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Foreword 

This manuscript i s  a resu l t  of discussions p r i o r  t o  and during t h e  workshops 
'Tmpacts of Change in Climate and Atmospheric Chemistry on Northern Fores t  
Ecosystems and Their  Boundaries" (August 1987) and "Global Vegetation Change" 
(April 1988) and is an  initial s t e p  in t h e  development of a synthesis between realis-  
t i c  (e.g. biological-detail-rich) computer or iented models of f o r e s t  and more 
mathematically, t r ac tab le ,  but  simpler f o r e s t  models. The work i s  focused on t h e  
boreal  fo res t s  of t h e  world (an important carbon r e s e r v o i r  and  a n  important 
r e s e r v e  of softwood timber). The boreal  fo res t s  are a l so  potentially s t rong  impact 
systems under  c u r r e n t  scenar ios  of COz-induced climate warming. 

One purpose  of building a model i s  t o  get  a n  understanding of what may happen 
t o  t h e  climate if, f o r  example, al l  of t h e  boreal  bel t  were t o  disappear ,  o r  if i t s  
functional efficiency w e r e  t o  double. Could such a disappearance occur  simultane- 
ously with changes in t h e  t ropical  fo res t s?  How would th is  change t h e  exchange 
between a tmosphere  and t h e  e a r t h  su r face?  The au thors  t r y  t o  desc r ibe  a f o r e s t  
( o r  vegetation as a whole) as a boundary l ayer  between f a s t  atmospheric processes  
and slow processes  in soil and underground water systems, and consider  t h e  
geometry of canopies and r o o t s  as a function of extremes corresponding t o  a 
s table  equilibrium of soil and underground water systems. 

The au thors  hope t o  consider  these  and similar problems during t h e i r  continu- 
ing cooperation.  

R.E. Munn 
Leader 
Environment Program 



SOME QUESIXONS RELATING TO THE 
AGE DYNAYUCS OF BOREAL 

H.H. Shugart and M.Ya. Antonovsky 

1. MTRODUCTION 
Present  discussions of t h e  dynamics of t h e  biosphere and of global ecology 

come at a time when t h e r e  is  renewed interest  in time- and space-scales in ecologi- 
cal systems. An appreciation of scales is  a prerequisite to unifying t h e  dynamics 
of t he  atmospheric and oceanographic process with t he  dynamics of t h e  t e r r e s t r i a l  
surface.  Of par t icular  importance is  a knowledge of the  pa t te rns  of dominance (in 
t h e  sense of a controlling pat tern)  of par t icular  phenomena at par t icular  scales. 
The categorization of cer ta in  phenomena as being important to understanding the  
space and time scale in a par t icular  ecosystem has been the  topic of reviews fo r  
several  different ecosystems (Delcourt et al., 1983; O'Neill et al.. 1985). A focus on 
expressing relevant mathematical developments in a manner t ha t  can provide in- 
sight into t h e  ways ecoystems are structured would be  a useful addition to these 
discussions. 

W e  are particularly concerned with t he  ecological modeling of t h e  world's bo- 
real fores t  belt  and w e  would posit several  reasons f o r  this concern. 

2. ENVIRONMENTAL CONTROLS OF STAND DYNAMICS M BOBeAL FOREST 
ECOSYSTEMS 

The boreal  forests  of t he  world are a major repository of t h e  world's terres- 
t r i a l  organic carbon (Bolin, 1986). Moreover, t he  amplitude in t h e  annual 
sinusoidal dynamics of atmospheric carbon dioxide is greatest  in t he  northern bo- 
real latitudes, and at these latitudes, t he re  is  a strong correlation between the  
dynamics of atmospheric carbon dioxide and t h e  seasonal dynamics of t he  "green- 
ness" (Goward et al.. 1985) of t h e  ea r th  (Tucker et al., 1986). The association at 
higher northern latitudes of dynamics of atmospheric carbon dioxide and the  
dynamics of an index of t h e  productivity of t he  vegetation (Tucker et al.. 1986) i s  
correlational,  but a possible causal relation (with the  dynamics of t he  fores t s  at 
these latitudes driving t h e  atmospheric carbon concentrations) appears  to be  con- 
sistent with t he  p re sen t4ay  understanding of ecological processes in these 
ecosystems (Fung and Tucker, 198?b). Along with i t s  familiar role in plant pho- 
tosynthesis, C02 i s  a "greenhouse" gas tha t  has  a n  active role in governing the  
heat  budget of t h e  ea r th  (Flohn, 1980, Manabe and Stouffer, 1980; Budyko, 1982). 
Thus, the  possibility tha t  t h e  boreal fores t s  of ea r th  may b e  actively participating 
in t he  dynamics of an  important atmospheric trace gas is  of considerable signifi- 
cance. 



Current predictions of t h e  climatic response to elevated COz concentrations 
in t he  atmosphere, motivated by the  recorded increase in atmospheric COz report-  
ed  f i r s t  at Mauna Loa Observatory in Hawaii (Bacastow and Keeling, 1983) and sub- 
sequently at all latitudes, are based on a range of large, physically-based climate 
models (called general circulation models o r  "GCM's"; e.g., Manabe and Stouffer, 
1980; Hansen et al., 1984; Washington and Meehl, 1984). While t h e  GCM's vary as t o  
certain underlying assumptions, resolution and o the r  features.  they converge in 
their  prediction of a global warming with increased atmospheric COz. The degree 
of this  warming is  most pronounced at t h e  higher latitudes (Dickinson, 1986). Thus, 
t h e  effect of changes in t h e  atmospheric concentration of COz would seem to be 
strongly directed to t h e  boreal fores t s  of t h e  world (Bolin, 1977; Shugart et al., 
1986). 

These large-scale forest/environrnent interactions are a motivation to a 
be t te r  understanding of t h e  environmental processes controlling the  structure and 
function of boreal fores t  ecosystems. One hypothesis is tha t  t he  s t ruc ture  and 
function of taiga forests  are predominantly controlled by soil thermal and moisture 
regimes promoted by local topography and t h e  successional buildup of a thick 
forest  floor organic mat. This hypothesis w a s  developed by r e sea rche r s  working 
in t he  uplands of interior Alaska (Viereck, 1975; Van Cleve, and Viereck, 1981; Van 
Cleeve and Dyrness, 1983a; Viereck and Van Cleve, 1984; Van Cleve e t  al., 1986) 
where slow growing. nutrient conservative black spruce (Picea mariana) stands oc- 
cupy the  least productive, cold, wet, north-facing sites and fast  growing, nutrient 
dynamic white spruce  (Picea glauca) and hardwood (Populus temuloides, Betula 
papyrifera) stands grow on productive, warmer, d r i e r ,  south-facing slopes. The 
low soil temperatures and high moisture contents found on permafrost-dominated 
Picea mariana s i tes  are thought t o  act as a negative feedback tha t  promotes m o s s  
growth and inhibits decomposition rates s o  that  over  time the  fores t  floor becomes 
the  principal reservoi r  of biomass and nutrients. 

Historically, t he  complex unravelling of these so r t s  of ecological interactions 
w a s  evident in t he  ear ly work of A.S. Watt (1925) on beech forests  and elaborated 
in his now-classic paper  on pat tern and process in plant communities (Watt, 1947). 
When one inspects Tansely's (1935) original definition of the  ecosystem 

'These ecosystems, as w e  may call them, a r e  of t h e  most various kinds 
and sizes. They form one category of the multitudinous physical systems 
of t h e  universe. which range from the  universe as a whole down t o  t h e  
atom." . . . "Actually, t he  systems w e  isolate mentally are not only included 
as par t s  of t he  la rger  ones, but they also overlap, interlock and interact  
with one another," 

one finds tha t  t he  same concepts tha t  one sees in hierarchy theory were explicit in 
t he  original definition of t he  ecosystem. Of course, t h e  Watt/Tansely ecosystem 
paradigm has  been introduced as a major ecosystem construct in ecological studies 
in t h e  United States. One conspicuous example of the  introduction of these con- 
cepts w a s  Whittaker's (1953) review which used t h e  Watt pattern-and-process 
paradigm to redefine the  "climax concept" tha t  w a s  (and still is)  a n  important con- 
s t ruc t  in American ecology. These same ideas are found in ecosystem concepts 
developed by Bormann and Likens (1979a. 1979b) in the i r  "shifting-mosaic steady- 
state concept" of t h e  ecosystem as w e l l  as in what has  been called a "quasi- 
equilibrium landscape" (Shugart, 1984). 



3. NON-EQUILIBRIUM DYNAMICS OF ECOLOGICAL SYSTEMS 
In ecosystems tha t  are dominated by sessile organisms, the  temporal dynamics 

at the  scale  of t h e  individual organism are almost by necessity non-equilibrium 
dynamics. This is most apparent  in forest  systems where the  spatial  scale  of t he  in- 
dividual organisms (the canopy t rees)  i s  relatively large. The space below a cano- 
py tree has reduced light levels and a considerably al tered microclimate due t o  
the  influence of t h e  tree. These conditions determine t h e  species of trees tha t  can 
survive beneath t h e  canopy tree. Upon t h e  death of t h e  canopy t r ee ,  t h e  shading is  
eliminated and the  environment is  changed. In cases in which the  canopy tree dies 
violently (e.g. broken by strong winds), t h e  changes in t h e  microenvironment are 
extremely abrupt.  The death of t he  canopy t r e e  initiates a scramble f o r  dominance 
among the  smaller trees tha t  were persisting in t h e  environment c rea ted  by t h e  
canopy tree and seedlings tha t  establish themselves in the high-light environment. 
Eventually, one of t h e  trees becomes t h e  canopy dominant. The establishment of a 
new canopy dominant represents  t h e  closure of t h e  death/birth/death cycle tha t  
can be thought of as t h e  typical small-scale behavior of a forest.  

In ecosystems o ther  than forests  but sti l l  dominated by sessile organisms, one 
would expect t he  same so r t s  of dynamics. This nonequilibrium behavior at fine spa- 
tial scales has  been noted in a diverse a r r a y  of ecosystems including coral  reefs  
(Connel, 1978; Huston, 1979; Pearson, 1981; Colgan, 1983). fouling communities 
Karlson, 1978, Kay, 1980). rocky inter-tidal communities (Sousa, 1979; Paine and 
Levin, 1981, Taylor and Littler, 1982; Dethier, 1984) and a wide range of heath- 
lands (Christensen, 1985). 

The ecosystems tha t  are both historically and currently t h e  m o s t  studied in 
this regard  a r e  forests.  For this reason i t  is worthwhile t o  elaborate  the  details 
of t he  death/birth/death process in forests. In forests,  t h e  non-equilibrium dynam- 
ics a r e  quasi-periodic with t h e  period corresponding to t h e  potential longevity of 
the individual organisms. This "cycle" can be modified by a variety of factors.  One 
important consideration is  t h e  manner of death of t he  dominant tree. Some t r ee s  
typically die violently o r  catastrophically and t h e  attendant alterations of en- 
vironmental conditions at the  forest  floor (and thus the  effect on t h e  regeneration 
of potential replacements) are very abrupt .  Typically these abrupt  changes a r e  
associated with exogenous disturbances but t h e r e  a r e  some species of trees tha t  
are "suicidal" in that  mature trees flower but once and die t o  release canopy space 
t o  t he  progeny (Foster, 1977). Some trees tend to "waste-away" before they die so  
that  t he  changes in t he  microenvironment that  they control a r e  more continuous. 
Some trees tend to snap at the  crown when torn down by winds; o thers  are heaved 
over  at the  roots exposing mineral soil. All of these m o d e s  of death (and others)  
influence the  stochastic regeneration success of t h e  trees tha t  form the  next gen- 
eration. 

It  i s  an  open question as to whether mode  of death or mode of regeneration i s  
the  strongest determinant of pat tern diversity in forests.  Both are at t r ibutes  of 
t h e  various tree species and may be  strongly interrelated. One aspect  of t he  mor- 
tality of canopy t r e e s  and the  associated opening in the  forest  canopy ("gap forma- 
tion") is  t h e  size of t h e  gap tha t  is  created. Several authors  (van b e  Pijl, 1972; 
Whitmore, 1975; Grubb, 1977; Bazzaz and Pickett, 1980) have discussed species at- 
tributes tha t  are important in differentiating t h e  gap-sizerelated regeneration 
success of various trees. The complexity of t h e  regeneration process in trees and 
i ts  apparently stochastic nature makes i t  very difficult to hope to predict t h e  suc- 
cess  of a n  individual t r e e  seedling even if one could determine the  attendant en- 
vironmental factors.  Most cur ren t  reviewers recognize this and tend t o  discuss 
regeneration in t r ee s  from a pragmatic view tha t  the  factors  influencing the  estab- 
lishment of seedlings can be  usefully grouped in broad classes (Kozlowski, 1971a. 



1971b; van d e r  Pijl, 1972; Grubb, 1977; Denslow, 1980). 

Since the  time scales of t he  replacement cycle in forests  in relatively long, 
tools f o r  a be t te r  understanding of these difficult-to-measure phenomena a r e  
mathematical models of forests.  O u r  cur ren t  research  interest is  to develop a fu- 
sion of t he  simulation-based stand dynamics models ("Gap models") and more analyt- 
ically t ractable  demographic models of t r e e  populations. These two approaches will 
be discussed below. 

Gap Models. 

Gap models are a subset of a class of fores t  succession models called 
individual-tree m o d e l s  ( M u m .  1974) because the  m o d e l s  follow t h e  growth and fa te  
of individual trees. The f i r s t  model of this genre w a s  t he  JABOWA m o d e l  developed 
by Botkin et al. (1972); a similar modeling approach has  been applied to several  
forests  in different pa r t s  of t h e  world (see Chapter 4 of Shugart,  1984. f o r  a re- 
view of several  of these applications, also see Kercher  and Axelrod, 1984). 

Gap models simulate succession by calculating the yea r  to yea r  changes in di- 
ameter of each tree on small plots. The plot size is  determined by the  size of the  
canopy of a single large individual. Forest succession dynamics are estimated by 
the  average behavior of 50 t o  100 of these plots. The growth of each tree i s  deter- 
mined by the  average competitive influence of t he  neighboring trees on a plot. 
Due to the  small size of plots, gap formation events (the removal of canopy t r e e s  
through mortality) strongly affect the  resource  availability on a plot which in turn  
affects tree growth. 

The exact  location of each t r e e  i s  not used t o  compute competition in these 
models. Tree diameters are used t o  determine t r e e  height, and then simulated leaf 
area profiles are computed t o  devise competition relationships due to  shading. 
These models are spatial in tha t  competition i s  computed in t he  vertical dimension. 
There is  an implicit assumption tha t  within a plot of a cer tain size t he  horizontal 
spatial pat terns  of t he  individual plants do not affect t he  degree of competitive 
stress acting on an individual t o  any significant degree beyond tha t  accounted f o r  
by the  plant's height (i.e., tree biomass and lead area a r e  considered to be homo- 
genously distributed across  t h e  horizontal dimension of t he  simulated plot). 

The regeneration of seedlings on a plot and their  subsequent growth is  based 
on the  silvicultural character is t ics  of each species, including s i te  requirements 
fo r  germination, sprouting potential, shade tolerance, growth potential, longevity, 
and sensitivity to environmental factors  (water and nutrients). Under optimal 
growth conditions, the  growth of a tree is assumed to occur  at a rate that  will pro- 
duce an individual of maximum recorded age  and diameter. This curvilinear func- 
tion grows a tree to two-thirds of this maximum diameter at one half of i ts  age 
under optimal conditions. Modifications reducing this optimal growth are imposed 
on each tree based on t h e  availability of light and, depending on the  specific 
model, o the r  resources. In most gap models, tree growth slows as t he  simulated 
plot biomass approaches some maximum potential biomass observed f o r  stands of 
the  given fores t  type. Growth is  fu r the r  reduced as climate stochastically varies. 
Death of an individual t ree ' s  death i s  a stochastic process. The probability of a n  
individual tree's death in a given yea r  i s  inversely related to individual's growth 
and the  longevity of its species. 

Gap model dynamics are based on information concerning the  demography and 
growth of trees during t h e  lifespan of species. The models have a capability to 
predict the  sequence of replacement of species through time and o the r  dynamics 
on the  scale of t he  average tree generation time (Figure 1). A t  this scale,  t he  suc- 
cess of a tree at growing into the  canopy i s  more related t o  t h e  opportunity f o r  



inseeding into a plot and t h e  relative growth r a t e  compared to o t h e r  seedlings than 
i t  i s  related to the  distribution of distances from o the r  competing individuals. 

The relationship of t h e  height of t he  individual to t h e  distribution of heights 
of competitors i s  assumed to be  sufficient to determine the  level of competitive 
stress experienced by an individual in relation to o the r  trees on t h e  plot. This im- 
plies tha t  t h e  distance of a tree to i t s  competitors has  no significant influence on 
the  amount of light and o the r  resources available to a given tree. In terms of im- 
plementing these models, these assumptions lead to a requirement tha t  t h e  dynam- 
ics of a large number of plots be  averaged to be t t e r  estimate t h e  mean rate of suc- 
cess  of canopy invasion of each species. 

Because regeneration, growth and death are modeled on a pre-tree basis and 
the  silvics of individuals vary among species, gap models  are particularly useful 
tools f o r  exploring the  dynamics of mixed-aged and mixed-species forests.  The 
models have been tested and validated against independent data  (Shugart, 1984, 
Chapter 4). For these reasons, gap m o d e l s  can also be  w e d  to explore theories 
about pat terns  in fores t  dynamics at time scales tha t  are sufficiently long to prohi- 
bit  d i rec t  da ta  collection. Such applications have been instrumental in developing 
a theoretical basis f o r  understanding t h e  coupled effects of t r e e  death and regen- 
eration in fores t  systems (Shugart, 1984). 

One gap model tha t  has  been used in a la rge  number of applications in com- 
plex, mixed-species, mixed-aged forests  is  t h e  FORET model, a derivative of t he  
JABOWA model (Botkin e t  al., 1972). The JABOWA/FORET modeling approach has 
been the  central  topic of two books on the  dynamics of natural  forests  (Bormann 
and Likens, 1979a; Shugart,  1984). The FORET model and o the r  analogous models 
have been modified and applied t o  simulate t he  dynamics of a wide range of forests:  
mixed hardwood fores t s  of Australia (Shugart and Noble, 1981); upland fores t  of 
Southern Arkansas (Shugart, 1984); eastern Canadian mixed species forest  (El- 
Bayoumi et al., 1984); t h e  a r id  western coniferous fores t  (Kercher and Axelrod, 
1984); a western coniferous fores t  (Reed and Clark, 1979); and northern hardwood 
forests  (Botkin et al., 1972; Aber et al., 1978, 1979; Pastor  and Post,  1985). 

4. DEHOGRAPHICAL YODEL 
This type of fores t  model represents  the  classic approach to the  investigation 

and prognosis demand of fores t  dynamics. It  would appear  to us tha t  t h e  analytical 
possibilities of this  modeling technique are not completely revealed. The basis of 
any demographical fores t  m o d e l  consists of s o m e  s e t  of dynamical equations f o r  
t r e e  numbers of definite subgroups inside a whole population and f o r  some indivi- 
dual tree variables - masses, lead and root surface, diameter, etc. The subdivision 
into subgroups i s  dictated by the  task under consideration and can b e  very de- 
tailed. It  is  usual in classical mathematical ecology to describe the  basic demo- 
graphical processes - birth,  migration, growth and death - by means of definite 
functions which are derived from theoretical ideas and empirical data. The poten- 
t ial  complexity and diversity of dynamical and parameter behavior tha t  the  
corresponding equations demonstrate are unlimited. For example, modeling tech- 
niques can descr ibe systems with many stationary states,  oscillations, hysteresis, 
wave phenomena, stochastic (even chaotic) and adaptive behavior. 

W e  are certain tha t  t h e  basic dynamical effects shown by gap models in vari- 
ous concrete  applications (multi-stationary state phenomena, t he  sorting out of 
some tree species. when appropriate  conditions vary, etc. ) may be  achieved inside 
dynamical forest  m o d e l s  with r a t h e r  simple growth, birth and death functions and 
the i r  dependence upon ecological parameters in the  r ight  pa r t s  of equations. 
Dynamical m o d e l s  give a smooth trajectory; t h e  corresponding t rajectory f o r  t he  



gap-model is  obtained by means of an  averaging procedure applied to individual 
gap trajectories.  So, i t  would appear  to us tha t  t he  difference between the  two 
modeling approaches i s  not very  large. The gap-model i s  applied to average tree 
positions inside t h e  gap and determines the fa te  of each tree by means of the  
Monte-Carlo mechanism. Dynamical equations are applied to average  tree posi- 
tions in la rge  (potentially infinite) t e r r i t o r i e s  to determine t h e  f a t e  of definite 
groups of trees by means of viability functions. One can match t h e  two types of 
models comparing one tree in t he  gap with one group from a la rge  t e r r i t o ry  and 
averaging t h e  Monte-Carlo variability to get  a determinate variability function. A 
possible and r a t h e r  interesting task of this  type has  not yet been comprehensively 
undertaken. 

W e  see some advantages of dynamical models as compared to gap-models which 
have a simulative nature. Firstly, they give t he  possibility of analytical investiga- 
tion of simple, preliminary models aimed at qualitative system analysis. This level 
of fores t  dynamics investigation enables one to discover some basic propert ies  of 
t he  system. For example, Antonovsky and Korzukhin (1986), described the basic 
dynamical effects of a n  evenaged  forest stand by means of t w o  dynamical variables 
( t r ee  number and individual tree biomass). This model may help to make estima- 
tions of climatically induced shif ts  in t he  general system character is t ics  (total 
biomass, average diameter, tree number, etc.). Another example is  a phytophaque 
interaction with a n  unevenaged one-species tree population (Antonovsky, Kuznet- 
sov, Clark (1987). 

Although both models a r e  extremely schematic, they seem to be  among the  
simplest models allowing complete qualitative analysis of a system in which the  pre- 
da tor  differentially a t tacks  various age  classes of t he  prey. 

The main qualitative implications from the  present paper  can be formulated in 
t h e  following, t o  some extent  metaphorical, form: 

1. The pest  feeding the  young trees destabilizes the  fores t  ecosystem more than 
a pest  feeding upon old trees. Based upon this  implication, w e  could t r y  to ex- 
plain t h e  well-known fac t  tha t  in real ecosystems, pests  more frequently feed 
upon old trees than on young trees. i t  seems possible tha t  systems in which 
the  pest feeds on young trees may be less stable and more vulnerable to 
external  impacts than systems with t he  pest  feeding on old trees. Perhaps  
this has led to the  elimination of such systems by evolution. 

2. An invasion of a small number of pests  into an  existing stationary fores t  
ecosystem could resul t  in intensive oscillations of i t s  age  s t ruc ture .  

3. The oscillations could b e  e i ther  damping or periodic. 

4. Slow changes of environmental parameters  are ab le  to induce a vulnerability 
of t h e  fores t  to previously unimportant pests. 

Let us now outline possible directions f o r  extending the  model. I t  seems na- 
tural to t ake  into account the following factors: 

1. more than t w o  age  classes f o r  t h e  specified t rees;  

2. coexistence of more than one tree species affected by the  pest; 

3. introduction of more than one pest  species having various interspecies rela- 
tions; 

4. the  role of variables like foliage area which are important fo r  t he  description 
of defoliation effect of t he  pest; 

5. feedback relations between vegetation, landscape and microclimate. 



Secondly, comparatively low computer expenses f o r  solution of the  dynamical 
equations give the  possibility of a n  exact  parameter definition even f o r  realistic, 
not simplified models. It  is  well-known tha t  many biological and ecological parame- 
ters are hardly measured in field conditions. so  the  task a r i ses  of the i r  identifica- 
tion by means of comparing model and real behavior (trajectories).  For example, 
this approach w a s  undertaken in quantitative modeling of post-fire succession in 
West Siberia (Korzukhin, Sedyh , Ter-Mikhaelian, 1987, 1988; Antonovski, Ter- 
Mikhaelian, 1987; Antonovski, Korzukhin, 1986b). 

The dynamical equations were essentially nonlinear, and viability functions 
were constructed with the  help of t he  developed theory of tree competition. Age 
dynamics of two-species (cedar + birch) uneven-aged stand w a s  considered over  a 
200-year period a f t e r  catastrophic f i r e  occurrence. Six important parameters of 
t he  system - two seeds immigration intensities and four  inter- and intra-specific 
competition coefficients were determined by means of t h e  usual technique of least 
square minimizing. Wave-like age  dynamics, typical f o r  boreal  fores t  post- 
catastrophic successions, were analyzed from the  mathematical and ecological 
points of view. These dynamics are quite similar to one-gap dynamics during a 
one-life t r e e  cycle (Shugart, 1984). 

In spi te  of t he  roughness of t he  model (Antonovski, Ter-Mikhailian, 1987). in 
ou r  opinion t h e  main assumptions to be cor rec ted  are assuming a single succession 
line over  t he  ent i re  a r e a  and assuming tha t  all stands are of equal size), so  w e  a r e  
not going t o  insist on t h e  quantitative exactness of parameter estimations. 
Nevertheless, t he  following conclusions seems t o  be non-controversial: 

1. Boreal fores t s  a r e  not in a stable state (in t h e  sense of stability of age  struc- 
tures)  but t he re  is  a stable f i r e  regime, i.e., f i r e  years  in which a small p a r t  
of t he  te r r i to ry  i s  burned alternating with major f i r e  years  occurring irregu- 
larly; this conclusion ar ises  firstly from the  nonmonotonous shapes of the  age 
s t ruc tures  and secondly from convergence of the  dynamics of tha t  pa r t  of t he  
te r r i to ry  burned p e r  year  with the  pat tern described above; thereaf te r  a 
stable pat tern i s  maintained. 

2. The probabilities of burning increase with the  age of the  forest.  Other al ter-  
native pat terns  of t h e  probability vector result  in pat terns  of distribution of 
fractions of area burned p e r  year  different to the  observed ones. 

3. The deterministic mechanism of auto-coordination of t h e  fores t  is insufficient 
to  explain the  phenomenon of major f i res  (because such big differences in 
values of burning probabilities between stages is  hardly probable); s o  the re  
should be  a combination of auto-coordination and fluctuations of climatic 
parameters tha t  affect fores t  dynamics. Simultaneously this fac t  indicates t he  
direction of future investigations: t o  take  as a starting point a vector  of burn- 
ing probabilities of t h e  type obtained in o u r  m o d e l  (i.e. with values increasing 
with forest  age) and t o  add random fluctuations of climatic parameters in 
accordance to the i r  statistical distributions constructed with the  help of 
long-term observations. 
In Antonovski, Glebov, Korzukhin (1987) an  attempt w a s  made to m o d e l  in qual- 

itative t e r n  the  dynamics of an  en t i re  fores t  and bog ecosystem which includes 
abiotic and biotic components. The former was the  thickness of t h e  peat deposit 
and the  l a t t e r  w a s  t he  fraction of hygrophytes in t he  total phytomass. The dynam- 
ics of these two variables modeled by formalizing t h e  associated ecological 
mechanism, w a s  the  main line of this research.  

The proposed mode l  describes simultaneously the  process mechanism f o r  an 
ecosystem and i ts  regional setting because i t  is  referenced t o  basic types of eco- 
logical conditions t o  be  found in t h e  chosen area. 



The bog-formation proceeds in t w o  qualitatively different phases. The f i r s t  is 
exogenetic in tha t  t he  system develops under t h e  impact of exogenous forced 
watering which reduces aeration. The character is t ic  time of climatically dictated 
bogging-debogging fluctuations ranges from several  to 200 years.  The horizontal 
bogging rates are as high as meters p e r  year.  

The second phase is  endogenetic in which the  gradual bogging fluctuates rela- 
tively l i t t le at a horizontal rate of centimeters p e r  year.  For this  reason, the  bog- 
ging i s  i r revers ible  with usual climatic variations (against whose background exo- 
genesis occurs)  but is  revers ible  over  large time spans during which the  bog 
ecosystems are influenced by t h e  specifics of mire development, i.e., when regional 
aspects  become important. The peat  deposit and the  impermeable horizon may b e  
said to b e  t h e  "memory" making the  system stable. The exogenous watering effect 
may be  reduced with peat  accumulation preserved. This phase covers  t he  remain- 
ing p a r t  of t h e  hydromorphic se r ies  in the  exogenetic succession of marshy fores t  - forested bog --, open bog --, lake-and-bog complex. 

APPENDIX 
Among the  huge set of models described above w e  will now give m o r e  detailed 

information on the  basic model FORET. 

The s t ruc ture  of the  inner stream of data  and the  s t ruc ture  of organization of 
interrelation of modules of model FORET show tha t  t he  imitation of successional 
progress  of regeneration of fores t  stand is essentially a realization of computer 
procedure of the system of equations. In t he  model FORET, t he  yearly increase in 
t he  diameter of a tree i s  defined by the  expression (for  notation see Shugart ,  
1984) 

A,Di =BIOM(t). Dmrr,(t) .SMWi( t ) .  I j ( t ) .  r n * ( t ) .  (*I 
This system of equations is  completed by the  equations of functional dependence of 
values of t he  seeking variable from o the r  variables of t he  system and also by the  
constraints tha t  w e  put on values of variables of the system, for example, ze ro  
increase in diameter in the  case of a cold winter. 

The simulation of successional processes in t he  model is realized by using the  
results of studies of t h e  life cycle of a tree: birth,  growth and death. The recon- 
struction of a gap in a forest stand is supported by module PLOTIN (Shugart, 1984). 
By the  end of a simulation of one life cycle, t he  existence of gaps i s  determined. If 
such a gap exists, then t h e  model starts up again with module PLOTIN until all gaps 
are filled. 

The fea ture  of t h e  given system of equations is t he  time dependence of a 
number of equations in this  system. The set of equations is  subdivided into t w o  sub 
sets having the  numbers Nl(t -1) and Nz(t -1) i.e, (N(t -1) = Nl(t -1) + N2(t -1). 
The f i r s t  subset consists of equations whose solution up to time t do  not involve 
disturbance of t he  condition of intersection of the  lower bound of t h e  interval of 
t he  permissible value of bD(t); t he  second subset contains all cases in which such 
a disturbance has taken place. Each of these t w o  subsets is, in turn,  subdivided on 
j mutually non-intersecting subsets of equations, t he  solution of which are defined 
by a set of values of parameters  character ized fo r  each subset. In ou r  case this 
corresponds to a subdivision of t he  modelled fores t  stand into separa te  species. 
So  we have 



Selection of excluded equations before  starting computation at time t is  realized 
with some probability plj f o r  each subset and inclusion of equations of the  
second-type is  realized with probability p2. Moreover, from the  logic of t he  pro- 
gram organization of t he  procedure f o r  excluding equations from the  system, i t  fol- 
lows tha t  t he  formal model f o r  exclusion is: 

where N-(t) is  t he  number of excluding equations to the  beginning of calculation 
fo r  t he  moment of time t .  Thus, up to time t ,  t h e r e  exist N( t )  of equations: 

The formalization of function ~ + ( t )  is a complex independent problem. The best way 
t o  describe i t  as an  algorithm is  through BIRTH (Shugart, 1984). So the  complete 
system of equations are (Trushin, 1986): 

1.27+0.3 . (1-tl(t)13 

o . i+o . i  . ( ~ - t ~ ( t ) ) ~  
Choice of expression depends on ~ + ( t )  



vij"P2j -v3j.Ijjt'Xjt ( t  
under the  complex of conditions flji ( 1  ) 

The modelled value of growth at each moment of time is proportional to the  
function Xji , defining the  increase of tree diameter in optimal environmental condi- 
tions. The functions rpij(t) and I j i ( t )  define t he  decrease  in this optimal value of 
growth due t o  competition with o the r  trees fo r  soil nutrients and light energy. The 
functions qzj ( t )  and define the  decrease of "real" growth as a consequence 
of changes in external  factors such as a i r  temperature and soil humidity. 

A s  mentioned previously, t he  model FORET i s  devoted to  simulation of t he  pro- 
cess of forming a mature fores t  stand in some physio-geographical setting through 
regeneration of the  fores t  stand via filling up the  forest  gaps. I t  i s  clear from the  
system of equations how to include anthopogenic pollution and how to develop 
FORET in o the r  directions. 
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