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FOREWORD 

This paper deals with a specific inverse problem of dynamics for a system described 
by a parabolic inequality. The aim is to reconstruct the input (the control) of the system 
on the basis of an on-line measurement corrupted by an error. 

The techniques applied to the eolution are a combination of those developed in posi- 
tional control theory and the theory of ill-posed problems. This paper was contributed by 
the author during his visit to the SDS Program. 

A. Kurzhanski 
Program Leader 

System and Decision Sciences Program. 
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The considered problem is concerned with the following questions. 

Let t be the time variable. Consider an evolutional system C on an interval 

T = [to,8]. We are interested in some unknown characteristic el(t), ~ E T  of the system 

(e.g., may be a collection of some parameters of the system, or of some disturbances 

acting on the system or of controls etc.). We are to reconstruct Cl(t) on the basis of 

measurements of some other characteristic e2(t), ~ E T  of the system C. The results of 

measurements ~ ( t )  are not precise, the error being estimated by h. 

The smaller h is, the more precise should be the reconstruction (in the appropriate 

sense). This is the stability property of the reconstruction algorithm Dh. 

We consider two types of reconstruction problems. In the problems of the first type 

(which we call problems of program reconstruction) the measurements ~ ( t )  are known for 

all ~ E T  at  once. Hence the input of the reconstruction algorithm is the function 

((t), to < t < 8. The output of Dh is a function (Ih)(t), to < t < 8 close (in a suitable 

sense) to the characteristic t l ( t ) ,  to < t < 8 for h small enough. 

In problems of the second type (we call them problems of dynamical reconstruction) 

the characteristic is to  be restored simultaneously with the process of system motion. 

Here in every current moment t the input of the algorithm Dh is the previous history 

ci = fi(-) = {((r), to < r < t)  of the measurements ( made prior to the moment t. The 

output of Dh in the moment t is a function 

which approximates (in the proper sense) the characteristic 

(l(r), to < r < t , for small h . 



Here Dh is to satisfy the property of physical realizability [2], [3]: if &')(r), to < r 5 t l  

and h2)(r), to 5 r < t2 are such that 

then the functions Dh([')(.), Dh(12) are equal on [to,( *) . 
Below we consider a problem of the second type for a system described by a para- 

bolic inequality. We develop further the method for dealing with such kind of problems 

proposed in [l-31. The method is based on some ideas of positional control theory [l417] 

and ill-posed problems theory [18]. 

The present paper is connected with [l-131. 

Let V and H be real Hilbert spaces, V *  and H* be the spaces dual to V and H 

respectively. We identify H with H*. It is supposed that V c H is dense in H and is 

embedded into H continuously. Denote by ( s , . ) ~  and I - I H  and I - l v )  the scalar pro- 

duct and the corresponding norm in H (in V). 

Let t be the time variable, ~ E T  = [tO,f?]. Consider on T a control system E. The 

state of the system is y ( t ) ~ V .  The evolution of the state is given by the following condi- 

tions for almost all ~ E T  the inequality holds ([19,20]): 

and 

Here a(wl,w2) is a continuous on V bilinear symmetrical form satisfying for eome cl > 0 

the condition 

+:V-(-oo,+oo] is a convex proper lower semicontinuous function (or +:H-(-oo,+oo] is 

a convex proper lower semicontinuous function satisfying the regularity condition [21,22]; 

B : U-H ia a linear continuous operator, U is a uniformly convex real Banach space; 

fcL2(T;H); u(.) is a control, i.e. measureable on T function for almost all ~ E T  having 

values in bounded closed convex set P c U ;  yo~{wfV : +(w) < +oo). Under the above 

assumptions in w1s2(T;H)nL2(T;V) there exists a unique function 

y(t) = y(t;to,yo,u(-)), ~ E T ,  satisfying (1.1), (1.2) (see [19-221). We call it a motion of 

system E from the initial state yo corresponding to control u(.). 



Consider the following problem of dynamical reconstruction. Let V = H,'(R) ( or 

V = H1(R)), H = L'(R),u = L'(R),B be the identity operator (see notation in [19,20]). 

Now in (1.1) we take 

Let the control u be of the form 

Here G(t) c R is such that the set {(t,z) : ~ E T ,  z ~ G ( t ) )  is Lebesgue measureable; XG is 

the characteristic function of G; the function u0 satisfies the inequality 

where pl, p2 are positive numbers. 

Let the measurement of the system state y,(t) = y,(t,-) be possible in every current 

moment t, the measurement result ~ ( t )  = ~( t , . )  satisfying the estimation 

Suppose that the motion being observed is generated by the unique control of the type 

(1.4)) (1.5) 

Consider the problem of dynamical reconstruction with 

Remark 1.1. Let e.g., (1.1), (1.2) describe the process of diffusion of a substance in a 

domain R and y(t,-) be the concentration of substance in R in the moment t. Then we 

deal with the reconstruction of intensity of the substance sources and their location (see 

[121). 

We proceed the following way (see [12, 131). To the system C we put into 

correspondence a control system C1 (the model) which is a copy of E. 



The control v ( . ) E L ~ ( T  ; L2(f2)) in the model is chosen for almost all t E T  from convex 

bounded closed set P which contains all the L2(f2) functions of the form x B - g ( z )  where 

B c f 2  is a measurable set, g ( - )  is a measurable function, g : f 2  -, [P1,p2]. 

Consider a partition ri of interval T ,  

t O = r O < r l <  - . .  < r , = e ;  

m  = m ( h ) ,  6(h)  =  maxi(^^+^ - ri), 6(h) < ch, c  = conet > 0  . 

Take 

~ ( t )  = J h ) ( t )  = vi, ri 5 t  < T ; + ~  , i = ~ ~ . . . ~ m  

where vi are (the unique) points of minimum of the functional 

$ ( p )  = 2(z(ri  i to, Y O ,  v(.)) - ( ( ~ i ) ,  p I L y n )  + a ( h ) I ~ I i a ( ~ )  . 

The function a ( h )  > 0; a ( h )  -+ 0 ,  h / a ( h )  -, 0 as h  -, 0. Form the set 

sjh) = [ri, r,+1) X { Z E ~  : v ~ ( z )  2 ,.'I , 

where p is some positive number B1 < p < B2. 

Denote 

where d(S.(B), dh))  is the Lebesgue measure of the symmetric difference of sets S., ~ ( ~ 1 ) .  

Theorem. I f  h  -, 0  then the following is valid 

(,,(h) - 
u*ILa( zLa(n)) -,o 

d(S(B),  ~ ( h ) )  -, 0 . 



Remark 1.2. Similar to [ 12 ]  one can obtain an estimate of reconstruction accuracy. 

2 .  Consider an example. Let 4 be a convex continuous function under the assumption of 

Section 1 .  Then the system ( 1 . 1 )  is equivalent to the equation 

Here A is an elliptic coercive operator 

For ( 2 . 1 )  consider a concrete variant of reconstruction problem [ 1 2 ] .  

Let R  be a two-dimensional domain 

and 

~ y  = a2 a2y /az ;  + b2 a 2 y / a z i  . 

For the sake of simplicity we confine the considerations to the case of reconstruction of 

location G ( t ) ,  t E  T. Let it be known a priori that the control being restored satisfying the 

< R .  inequality 1 u ( t , . )  1 - 

A closed ball in L ~ ( R )  of radius R is taken as P. Then 

For the considered variant of the problem the calculations were carried out for the 

following data 



The motions of the dynamical system and the auxiliary model were calculated with the 

help of an explicit difference scheme with constant time step r = S(h) and constant spatial 

steps 71 and r2 in zl and z2 respectively. 

The set G(to)  is depicted in Fig. 1 and Figs. 2 and 3 show the results of reconstruc- 

tion of the set 

where 

a t  the moments t  = 0.5 , t = 0.9 respectively for 

The unknown set is reconstructed with the help of rectangles with centres in the 

mesh nodes and sides 71 and 7 2  parallel to axes zl, z2 respectively. 

The author wishes to  express gratitude to A.V. Kryazhimski, A.V. Kim, A.I. 

Korotki, V.I. Maksimov for valuable discussions and assistance, and also to A.M. Ustyu- 

zhanin for help in computer simulation of the illustrative example. 
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