k )  + ( ( k )  , k 2 ko + 1 

with vector g ( k )  E Rn and "noise" ( ( k )  restricted by a geometrical constraint. 



The objective is t o  estimate the initial vector z 0  by processing a given measurement 

y [ l  , s ] ,  taking A ( k )  , g ( k )  , Q ( k )  t o  be given in advance. We will further call this the 

observation problem (in the presence of unknown but bounded "noise" with set- 

membership bounds on the unknowns). 

Observing tha t  z ( s )  = S ( s )  z 0  , where S ( s )  is the solution t o  the matrix equation 

S ( k  + 1 )  = A  ( k )  S ( k )  , S ( k o )  = In 

we may denote 

~ ' ( k )  = g ' ( k )  S ( k )  

transforming our problem to  the conventional form of 3 3 with 

~ ( k )  = ~ ' ( k )  z 0  + E(k)  

and with z 0  replacing the unknown C. 

The condition for the identifiability of z 0  in the absence of "noise" now turns to  be 

again I W ( s )  I # O with 

W ( s )  = 2 S , ( k )  9 ( k )  9 V )  S ( k )  
k = k,, 

The latter relation is known as the observability condit ion [ 3 ,  4) for system (11.1)  

with measurement 

~ ( k )  = g ' ( k )  z ( k )  ( 1  1 .4)  

Condition ( W ( s ) l  f O  is obviously ensured if vectors p ( k ) = S ' ( k )  g ( k ) ,  

( k  = 1  , . . ., k )  are linearly independent. 

The  general solution will now consist in constructing the informational domains 

X O [ s ]  for the vector z O .  They are the direct substitutes for C [ s ] .  

Following ( 8 . 2 ) ,  ( 1  1.2) we will have a system of recurrence relations 

X h  ( k  + 1 )  E ( I n  - M ( k  + 1 )  g'(k + 1 )  S ( k  + l ) ) X & ( k )  + 
+ M ( k  + l ) ( y ( k  + 1 )  - Q ( k  + I ) )  , X ( k o )  = X "  ( 1  1.5) 

S ( k  + 1 )  = A ( k )  S ( k )  , S ( k o )  = In 



which are t rue for any sequence M[ko + 1 , s ] .  

The  results of the previous paragraph then leads us t o  

Lemma 11.1  The solution z 0  to the observation problem may be estimated from above by 

XO[sl = { n xh(3) I ~ i k ,  + 1 , sl) 

Namely 

z 0  E XO[s]  , V s > ko + I 

The  solution will be consistent with 

h {Xh (k) , z O )  -+ 0 , k---+ oo (11.7) 

if for example the problem falls under one of the conditions 9A - 9C of the previous para- 

graph. 

Particularly, for an autonomous system (11.1.), this will be ensured if 

(a)  the function ~ ( k )  = g'S(k) is n-periodic, 

(b) the vectors 

9' 7 g'A J " ' J  
g , ~  n - 1 

are linearly independent (the system (1 1. I ) ,  (1 1.4) is completely observable). 

(c) the noise is uniformly distributed in the interval Q(k) Q = - Q. 

Lemma 11.2 Under conditions (a)  - (c) the solution X0[sIJ (1 1.5), (11.6) to the observation 

problem is consistent in the sense of (11.7). 

A simple example, when the conditions of Lemma 11.1 are satisfied, is given by a 

system (11.1) in R~ 

Here 

(a)  p(k) = p(3 i  + j) is periodic with period 3, j = I , 2 , 3; i = 0 , . . . , oo ; 3 i  + j = k 



(b) p ( j )  = e(j) = by , k = 1 , 2 , 3 so that  p(1) , p(2), p(3) are linearly independent, 

(c) ( (k) is taken t o  be equidistributed in the interval [-1,I.l 

The  solution t o  this problem may be given by a polyhedral approximation so tha t ,  

assuming XO[k]  given, we will seek for an approximation of XO[k] by a polytope XO[k + 11 
through the formula 

p ( t  I X O [ k  + 11) = inf { H ( l ,  m , X o [ k ] )  I m )  

H(e 1 m 1 XO[k l )  = I ( I ,  - m' ~ ( k  + 1)) XO[k l )  + (e 1 m) ~ ( k  + 1) + 
+ p(-e  I m' Q(k + 1))) , e E R3, m E R 3 ,  

taking for each step a set of orthonormal vectors {e(i)) with a set of vectors {-e(i)), and 

assuming t! = e('), e = - e(i),  ( i  = 1 , . . ., 3) 

Therefore, in order t o  define X O [ k  + 11 with X O [ k ]  given, we will have to solve 6 

independent unconstrained minimization problems, in 3 variables each, so tha t  the ver- 

tices of X O [ k  + 11 would be given by 3 coordinates each, selected from the variety of 

numbers 

p(+e(i)  I X [ k  + I ] ) ,  - p  ( -e ( i )  I X [ k  + 11) , (i = 1 , 2 ,  3). 

A simpler algorithm involves only one optimization problem (in three variables, the 

coordinates of m)  so tha t  one should minimize in m the function 

3 
V A  (m , k + 1) = [H(e(') , m , X O [ k ] )  + ~ ( - e ( ~ )  , m , Xo [k])] 

i = l  

which for a given m, is equal t o  the volume of a polyhedron X ( m  , k + 1) _> X [ k  + 11 

The  last inclusion is t rue for any m E R3 and one should therefore seek for the optimal 

m. The  projections of X[k] on the axes {z l ,  zz),  {zl ,  z3) are shown in Figure 5. 

A separate issue is the construction of an ellipsoidal approximation for X [ k  + 1). 

A more complicated problem is t o  estimate the s ta te  of a linear system with unk- 

nown input on the basis of measurement corrupted by noise. We will therefore deal with 

the  problem of guaranteed s ta te  estimation for a linear system subjected t o  unknown but  

bounded disturbances with nonquadratic restrictions on the unknowns.' 

* The treatment of quadratic constraints is known well enough and may be found in references [15, 161 
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FIGURE 5 

12. Uncertain Dynamic Systems 

An uncertain dynamic system is understood here to be a discretetime multistage 

process, described by an n-dimensional equation 

z ( k  + 1)  = A ( k )  z ( k )  + B ( k )  v  ( A )  ( 1 2 . 1 )  

where A  ( k )  , B ( k )  , k  = 0 , . . . , s are given matrices. The input v ( k ) ,  and the initial stage 

z0 are vectors of finitedimensional spaces RP and R n  respectively. They are assumed to 

be unknown being restricted in advance by instantaneous "geometric" constraints 



where , P ( k )  are given convex and compact sets. It is further assumed that  direct 

measurements of the state z ( k )  are impossible, the available information on the process 

dynamics being generated by the equation 

y ( k )  = G ( k )  z ( k )  + ( ( k )  ; k = 1 ,..., s ( 1 2 . 3 )  

with measurement vector y ( k )  E Rm and matrix G ( k )  given. The disturbances ( ( k )  are 

unknown and restricted as before by an inclusion 

€ ( k )  E Q ( k )  

with convex compact set Q ( k )  E Rm given in advance. 

We will use the symbol z ( k  , v [ O  , k - 11 , z O )  to  denote the end of the trajectory 

z ( j )  for system (12 .1 )  formed for [0 , k ]  with v[O , k - 11 , z0  given.* 

Let us assume that  after s stages of system operation there appeared a measurement 

sequence y[ l  , s ] ,  generated due to relations (12 .1 ) - (12 .4 ) .  

The knowledge of y [ l  , s ]  will allow us to consider the following construction. 

Def in i t i on  12.1 A n  in fo rma t iona l  d o m a i n  X [ s ]  = X ( s  , 0 , p) will be de f ined  a s  t he  se t  

tha t  cons i s t s  of t he  e n d s  z ( s  , v[O , s - 11 , z O )  of all those  t ra jec tor ies  z ( j )  f o rmed  for t he  

i n t e rva l  j  E [0 , s ]  t ha t  could generate  the  measured  sequence  y [ l  , s ]  u n d e r  cons t ra in t s  

( 12 .2 ) - (12 .4 ) .  

M o r e  generally ,  w i th  y [ k  + 1 , l] , ( k  + 1 < t )  and  F E co Rn given ,  X ( l  , k , F )  wall 

be t he  s e t  of t he  e n d s  z ( l  , v [ k  , l - 11 , z * )  of t h e  t ra jec tor ies  z ( j )  of s y s t e m  (12 .1 )  t ha t  

s t a r t  a t  s tage  k f r o m  s ta te  z ( k )  = z*  a n d  are cons i s t en t  w i th  rea l i za t ion  y [ k  + 1 , l] due  t o  

equat ion  ( 1 2 . 3 )  w i t h  cons t ra in t s  

The dynamics of the total system (12 .1) - (12 .3)  will now be determined by the evolu- 

tion of sets X [ s ] .  It is clear that  set X [ s ]  includes the unknown actual state of system 

* In order to simplify some further notations of this paragraph we will generally start the process at stage 
ko  = 0 instead of arbitrary kO = k * ,  although the basic system is nonstationary. 



(12.1) .  

In particular X [ s ]  = X ( s  , 0 , 9). 

From the definitions of the above it is possible to verify the following assertions. 

Lemma 12.1 Assume F , P ( k )  , Q ( k )  to  be convez compact sets i n  spaces Rn , RP , R m  

respectively. T h e n  each of the sets X ( s  , e , F )  will be convez and compact. 

Lemma 12.2 Whatever i s  the set F 2 Rn, the following equality is  true ( s  > k! > k )  

X ( s  , k , F )  = X ( s  , e , x(e, k , F ) )  (12.5)  

Condition (12.5)  indicates that  the transformation X ( s  , k , F )  possesses a semi- 

group property generating a generalized dynamic system in the space of convex compact 

subsets of Rn. The generalized system will then absorb all the informational and 

dynamic features of the total process. Here each X [ s ]  contain all the prehistory of the pro- 

cess and the process evolution for r > s depends only upon X [ s ]  but not upon the previous 

X [ i ]  , i < s .  

The general description of X [ s ]  requires a rather cumbersome procedure which does 

not follow directly from 8 8 7,8. Our objective is to obtain a description of sets X [ s ]  

which are the set-valued state estimators for the system (12.1)-(12.4) .  The situation 

therefore justifies the consideration of approximation techniques based on solving some 

auxiliary deterministic or even stochastic estimation problems. In order to explain the 

procedures, we will s tart  with an elementary one-stage solution. 

13. Guaranteed State Estimation. The One-Stage Problem 

Consider the system 

where 



- 45  - 

and the matrices A , B , G are given. Knowing the constraints 

Z E X , V E P , ( E Q ,  

where 

X E comp R n  , P E compRP , Q E comp Rq 

and knowing the value y ,  one has to determine the set Z of vectors z consistent with 

equations (13.1) and inclusions (13.2). 

Denote 

Z , = A X + B P  

Zy = { z :  y - G z E  Q) 

Then obviously 

z = 2, zy 
Standard considerations yield a relation for the support function 

p(e I 2) = max { ( e ,  t) 1 t E Z) 

Applying the convolution formula of convex analysis [21] 

~ ( e  I z) = inf {p(e* I 2,) + p (e** I 2,) I e* + e** = e) 

Lemma 13.1 The support function p(e I Z) = $(e) where 

4(e) = inf P )  I P E R m )  (13.4) 

a([,  P) = p ( ~ ' e  - A '  G ' P  I X) + p ( ~ ' e  - B' G ' P  I P) 

+ P(-P I Q) + (P , Y )  , 

The set Z may be given in another form. Indeed whatever the vectors e , p , e # 0 

are, i t  is possible to  represent (13.4) p = Me = p[e , MI where matrix M E R m  ". Rela- 

tion (13.4) will then turn into 

4(e) = i n f  { @ ( e , ~ [ e ,  MI) I M E  R m X  n ,  (13.5) 

Problem (13.5) will be referred to as the dual problem for (13.3). The latter relation 

yields the inclusion 

Z (In - M' G) (AX + BP) + M'(y - Q) = R(M) (13.6) 



which will be true for any matrix M .  

Equality (13 .5)  thus leads to set-valued duality relations in the form of (13 .6)  and 

further on in the form of 

Lemma 13.2 The following equality is  true 

z = <n R ( M )  I M I  (13 .7)  

over all matrices M E Rm ". Here set Z is  a "guaranteed" estimate for z which may be 

calculated due to  ( 1 3 . 5 ) .  

The necessity of solving (13 .5)  gives rise to the question of whether it is possible to 

calculate p(l I Z )  in some other way, for example, by the variation of the relations for 

some kind of stochastic estimation problem. A second question is whether there exist any 

general relations between the solutions to the guaranteed and to the stochastic filtering 

problems. 

In fact it is possible to obtain an inclusion that would combine the properties of both 

(13 .6)  and of conventional relations for the linear-quadratic Gaussian estimation problem. 

14. Relat ion Between Guaranteed  and  Stochastic Est imat ion.  T h e  One-Stage 

P r o b l e m  

Having fixed a certain triplet h = { z  , v , ( )  that satisfies (13 .2)  (the set of all such 

triplets will be further denoted as H), consider the system 

w = A ( z + q ) + B v , y = G w + ( + v ,  

where q , 7 are independent Gaussian stochastic vectors with zero means 

E q = O  , E q = O ,  

and with covariance matrices 

Egg' = L Evv' = N 

where L , N are positive definite. Assume that after one random event the vector y has 

appeared due to  system ( 1 4 . 1 ) .  The conditional expectation E ( w  I y )  may then be deter- 



mined for example by means of a Bayesian procedure or by a least-square method. We 

have 

E ( w  I y )  = A z  + A P A '  G' N - ' ( ~  - GAz  - GBv - () + B v ,  (14.2) 

P-' = L-' + A '  G' N-' GA 

or in accordance with a conventional matrix transformation [25]. 

P = L - LA' G'K-' G A L ,  

K = N + GALA' G' , 

an equivalent condition 

Gy = E ( w  I Y )  = Az  + ALA' G' K-' ( y  - G A z  - ( G B v  + ()) + Bv (14.4) 

We observe that  the conditional variance 

E ( ( w  - G Y ) ( w  - Gy)' I y )  = A P A '  

does not depend upon h and is determined only by pair 

A = { L  , N )  

where L > 0 , N > 0.  (In the latter case further we will write A > 0.)  

Therefore we may consider the set of all conditional mean values 

W ( A )  = {U Gy ( h E H )  

that  correspond to  all possible h E H. Here 

W ( A )  = ( I n  - ALA' G' K-' G )  ( A X  + B P )  + ALA' G' K-' ( y  - Q )  (14.6) 

Having denoted 

* ( A )  = K-' GALA' 

we come to  

Lemma 14.1 The set W ( A )  is  convez and compact: W ( A ) E  comp Rn. The following 

equality is  true 

~ ( e  I w(A))  = @ ( e ,  ~ ( e ,  A ) )  

where 



We may now observe that  function a(! , p ( e  , A ) )  differs from a(! , p [ e  , MI) used 

in (13.5) by a mere substitution of p ( e  , A )  by p [ e  , MI. Comparing (14.7) and (13.5), we 

conclude 

Lemma 14.2 Whatever is the pair A > 0 ,  the inclusion 

c_ W ( A )  

i s  true. 

We will see that  by varying A in (14.8) it is possible to  achieve an exact description 

of set Z. 

In order to prove this conjecture some standard assumptions are required. 

Assumption 14.1 The matrix GA is of rank rn. 

We shall also make use of the following relation: 

Lemma 14.3 Under assumption 14.1 take A = 1 a )  = { I  , I } .  Then 

r3r(~(l , a ) )  G' + Im with a + 0.  

The given relation follows from equality 3 r ( ~ ( l  , a ) )  G' = ( a I ,  + D ) - ~  D where 

matrix D = GALA G' is nonsingular, L = I,,. 

Theorem 14.1 The inclusion z E Z is true if and only i f  for any e E Rn , A > 0 we have 

( e  , 2 )  5 I W ( A ) )  = f ( e ,  A )  (14.9) 

Inequality (14.9) follows immediately from the inclusion z E Z due to  Lemma 14.2. 

Therefore it suffices to show that  (14.9) yields z E Z. Suppose that  for a certain z' the 

relation (14.9) is fulfilled, however z* E Z = Z, n Zy. First assume that  z' E Zy. Then 

there exists an 6 > 0 and a vector p' such that  

( - P *  , Y )  + (G '  P* , z*) > P(-P*  I Q) + (14.10) 

Now we will show that  it is possible to  select a pair of values e* , A* that  depend upon p* 

and are such that  

(e* , z * )  > ~ ( e *  I w(A*))  = f(e* , A') (14.11) 



Indeed, taking l* = G' p* , ~ ( l  , a) = { I ,  , 01,) we have 

f (e *  , ~ ( 1  , a ) )  = @( l ,  4 1  4)  * ( ( P *  Y) + P ( - P *  I Q ) )  (14.12) 

From Lemma 14.3 and condition 

p ( l *  , ~ ( l  , a) )  = ~ - ' ( a )  GAI ,  A' G' p* , K(a)  = aI, + G A A ' G '  

i t  follows t h a t  

~ ( e *  , ~ ( 1  , a ) )  - P*  , a -+ 0 (14.13) 

But  then from condition (14.13), from Lemma 14.2 and from the properties of function 

f(t , A )  i t  also follows tha t  for any 6 > 0 there exists an a. ( 6 )  such tha t  for a 5 ao(c)  the 

inequality 

I f (e *  , ~ ( 1  , a ) )  - ( ( P *  , Y )  + P( -P*  I Q ) )  I I 4 2  (14.14) 

is true. 

Comparing (14.10), (14.12), (14.14) we observe tha t  for a 5 a0(c) .  

(t* , z * )  = (G '  p* , z* )  2 f(lt , ~ ( l  , a))  + ~ / 2  . 

Therefore, with A* = ~ ( l  , a*) , a < a o ( r )  the pair {l* , A * )  yields the  inequality 

(14.11). 

Now assume z* E 2,. Then there exists a vector lo for which 

(@ , z * )  2 $(lo) + u , u > o . 

where 

= P ( A '  e I X) + 43' l I P) 
Taking l = @ , A = ~ ( l  , a) we find: 

9 ( ~ ( l ,  a))  - 0  , a  - oo. 
But  then for any o - 0 there exists a number aO(o)  such tha t  

I f ( @  1 4 1  , a ) )  - s(@) I I " / 2  

provided a > a O ( o ) .  Hence, for a > a O ( o )  we have 



contrary t o  (14.9).  The theorem is thus proved. 

From the given proof i t  follows tha t  Theorem 14.1 remains true if we restrict our- 

selves to the one parametrical class 

= { ~ ( l  , a ) }  ] A(1 , a )  = { I n  , aim) 

Therefore, the theorem yields: 

Corollary 14.1 Under the conditions of Theorem 14.1 the inclusion z E 2 i s  true i f  and 

only i f  for any  l E Rn we have 

where 

f l ( t )  = i n f  { f ( t ,  4 1  , 4) I a > 0 )  

Being positively homogeneous, the function f l ( t )  may, however, turn out  t o  be non- 

convex, its lower convex bound being the second conjugate f ; * ( t )  where, [21] ,  

~ ~ ( 9 )  = sup { ( t  , 9) - g ( 4 )  7 g** (4 = ( g * ) * ( t )  

The convexification of f l ( t )  in (14.15) will not violate this inequality. In other 

words, (14.15) will yield 

Corollary 14.2 Under the conditions of Theorem 14.1, we have 

P ( t  1 2) = f ; * ( e )  5 f l v )  (14.16) 

However, if we move on t o  a broader class = { L  , N )  where L > 0 and N > 0 

depend together on a t  least m independent parameters it is possible t o  achieve a direct 

equality immediately, i.e. 

I 2) = f 2 ( 4  

where 

f2(4 = i n f  { f ( e  , A)  I A C = f :*(e)  I (14.18) 

Problem (14.18) will be called the stochastically dual for (13.5) .  The following asser- 

tion is true. 



Theorem 14.2  Under assumption 14.1 relations (14 .17) ,  (14.18)  are true,  where the 

i n f i m u m  i s  taken over all L > 0 , N > 0. 

The proof of Theorem 14.2 is rather long and will be omitted in this text. It may be 

found in paper [ 2 6 ] .  

The stochastic dual problem (14.18) may therefore replace (13.6) .  

On the other hand we may again turn to set-valued duality, now i i ~  terms of a sto- 

chastic problem. Due to  Corollary 14.1 the set of inequalities (14.15)  will lead us to 

L e m m a  14.3  T h e  jollowing equality i s  true 

= {n W ( A )  I A E A ( ' ) }  (14.19) 

The relations of this paragraph indicate that set Z may be described by deterministic 

relations (13.7)  as well as by approximations (14.19) generated due to the stochastic esti- 

mation problems of the above. 

The results of this paragraph allow to devise solutions to multistage problems. 

15. A Mul t i -S tage  S y s t e m  

Returning to system (12.1)- (12.4)  let us seek for X [ s ]  = X ( s  , ko , 9). We further 

introduce notations 

Y ( k )  = {z : y ( k )  - G ( k )  z E Q ( k ) }  

and X * ( s  , j , F )  is the solution X ( s )  to the equation 

X ( k  + 1 )  = A ( k )  X ( k )  + B ( k )  P ( k )  , j 5 k < s - 1 (15.1) 

with X ( j )  = F .  Then it is possible to verify the following recurrent equation similar to 

(13.3).  

L e m m a  15.1 A s s u m e  y [ k o  + 1 , k ]  to  be the realization for the measurement  vector y o j  

s y s t e m  (12.3)) (12.1). T h e n  the jollowing condition i s  true.  



Formula (15.2) indicates that  the innovation introduced by the k-th measurement 

Y(k) appears in the form of an intersection. Therefore X* ( k  , k - 1 1 X[k - 11) is the 

estimate for the state of the system on stage k before the arrival of the k-th measurement 

while X[k] is the estimate obtained after its arrival. 

Relations (15.2) may be interpreted as a recurrence equation. One may rewrite 

them in a somewhat different way, namely through (13.6) and (13.7). Applying (13.7) for 

each stage k we come to 

L e m m a  15.2 T h e  set X[k] satisfies the following recurrence equation 

A nonlinear version of this scheme is given further in 5 5 18-20. However, the topic of 

this paragraph is another procedure. It is the scheme of stochastic f i l ter ing approzimation 

which follows from the results of 5 14, (Theorem 14.1). Together with (12.1, (12.3) con- 

sider the system (involving almost sure equalities) 

where the inputs z0 , v ( k )  , ((k) are deterministic, subjected to "instantaneous" con- 

straints 

zo E xfJ , v(k) E P(k) , J(k) E Q(k) , 
while w0 , u(k) , 4 k )  are independent stochastic Gaussian vectors with 

where L , N are positive definite. 

Suppose that  after k - ko stages for system (15.3), (15.4) measurement 

z[ko,  k] E R m ( k  - k") has been realized. Having fixed the triplet 



E [ O  , k ]  = { z O  , v [ k o  , k - 11 , Elk0 , k l )  

and having denoted w ( k )  = { v ( k  - 1 )  , ( ( k )  ) , D ( k )  = { P ( k  - 1 )  , ~ ( k )  ) we may find a 

recursion for the conditional mean value 

G ( k  + 1 )  = E { w ( k  + 1 )  1 w ( k )  , G ( k )  , z ( k  + 1 ) )  

Define 

From Theorems 14.1, 14.2 and Lemma 14.3 we come to the following propositions 

Theorem 15.1 Suppose Assumpt ion  14.1 holds for A = A ( k ) ,  G = G ( k  + 1 )  , k E [ko , s ]  

and the sequence of observations y [ k 0  , s ]  , z [ k o  , s ]  for sys tem (12 .1 ) ,  (12.3)  and (15 .3 ) ,  

(15.4)  coincide: y [ k 0  , s ]  = z [ k ,  , s ] .  T h e n  the following relation i s  true 

X [ s ]  = {n W ( s  , L , N , X [ s  - 11) ( A E A ( ' ) )  , s > ko , (15.6)  

X [ k o ]  = XO , A = { L  , N )  , PO = O , 

moreover,  with Po  = 0 and 

f ; ( [ ,  3 )  = i n f  { P  ( e  I W ( s  , L , N , X [ s  - 11)) 

over all ( L  , N )  = A c A(') , i = 1 , 2 , we have 

P ( [  I X [ s l )  = f;' ([ , 4 ,  p ( [ l X [ s ] )  = f2.V , S )  , 

where the  second conjugate i s  taken i n  the variable l .  

Theorem 15.2 Under the condition of Theorem 15.1 for each positive definite matr ix  pair 

{ L ( k  - I )  , N ( k )  ) = ~ ( k ) ,  the following inclusions are valid 

where 

R ( k  + 1 , ~ ( k  + 1 )  , X [ k ] )  = ( I ,  - H ( k  + 1 )  G ( k  + 1 ) )  ( ~ ( k )  X [ k ]  + B ( k ) P ( k )  + 
+ H ( k  + 1 )  ( ~ ( k  + 1 )  - Q ( k  + 1 ) )  , 

X [ O ]  = XO , 
H ( k  + 1 )  = C ( k )  L ( k )  C ' ( k )  G ' ( k  + 1 )  K-' ( k  + 1 )  , 

K ( k  + 1 )  = N ( k  + 1 )  + G ( k  + 1 )  C ( k )  L ( k )  C ' ( k )  G ' ( k  + 1 )  , 



The recurrence relations (15.7)  thus allow a complete description of X [ s ]  through 

equation (15 .6 ) .  Solving the system 

we find 

where 

p(e I X [ k  + 11) = i n f  { p ( e  I W ( k  + 1 ) )  I ~ ( j  + 1 )  ; j = ko ,..., k  ; PO = 0) 

with each pair ~ ( j  + 1 )  = { L ( j )  , N ( j  + 1 ) )  belonging to the class The total 

number of parameters over which the minimum is sought for does not exceed k m .  

The procedure given above is similar to the one given in (14 .2 ) .  It is justified if the 

sets X [ k ]  are to be known for each k  > 0. Note that in any way with arbitrary 

L ( j )  , N ( j  + 1 )  , j  = 0 ,.. ., k  - 1  , the set W ( k )  always includes X [ k ] .  

Let us now assume that  the desired estimate is to be found for only a fixed stage 

s > kg.  Taking z [ k o  , s ]  to be known and triplet t [ k o  , s ]  for system ( 1 5 . 3 ) ~  (15.4)  to  be 

fixed, we may find the conditional mean values 

~ ( k )  = E{ w ( k )  I z [ko  + 1  , kl 1 t [ k o  1 k l )  

and the conditional covariance 

P ( k )  = E{ w ( k )  - 6 ( k ) )  ( w ( k )  - 6 ( k ) ) '  I z [ k ,  + 1  , kl 1 t [ k o  1 k l )  

where 

E w ( k o )  = z0 , P ( k o )  = PO 

Denoting 



and having in view the Markovian property for the process ( 1 5 . 3 ) ,  ( 1 5 . 4 )  it  is possible to  

conclude the following: 

Lemma 15 .3  The equality 

W ( k )  = W [ k  , j  , W ( j ) ]  

holds for any j  , k  , j  5 k .  

The corresponding formulae that  generalize (14.2), ( 1 4 . 3 )  have the form 

If we again suppose z [ k o  , s ]  = y [ko  , s ] ,  then due to  the inclusions 

W ( k  + 1 )  2 w [ k  + 1  , k  , X [ k ] ]  , k  > ko 

that  follow from Lemma 14.2 and to  the monotonicity property 

W [ k  + 1  , k  , F 1 ]  w [ k  + 1  , k  , F2] , F 1  L F2 , 

that  follows from ( 1 5 . 9 )  we obtain in view of ( 1 5 . 8 )  

X [ k ]  W ( k )  , for k  > 1  

Consider the following condition: 

Assumption 15.1 The sys tem ( 1 2 . 1 ) ,  ( 1 2 . 3 ) ,  v [0 , s - 11 = 0 , ( [ I  , s ]  = 0 i s  completely 

observable on [ k ,  , s ] .  

The given property is defined for example in [ 4 ] .  

In the latter case the following proposition is true: 

Theorem 15 .3  Under the conditions of Theorem 15.1 and assumption 15.1 assume 

Y [ k o  , s] = r [ k o  , s ] .  Then the equality 



is true for any PO > 0 and any diagonal N(k) > 0 , L(k) > 0. Moreover for the given class 

of matrices we have 

p( l I  XIS]) = f * ( e , ~ ) ,  f * ( l , s ) = i n f  { p ( l  1 W(S)) I PO,L>O, N > O , k c  [ k o , s ] )  (15.12) 

Therefore, the precise estimate is again attained here through a minimization pro- 

cedure. 

Remark 15.1 The relations (15.9), (15.10) may therefore be treated as follows 

(a) In the case of a set-membership description of uncertainty as in (12.2), (12.4) with 

u(k) 0 , q(k) - 0, equations (15.9), (15.10) contain complete information on 

Xlk + 11 as stated in Theorem 15.3. 

(b) In the case of both set-membership and stochastic uncertainty, as in (15.3)-(15.5), 

equation (15.9) describes the evolution of the set of the mean values of the estimates. 

(c) In the case of pure stochastic uncertainty with sets p, P(k)  , Q(k) consisting of one 

element (zO , p(k) , q(k)) each, the relation (15.9) turns out to be an equality which 

coincides with the conventional equations of Kalman's filtering theory. 

Remark 15.2 Following the scheme of Theorem 14.1 it is possible to  demonstrate that  

relation (15.11) holds for PO , N(k) , L(k) selected as follows: 

PO = fi , N(k) = a ( k )  I ,  , L(k) = P(k) In 

where 

P > 0 , 4 k )  > 0 , P(k )  2 0 , k E [ko , s]  

Example 

Consider a two-dimensional system 

with a scalar observation 



The  initial s t a t e  z O E p  where X O = z * ( O ) + S ,  z* is given and 

S  = { z :  lzil 2 1; i = 1 ,  2) is a square. 

The  aim is t o  estimate the  s ta te  z ( k )  a t  each stage k .  Making use of formula (13.6) 

at each stage k ,  we will estimate Xlk + I.] = X ( k  + 1, k ,  X l k ] )  b y  a rectangle X [ k ]  

oriented along the  axes { z l ,  z 2 ) .  Here the  calculations are as follows. 

If X  is a rectangle such tha t  X  = z* + X  where 

x = ( 2 :  1211 I P I ,  1221 L P2) 7 

then 

~ ( l l x )  = ( 1 ,  z * )  + ~ 1 1 1 1 1  + ~ 2 1 1 2 1  (15.15) 

Thus  we may calculate some values of the function ~ ( l l X ( k  + 1,  k ,  ~ ( k ) ) )  with ~ ( k )  

given. Using formula (13.6) for our example we have 

M  = (7% mg) 

Therefore 

p( l lX(k  + 1,  k ,  X [ k l ) )  = 

= inf { p ( l ' F ( M ) I X [ k ] )  + p(l 'M'Iy(k)  - Q)) , 
Starting with rectangle XO and calculating p ( l ( X [ l ] )  for 

due to  formulae (15.15), (15.16), we define a rectangle X [ 1 ]  > X [ 1 ]  - the  "smallest" rec- 

tangle t ha t  includes X [ 1 ]  and is oriented along the axes { z l ,  z 2 ) .  Further  on,  taking X [ 1 ]  

instead of X [ I . ] ,  and repeating the  procedure, we come t o  a rectangle X [ 2 ]  etc. Thus,  after 

k stages, we will find a rectangle 

X [ k ]  2 X ( k ,  0, XO)  = X [ k ]  

which is an  upper estimate for X [ k ] .  



The  respective calculations were done for a system described by relations ( 1 5 . 1 3 ) ,  

(15 .14)  with ~ ( k )  being an actual realization of the system generated by an initial vector 

z* E XO unknown to  the observer and by an unknown "noise" ( ( k )  t ha t  at tains either of 

the values + p or - p due t o  a random mechanism. 

The  results of the simulations for several starting sets XO are given in Figures 6-8 

with 6 = 0 . 2 ,  w2 = 1.2,  v = 0 .5 .  In Figure 9 we have the same problem with an  additional 

"horizontal" input disturbance 

added t o  the right hand part  of ( 1 5 . 1 3 ) ,  assuming v ( k )  being unknown, random and uni- 

formly distributed in the interval - 0.25 < v ( k )  < 0 . 2 5 .  The calculations are the same as 

before except tha t  due t o  ( 1 3 . 6 )  we have t o  substitute p ( l ' F ( M ) J X ( k ) )  by 

p ( l ' F ( M ) I X ( k ) )  + p(l'(I2 - M ' G ) I B P )  

where 

B P  = { p  : p ,  = 0 ,  Ip21 5 0 . 2 5 )  . 

The ideas of the above allow t o  approach nonlinear systems. Some of the basic facts 

related t o  guaranteed nonlinear filtering are given in the sequel. 

16. Nonlinear Uncertain Systems 

Consider a multistage process described by an  n-dimensional recurrence inclusion 

z ( k + l )  E F ( k , z ( k ) ) ,  k  2 ko 2 0  (16 .1 )  

where k  E [ko , m),  z ( k )  E Rn,  F ( k , z ( k ) )  is a given multivalued map from [ko , m) x R n  

into comp Rn.  

As before suppose the initial s ta te  z ( k o )  = z0 of the system is confined t o  a preas- 

signed set: 
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Let Q ( k )  be a multivalued map from (ko  , oo) into comp Rm and G ( k )  - a single- 

valued map from [ko , oo] into the set of m x n-matrices. The pair G ( k ) ,  Q ( k ) ,  introduces 

a state constraint 

G ( k ) z ( k )  E Q ( k ) ,  k 2 kO+l , 
on the solutions of system (16.1). 

The subset of Rn that  consists of all the points of Rn through which a t  stage 

s E [ k O , m )  there passes a t  least one of the trajectories z ( k  , ko , zO) ,  tha t  satisfy constraint 

(16.3) for k E [ko,r], will be denoted as X ( s  I r,ko,zO). 

If set Q ( k )  of (16.3) is of a specific type 

Q ( k )  = Y ( k )  - ~ ( k )  

where y ( k )  and ~ ( k )  are given, then (16.3) transforms into 

Y ( k )  E G ( k ) z ( k )  + ~ ( k )  (16.4) 

which could be interpreted as an equation of observations for the uncertain system (16.1) 

given above. Sets X ( s  I r ,  k o ,  9) therefore give us guaranteed estimates of the unknown 

states of system (16.1)  on the basis of an observation of vector y ( k ) ,  k E (ko,r] due to equa- 

tion (16.4) .  

For various relations between s and r this reflects the following situations 

(a) for s = r - the problem of "guaranteed filtering" 

(b) for s > r - the problem of "guaranteed prediction" 

(c) for s < r - the problem of "guaranteed refinement" 

The aim of this paper will first be to study the informational sets 

X ( r l  r , ko , 9) = X ( r  , ko , 9) similar to those of the above and their evolution in 

"time" r. 

The sets x (k , ko , zo )  may also be interpreted as attainability domains for system 

(16.1) under the state space constraint (16.3) .  The objective is therefore to describe the 

evolution of these domains. A further objective will be to describe the more complicated 



sets X ( s  I r,ko,zO) and their evolution 

17. A G e n e r a l i z e d  N o n l i n e a r  D y n a m i c  System 

From the definition of sets X ( s  I r,kO,zO) it follows tha t  the following properties are 

true. 

Lemma 17.1. Whatever are the instants t ,s ,k,  ( t  >_ s >_ k 2 0 )  and the set F € c o m p R n ,  

the following relation is true 

X( t , k ,F)  = X ( t , s , X ( s , k , F ) ) .  (17.1) 

Lemma 17.2. Whatever are the instants s,t,r,k,l(t >_ s > 1;  r >  1 > k;  t > r) and the set 

F E comp R n  the following relation is true 

X ( s  I t ,k ,F) = X ( s  1 t , l ,X( l  I r ,k ,F))  . (17.2) 

Relation (17.1) shows tha t  sets X ( k , r , X )  again satisfy a semigroup property which 

allows t o  define a generalized dynamic system in the space 21Rn of all subsets of Rn. On 

the other hand, (17.2) is a more general relation which is true when the  respective inter- 

vals of observation may overlap. 

In general the sets X ( s  I t ,k,F) need not be either convex or connected. However, it 

is obvious tha t  the following is true 

Lemma 17.3. Assume that the map F is linear in z: 

F ( k  , 2 )  = A ( k ) z +  P 

where P € c o n v R n .  Then for any set F ~ c o n v  Rn each of the sets 

Therefore the next step will be to  describe the evolution of the set 

X [ k ]  = X ( k  , k,  , X O ) .  This will be later given in the form of a decoupling procedure. 

However i t  is convenient t o  commence with a description of the one-stage problem. 



18. The One-Stage Problem 

Consider the system 

Z E F ( ~ ) ,  G z E Q ,  z E X ,  

where z E  Rn,  XEcomp Rn,  QEconv Rm,  F(K) is a multivalued map from R n  into 

conv Rn,  G is a linear (single-valued) map from R n  into Rm 

It is clear that  the sets F ( X )  = { U F ( z )  1 Z E  X )  need not be convex. 

Let Z, Z* respectively denote the sets of all solutions to the following systems: 

a )  z € F ( X ) ,  G z E Q ,  

(b) z* E co F ( X )  , Gz* E Q, 

It is obvious that  the following statement is true 

Lemma 18.1. The se ts  Z, co Z, Z* satisfy the following inclusions 

Z ~ C O Z ~ Z *  

Denote 

@(l,p,q) = (1 - G ' P , ~ )  + P(-P I Q) 
Then the function @(l,p,q) may be used to describe the sets coZ,Z*. The techniques of 

nonlinear analysis yield 

Lemma 18.2. The following equalities are true 

p(l IZ)  = p(1IcoZ) = supinf@(l,p,q) , q E F ( X ) ,  p € R m  (18.2) 
'7 P 

p(lIZ*) = in fsup@(l ,p ,q )  , ~ E F ( X ) , ~ E R ~  (18.3) 
P '7 

The sets co Z , Z* are convex due to  their definition. However it is not difficult to  

give an example of a nonlinear map F ( z )  for which Z is nonconvex and the functions 

p(l I co Z ) ,  p ( l J  Z* ) do not coincide, so that the inclusions Z c co Z, co Z c Z* are strict. 

Indeed, assume X = (0) , z E R~ 



Then 

Y = { z : G z E Q ) = { z : O ~ z 2 ~ 2 )  

The  set F(0)  is a nonconvex polyhedron 0 K D L in Figure 10a while set Y is a 

stripe. Here, obviously, set Z which is the intersection of F(0)  and Y, turns t o  be a non- 

convex polyhedron 0 A B D L, while sets co Z , Z* are convex polyhedrons 0 A B L and 

0 A C L respectively (see Figures l o b  and 10c). The  corresponding points have the coor- 

dinates 

A = (0 , 2), B = (112 , 2 ), C = (1 , 2), D = (317 , 3 / 7 ) ,  K = (0 , 3),  L = ( 3  , O), 

0 = ( 0 , o ) .  

Clearly Z c co Z c Z* . 

This example may also serve t o  illustrate the existence of a "duality gap", [21] 

between (18.2) and (18.3). 

For a linear-convex map F ( z )  = Az + P (P E conv IRn) there is no distinction 

between Z,  co Z, and Z*: 

Lemma 18.3 Assume F ( z )  = Az + P where P E c o n v  R n ,  A is a linear map from R n  

into IRn. Then Z = c o Z  = Z*. 

The  description of Z,  coZ ,  Z* may however be given in a "decoupled" form which, 

allows t o  present all of these sets a s  the intersections of some parametrized varieties of 

convex multivalued maps of relatively simple structure. 

19. The One Stage Problem - A Decoupling Procedure. 

Whatever are the vectors l , ~ ( l  # 0) i t  is possible to present p = M'l where M belongs 

t o  the space M m  " of real matrices of dimension m x n.  Then,  obviously, 
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where 

@ ( I ,  M ' l ) = U { @ ( f ,  M I ,  q)  I q ~ c o F ( z ) ) =  

= p ( ( E  - G' M ' ) l  I co F ( X ) )  + p ( -  M'l  I Q )  . 

From (19.1) i t  follows 

Z G  u n R ( M , q ) c n  u R ( M , Q ) , M E M " ~ ~  (19.3) 
q E F ( X )  M M q E F ( X )  

where 

R ( M , q )  = ( E n -  M G ) q  - M Q .  

Similarly (19.2) yields 

z * c n  u { ( E , -  M G ) Q -  M Q ) .  
M q € c o F ( X )  

Moreover a stronger assertion holds. 

Theorem 19.1. The following relations are true 

z =  z(x) = u n R ( M , Q )  
q E F ( X )  M 

z *  = z * ( x )  = n R ( M , C O  F (x ) )  
M 

where M E  M m  ' ".  

Obviously for F ( z )  = A X +  P , ( X , P E C O R ~ )  we have F ( X )  = co F ( X )  and 

z = z* = co z .  

This first scheme of relations may serve to be a basis for constructing multistage 

procedures. Another procedure could be derived from the following second scheme. Con- 

sider the system 

z E F ( z )  (19.7) 

G z  E Q ,  (19.8) 

for which we are to  determine the set of all vectors z consistent with inclusions (19 .7) ,  

(19.8).  Namely, we are to  determine the restriction F y ( z )  of F ( z )  to  set Y .  Here we 

have 



where as before Y = { z :  G z  E Q  ). 

Lemma 19.1 Assume F ( z )  E comp Rn for any z  and Q  E conv Rm. Then 

F ~ ( Z )  = n ( ~ ( 2 )  - LGZ + L Q )  
L 

over all n x m matrices L ,  ( L  E M m). 

Denote the null vectors and matrices as {O) ,  E  Rm , {O),,, E Rmxn  , and the 

( n  x  m)  matrix Lmn as 

Suppose z  E Y. Then {O) ,  E  Q  - G z  and for any ( n x m )  -matrix L  we have 

{O),  E  L  ( Q  - G z )  . Then it follows that  for z  E  Y. 

On the other hand, suppose z  E Y 

Let us demonstrate that  in this case 

n { ~ ( z )  + L ( Q  - ~ z )  = 4 .  
L 

Denote A = F ( z ) ,  B  = Q  - G z .  For any X > 0  we then have 

n ( A  + L B ) c  ( A  + X L m n B ) n ( A  - X L m n B )  
L 

Since { O ) ,  4 B  we have ( 0  ) ,  4 LmnB. Therefore there exists a vector I E  Rn, I f 0  and 

a number 7 > 0  such that  

( l , z ) L 7 > O  forany Z E L , B ,  

Denote 

L = { z : ( l , z ) _ > 7 )  

Then IL > Lm B  and 

( A  + X L m n B ) n ( A  - XLmnB)  ( A  + X I L ) n ( A  -AIL)  

Set A being bounded there exists a X > 0  such that  



Hence 

and the Lemma is proved. 

If in addition t o  (19.7), (19.8) we have 

z E X  (19.9) 

then the set Zo consistent with (19.7)-(19.9) may be presented as 

Zo(X) = U n (F(z) - LGz+ LQ) 
z E X  L 

Therefore each of the sets Z(z), ZO(z) (z  E X) may be respectively decoupled into the cal- 

culation of either set-valued functions R(M , q )  or 

R,  (L  , z) = F(z) - LGz + LQ 

according to (19.5), (19.10). It may be observed tha t  each of these are also applicable 

when Z(X) , Zo(X) are disconnected. 

In the linear-convex case 

F(z) = A z +  P ,  P E conv R n ,  

we have 

Z(X) = n { ( E  - MG)(AX + P) + MQ) 
M 

Z,(Z) = n { ( A  - LG)X + P + LQ) 
L 

20. Solution to the Problem of Nonlinear "Guaranteed" Filtering 

Returning t o  system (16.1)-(16.3) we will look for the sequence of sets 

X[s] = x ( s , k o , P )  together with two other sequences of sets. These are 

X*[S] = x * ( s , k O , f l )  

- the solution set for system 



z(k+l.) E co F ( k , X * [ k ] ) ,  X*[ko] = XO (20.1) 

G ( k + l )  z ( k + l )  E Q ( k + l ) ,  k  L ko (20.2) 

and X , [ s ]  = x , ( s , k o , p )  which is obtained due to  the following relations: 

X* [s ]  = co Z [ s ]  

where Z [ k + l ]  is the solution set for the system 

The sets X,[r] ,  X*[T]  are obviously convex. They satisfy the inclusions 

X[r]  G X*[r]  G X*[r]  

while each of the sets X [ r ] ,  X , [ r ] ,  X* [r] lies within 

Y ( r )  = { z :  G ( r ) z ~ Q ( r ) } ,  r > k o + l ,  

The  sets X[r]  , X,[T] , X*[r]  may therefore be obtained by solving sequences of prob- 

lems 

for X [ s ] ,  (20.1), (20.2) for X * [ s ]  and (20.3) - (20.5) for X,[s]  

In order t o  solve the "guaranteed" filtering problem with Q ( k )  = ~ ( k ) - Q ( k )  one 

may follow the first scheme of 3 19, considering the multistage system 

Z ( k + l )  = ( I n  - ~ ( k + l )  ~ ( k + l ) ) @ ( k , ~ ( k ) )  + M ( k + l ) ( y ( k + l )  - ~ ( k + l ) )  (20.8) 

S ( k )  = { n Z ( k )  1 M ( k )  1,  k > k O ,  S(k0)  = p ,  (20.9) 

where M ( k + l ) c R n X m .  

From Theorem 19.1 one may now deduce the following result 

Theorem 20.1 The solving relations for X [ s ] ,  X , [ s ] ,  X * [ s ]  are as follows 

X [ s ]  = S ( s )  for @ ( k , S ( k ) )  = F ( k , S ( k ) )  

X * [ s ]  = S ( s )  for @ ( k , ~ ( k ) )  = co F ( k , S ( k ) )  

X , [ s ]  = co S ( s )  for @ ( k , ~ ( k ) )  = F(k,co ~ ( k ) )  

It  is obvious tha t  X [ r ]  is the ezact solution for the guaranteed filtering problem while 

X*[r] ,  X*[r]  are upper convez majorants for X [ r ] .  It is clear tha t  by interchanging and 



combining relations (20.11) ,  (20.12) from stage to  stage it is possible to  construct a broad 

variety of other convex majorants for X [ r ] .  However for the linear case they will all coin- 

cide with X [ r ] .  

L e m m a  20.1 Assume  @ ( k , ~ )  = A ( k ) S  + P ( k )  with P ( k ) ,  9 being convez  and compact.  

T h e n  X [ k ]  = X * [ k ]  = X , [ k ]  for any  k 2 kg.  

Consider the nonlinear system 

z ( k + i )  = ( I ,  - ~ ( k + i ) ~ ( k + i ) ) @ ( k , z ( k ) )  

+ M ( k + l ) ( ~ ( k + l )  - ~ ( k + l ) )  , 
having denoted its solution as 

Z ( k ; M k ( . ) )  for P ( k , Z )  = F ( k , Z )  

Z , ( k , M k ( .  ) )  for @ ( k , Z )  = F ( k , c o  Z )  

Z * ( k , M k (  - ) )  for P ( k , Z )  = co F ( k , Z )  

Then theorem 20.1 yields the following conclusion 

Theorem 20.2 Whatever i s  the sequence M,( . ), the following solving inclus ions  are true 

Hence we also have 

C_ n < Z ( s , M 3 (  ' 1) I ' ) )  ) 

X * [ s l  n < Z * ( s , M 3 (  1) I M S (  ' 1) ) 

over all M ,  ( s )  . 

However a question arises which is whether (20.14)-(20.16) could turn into exact 

equalities. 

L e m m a  20.2 A s s u m e  the sys tem (16.1)) to be linear: F ( k , z )  = A ( k ) z +  P ( k )  with se ts  

P ( k ) ,  Q ( k )  convez  and compact.  T h e n  



XIS1 = X * [ s l  = n < z S (  - , M s ( .  )) 1 
where Z s ( .  M s ( . ) )  i s  the solution tube for the equation 

Z ( k + l )  = ( I ,  - M ( k + l ) G ( k + l ) )  ( A ( k )  Z ( k )  + P ( k ) )  + (20.18) 

+ M ( k + l ) ( y ( k + l )  - Q ( k + l ) ) ,  ~ ( k , )  = x0 
Hence in this case the intersections over M ( k )  could be taken either at each stage as 

in (20 .10) ,  (20.11) or at the final stage as in (20.17) .  

Let us now follow the second scheme of 5 19,  considering the equation 

z ( k + l ) ~ F ~ ( ~ ) ( k , z ( k ) ) ,  z O =  z ( k O ) ,  z O E J ? ,  (20 .19)  

and denoting the set of i ts  solutions t ha t  s ta r t  at z 0 e  J? as p ( k , k o , z o )  as 

U { zo(k ,ko,zo)  ( ~ O E  p ) = Y ( k , k 0 , p )  = J ? [ k ]  . 

According t o  Lemma 19.1 we may substitute (20.19)  by equation 

z ( k + l )  E n(p ( k , z ( k ) )  - L G ( k ) z ( k )  + L Q ( k ) )  , z0 E p , 
L 

The  calculation of p [ k ]  should hence follow the procedure of (19.10)  

x [ k + l ]  = U n ( p ( k , z )  - L G ( k ) z  + L Q ( k ) ) ,  x ( k 0 )  = XO . (20.20) 
z € 2 ( k )  L 

Denote the  "whole" solution tube for this solution (to< k 5  s )  as J ? j o [ . ] .  Then the  

following assertion will be t rue.  

Theorem 20.5 A s s u m e  x j o [ k ]  to  be the cross-section of the  tube J?io[-] at ins tant  k and 

X 0  = X 0  n Y ( k , ) .  T h e n  

-s+1 X [ s ]  = Xko [ s ]  if p ( k , z )  = F ( k , z )  , 

X *  = J?i;'[s] if p ( k , z )  = co F ( k , z )  

Here x i o [ s ]  2 f i T 1 [ s ]  and the set J?io[s]  may not lie totally within Y ( s ) ,  while 

always xi:' [a] & Y ( s )  . 

Solving equation (20 .19)  is equivalent t o  finding all the  solutions for the  inclusion 



Equation (20.21) may now be "decoup1ed"into a system of "simpler" inclusions 

z ( k + l )  E p ( k , z ( k ) )  + L ( k )  ( ~ ( k )  - G ( k ) z ( k ) )  - ~ ( k )  ~ ( k )  , z (ko )  E XO (20.22) 

for each of which the solution set for ko 5 k 5 s will be denoted as 

Zio ( .  , k o , P , ~ ( .  1) = Zi(,I. , L ( .  ) I  

Theorem 20.4 The set X k [ - ]  of solutions to the inclusion 

Zk+1 E $ ( k , z ( k ) )  , z (ko)  E Y' 
~ ( k ) E G ( k ) z ( k ) + B ( k ) ,  k o 5 k 5 s  

is  the part of the solution tube 

-s+1 x ~ + l [ - ]  = n xko [ . , L ]  , [kO , . ,  ~ + i ]  
L 

which is restricted to stages [ko , s ] .  Here the intersection may be taken only over all con- 

stant matrices L ( k )  - L .  

This scheme also allows t o  calculate the cross sections X i o [ s ] .  Obviously 

-s+1 xio c n x k ,  [ s , L [ .  1 1  (20.23) 
LI.1 

over all sequences L [  . ] = { L ( k o ) ,  L (ko+l ) ,  ..., L(s+I ) ). Moreover the  following proposi- 

tion is t rue,  and may be compared with [5, 9-1 I ] .  

Theorem 20.5 Assume p ( k , z )  to be linear-convez: ~ ( k , z )  = A ( k ) z  + P ( k ) ,  with P ( k ) ,  

Q ( k )  convez and compact. Then (20.29) turns to be an equality. 

The  next estimation problems are those of "prediction" and "refinement" 

21. The " G u a r a n t e e d  P r e d i c t i o n "  P r o b l e m  

The  solution t o  the guaranteed prediction problem is t o  specify set  X ( s  I t , ko , X O )  

for s > t It may be deduced from the  previous relations due t o  (17.2) since 

X ( s  I t  , ko , X O )  = X ( s  I t , X ( t  , k0 , X O ) )  

Similarly we may introduce set 



where X * ( s  1 t , z )  is the attainability domain for the inclusion 

z ( k + l )  E co F ( k  , z ( k ) )  

with t < k 5 s , z ( t )  = z 

The description of X ( s  I t , k ,  X O )  , X i ( s  ( t , k ,  X O )  may be given through a 

modification of theorems 20.1 - 20.5, by the following assertion 

Theorem 21.1 The  solving relations for the prediction problem are 

X * ( s  1 t , k,, X O )  = X * [ s ]  

where X [ s ]  , X * [ s ]  are determined through (20.10), (20.12), (20.8), under the condition 

S ( k )  = { r )  Z ( k )  I M ( k )  E Rn m, 

S ( k )  = Z ( k )  for k > t 

For the linear convex case an alternative presentation is true. Denote 

L i  ( a )  = { L ( k , ) , . .  . , L ( s ) )  to  be a sequence of ( n x m )  - matrices L ( i )  , ko 5 i <_ s ,  such 

that  L ( i )  G 0 for t < is s .  

Theorem 21.2 Assume F ( k  , z )  = A ( k ) z  + P with P , X 0  convez and compact. Then  

x(s I t , k ,  , xO) = {n a,, I. , L:( .  11 I L : ( .  1) (21.1)  

The solution to  the prediction problem may therefore be decoupled into the calcula- 

tion of the attainability domains 3; [ s  , L f (  . ) I  for the variety of systems 

z ( k + l )  E ( A ( k )  - L ( k )  G ( k ) )  z ( k )  + L ( k )  y ( k )  + L ( k )  ~ ( k )  + P ( k )  (21.2) 

L ( k )  = 0 for k > t 

each of which starts  its evolution from X 0  

The forthcoming "refinement" problem is a deterministic version of the interpolation 

problem of stochastic filtering theory. 



22. The "Guaran teed"  Ref inement  P r o b l e m  

Assume the sequence y[k , t ]  to be fixed. Let us discuss the means of constructing 

sets X ( s  I t , k , F ) ,  with s E [k  , t ] .  From relation (17.2) one may deduce the assertion 

Lemma 22.1 The following equality i s  true 

X ( s  I t , k , F )  = X ( s  I s , t , X ( t  , k , F ) )  (22.1) 

Here the symbol X ( s  I s , t , F ) ,  taken for s 5 t ,  stands for the set of states z ( s )  that  

serve as starting points for all the solutions z ( k  , s , z ( s ) )  that  satisfy the relations 

z ( k  + 1 )  E F ( k  , z ( k ) )  , z ( t )  E F 

z ( k )  E Y ( k )  , s 5 k 5 t 

Corollary 22.1 Formula (22.1) may be substituted for 

X ( S I  ~ , ~ , F ) = X ( ~ , ~ , F ) ~ X ( S I  s , ~ , K )  (22.2) 

where K is any subset of Rn  that includes X ( t  , k , F ) .  

Thus the set X ( s  I t , k , F )  is described through the solutions of two problems the 

first of which is to define X ( s  , k , F )  (along the techniques of the above) and the second 

is to  define X ( s  I s , t , K ) .  The solution of the second problem will be further specified 

for F E comp Rn and for a closed convex Y.  

The underlying elementary operation is to describe X - the set of all the vectors 

z E Rn that  satisfy the system 

Using suggestions similar to those applied in Lemma 19.1 we come to  

Lemma 22.2 The set X may be described as 

x = u  { n { E Z -  M F ( Z ) +  MY  I M E I M ~ ~ ~ )  1 z~ R ~ )  

From here it follows: 

Theorem 22.1 The set X ( s  I s , t , R) may be described as the solution of the multistage 

system (in backward "t ime")  



where 

X [ k ]  = U{ n { E z  - M F ( z )  + M X [ k  + 1) I M E M n x n  ) I z E R n )  , 
s 5 k 2 t ,  X [ t ]  = Y [ t ]  . 

Finally we will specify the solution for the linear case 

z ( k  + 1 )  E A ( k )  z ( k )  + P ( k )  , Y ( k )  = { z  : y ( k )  E G ( k ) z  + Q ( k ) )  

Assume 

X = { Z : Z E A Z - P , Z E  Y , z E Z )  , y = { z : G z ~ Q - y )  (22.4) 

where A E M , G E M m x  , P , Q , Z are convex and compact. 

Lemma 22.3 The set X may  be defined as 

~ ( 1  I X )  = inf{p(X I P )  + P ( X  I Z) + P ( P  I Q - Y ) )  

over all the vectors X E Rn , p E Rm that satisfy the equality 1 = A' X + G ' p .  

The latter relation yields: 

Lemma 22.4 The  set X may  be defined as 

X G L ' ( Z  + P )  + M ' ( Q  - y)  = H ( L  , M )  (22.5) 

whatever are the matrices L E M n X n  and M E M m x n  that satisfy the equality 

L' A + M ' G  = En .  Moreover the following equalities are true 

x = { n H ( L , M )  I L , M )  

P(l I X )  = inf {P(l  I H ( L  , M I )  I L ,M 1 
over all L E M n x n ,  M E  M m X n .  

Corollary 22.2 Suppose I A I # 0. Then  conditions (22.5), (22.6) may be substituted for 

X ( E n  - M ' G )  A-' ( Z  + P )  + M ' ( Q  - 9 )  = H ( M )  , 

x = n { H ( M )  I M I  , ~ ( 1  I X )  = inf ( ~ ( 1  I H ( M I )  I M I  

where 



The latter relations may be used for recurrent procedures. These are either 

with 

with 

where 

L8( . )  = ( L ( s )  ,.. ., L ( t ) )  ; M , ( . )  = ( M ( s )  , . .  ., M ( t ) )  

Theorem 22 .2  The set X ( s  I s , t , Y) may be derived due to  either equations (22 .7 )  or 

(22.91, (22.1  0) .  

Conclusion 

This paper gives an introduction to the theory of guaranteed identification and state 

est imation under uncertainty with unknown but bounded observation "noise" and input 

disturbances. The whole problem is considered within a deterministic setting so that  the 

results are given in the form of set-valued estimates the description of whose evolution is 

the objective of the solution schemes. 

The mathematical techniques applied here are mainly those of convex analysis, set 

theory and related topics [21, 271. A respective continuous version of the given problems 

would thus further lead us to  the techniques of differential inclusions and viability theory 

of nonlinear analysis, [28, 291. 



An important issue is that  the purely deterministic solutions to the guaranteed 

filtering problems may be well approximated by solutions to related problems of stochas- 

tic filtering as shown in 5 5 14, 15. (This idea also applies to  the identification problems of 

$ 5  7, 8.) Thus the well-developed computational techniques of stochastic estimation 

theory may be modified through some procedures of parallel computations to solve the 

problems of the above. Basically this gives a robust procedure for solving the specific class 

of inverse problems discussed in this paper (see also [30, 311). 

One may raise the question of what is more adequate in the analysis of systems - a 

stochastic or a "set-membership", deterministic description of uncertainty? The author's 

opinion is that  this question is not correct - the specific informational assumptions for a 

given problem may require either of these approaches and techniques or perhaps a combi- 

nation and interaction of both, [32-341. It is the specific modelling problem that  should 

dominate the tools. 

The author wishes to  thank F.  Stettinger for the computer simulations 
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