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Foreword 

The aim of this paper is to  include innovation processes with costly implementation into the 
classical theory of economic dynamics models. New stochastic optimization methods, developed 
t o  investigate these models, are discussed. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



Economic Dynamics Models with Innovations: 
A Probabilistic Approach 

V.I. Arkin 

The objective of this paper is twofold. First, to include innovation processes with costly imple- 
mentation (emergence and propagation of new technologies) into the classical theory of economic 
dynamics models. Second, to show that the transition to the stochastic setting of the problem 
allows to partially eliminate difficulties due to the discrete nature of innovations' emergence, 
leading to, in the deterministic case, nonconvex extremal problems. This presentation is based 
on the classical Gale model in the simplest situation when the technology is extended only once. 
In this case, a non-standard, two-stage stochastic programming problem with controlled measure 
is shown to emerge. 

The main results consist of a description of the structure of the dual variables (stimulating 
prices) and some related indicators of economic efficiency taking into account the probabilistic 
nature of the model. The major role in the system of economic indicators constructed is played 
by the new technology estimates arising due to the consideration of uncertainty and the lack of 
deterministic counterparts. 

1 Presentation of the Approach 

1.1 The deterministic case 

The general model of economic dynamics can be described in terms of a multivalued mapping 
Q(-) translating the point z E R;, characterizing the stock of products at  the beginning of the 
planning period, to one of the points of the set Q(z) 2 R; at the end of the period. The set 
Q(z) describes the "technological possibilities" in the set z for one planning period, i.e., the set 
of all outputs that can be obtained from the resource vector z at  the end of the period. The 
set Q = {z, z : z E Q(z)), which is the graph of Q(.), characterizes the body of our knowledge 
of all the ways the resources can be used. Given some initial resource vector i, the system's 
dynamics can be described by: 

Let there exist the possibility to broaden our knowledge, i.e., to create a new technological mode. 
In other words, there exists the possibility of transition from the initial technology Q0 = Q to a 
new technology that is characterized by the multivalued mapping Q1(.) with the graph Q' 3 QO. 

Let O be the moment of emergence of a new technological mode, i.e., the moment from which 
the new technology can be used. Let us consider the moment O as depending on the choice 
of a system trajectory, i.e., being a controllable variable. This case will be referred to  as the 
controlled "technological progressn (TP). The system's dynamics takes the form 



The function O = O(xl, x2, . . .) of integer values is considered be given. For (2) t o  be consistent, 
the function O should possess the nonanticipativity property: 

if O(z l , .  . . , zt ,  zt+l, zt+2,. . .) = t 
then O(zl , .  . . , z t ,  z { + ~ ,  . .) = t 
for any sequence (xi+1, z:+~, . . .) . 

Ezample. Let A be some set in Rn, zoCA. Then the function O(zl ,  2 2 , .  . .) = minit  : zt E A) 
will be nonanticipative. 

Given a nonanticipative function O = O(zl, .  . . , z,), r < w, one can formulate the extremal 
problem: t o  choose a trajectory ( a  plan) {zt) satisfying (2) and providing the  maximum t o  the 
function 

where cpO(z), cpl(z) are given utility functions. 
The problem (2)-(3) is, as a rule, nonconvex under "the best" assumptions concerning QO, 

Q1, cpO, cpl, 0. 
Ezample. Let O = minit  : zt 2 0,  where ( is some fixed vector. 
Let us introduce a new multivalued mapping 

R(z )  = Q1(z), 2 2 ?c 
QO(Z), otherwise . 

In this case, (2) is equivalent t o  the inclusion 

Generally, the graph R of R(-)  is not convex, even if the sets Q1 and Q0 are convex. 
The situation noted creates one of the main difficulties when studying specific models of 

economic dynamics with endogenous discretely changing technologies. 

1.2 Transition to the probabilistic setting 

The main idea of the suggested approach is t o  consider O as a random variable with distribution 
dependent on the  system trajectory. Running a little ahead, it should be noted that  even though 
the formal probabilistic setting covers the deterministic case, the "nondegeneracy" conditions 
that  will be imposed on the distributions of the corresponding random variables rule out the 
deterministic situation. 

A plan in the probabilistic model will be represented by the two families of functions 

satisfying the conditions 

The distribution of the random integer-valued variable is given: 

The problem is t o  find a plan providing the maximum t o  the function 



Here, stands for the mathematical expectation showing that  the distribution of the random 
variable O depends on the choice of the sequence Z0 = {xy, t 2 0). 

In [I] a specific case of the above model has been considered when the distribution of the 
random variable O is of the form 

This distribution corresponds t o  the situation in which the probability of transition t o  the new 
technology q(xt) a t  instant t is given, providing i t  did not emerge up t o  this instant. 

This paper considers another way of forming the random variable O. Specifically, let ( be 
some fixed vector characterizing the minimal costs necessary for creating a new technology. ( can 
naturally be considered as a random vector with the given distribution function n(x) = P(( 5 -x). 
Then O = O(() = minit  : xy 2 () is a random variable, the distribution of which depends on 
the  chosen trajectory (2:) and the distribution function of (. 

Remark. In this paper we confine our discussion to  a single extension of the initial technology. 
The above framework can be extended t o  the case of several technologies and also t o  the situation 
in which the parameters of new technological modes are not known in advance and can be defined 
only after the emergence of a corresponding technology. 

2 Innovations Account in the Gale Model. Stimulating Prices 

2.1 The Gale model "input-output" 

The Gale model " i n p u t ~ u t p u t "  is characterized by a technological set T, the elements of which 
are the pairs of nonnegative, n-dimensional vectors (a, b), and by an objective function cp defined 
on T. The set T is assumed t o  be convex and the function y t o  be concave. The pairs (a, b) are 
treated as technological modes (production processes), a being input and b being output. 

A sequence of production processes Zt = (at ,  bt+l) E T is called a "plan" and the following 
balance condition holds: 

b t > a t ,  t = k  ,..., 7 - 1 .  (8) 

The vector of the initial stock bk a t  instant k is assumed to  be given. The problem is to  find a 
plan providing the  maximum t o  the expression 

A sequence of nonnegative n-dimensional vectors {$t, t = k, k + 1,. . . , r) will be called a Uprice 
~ y s t e m . ~  The price system {$t), with the initial vector &, is said t o  stimulate the plan {&) 
with the initial vector bk in the interval [k, r ]  if the following conditions are satisfied: 

A. For every t 2 k, the pair {CLt,bt+l) provides the maximum t o  the function 

for all (a,b) E T. 

B. For all t 2 k, 
$t(iJt - ht)  = 0 . 

The economic interpretation of these conditions is well-known. If some regularity condition 
holds, then the optimal plan is stimulated by a price system. 



2.2 The deterministic Gale model with innovations 

Let us assume that  there exists the possibility of transition from the initial technology To = T t o  
a technology T1 possessing a larger set of production modes T1 > To. To carry out the transition, 
some funds are necessary that  are characterized by a vector [. The funds are created in the sphere 
of T P  that is also described by the input-output model, i.e., a set of pairs (c,d) E Q > R p  is 
given, where c represents the costs and d the output for one planning period. The vector d will 
be treated as the funds created during one planning period. The technology T1 emerges when 
the funds accumulated in the sphere of T P  reach some predetermined level [ E Rn+ (for all the 
coordinates). 

The model assumes the  form 

A plan is defined by a sequence {Zt) = {(at, bt+l), ( q ,  dt+l)) satisfying (12). The vectors of 
initially available resources Lo and initial funds do are considered given. The problem is to  
choose a plan providing the maximum t o  the function 

Here, cpO and cpl are concave utility functions defined on To and T1, respectively. The sets To, 
T1, and Q are assumed convex and satisfying q l (a ,  b) 2 qO(a,  b). 

As already mentioned, the above economic dynamics model is not generally convex. 

2.3 The transition to the stochastic model 

Let us consider [ as a random vector with a given distribution function x(y) = P([ < y). 
The function x(y) is assumed t o  be continuously differentiable. 0 = @([) is an integer-valued 
random variable defined by 

O = minit  : yt 2 [) , (14) 

where yt = C& dk. 
In the stochastic case, a plan is defined by the two sequences ZP = {(a:, by+l), (cy, q + l ) )  , 

t > 0 and Z,'(O) = {(a:(@), b:+l(0))) , t 2 O satisfying the constraints 

(a:,b:+'+,)ETO, t L O ,  

( c ; , d p + l ) ~ Q ,  t > O ,  

byLa:+c:, t L O ,  

(a:(@),b:+I(@)) E T1, t L 0 , 
b:(@) L a:(@), t > 0 , 

bQ(0) = bO, , 



The vectors of the initial resources available io and of the initial funds do are assumed given, 
with =(A)  = 0 .  

The problem is to  choose a plan providing a maximum to the function 

The expectation is taken with respect to the distribution of the random variable 0 ,  which is 
dependent on the plan ( 2 : ) .  

2.4 Stimulating prices 

The sequence of nonnegative vector functions {$:I, { a t ) ,  {$:(0)) with values in R,  and the 
sequence of nonnegative scalar functions { R t )  are said t o  stimulate the plan { Z P ) ,  {z,'(o)) if 
the  following conditions hold: 

A. The price sequence { $ : ( 0 ) ) ,  t  2 0 with the initial price vector $&, = $&,(0) stimulates 
the plan {Z: ( 0 ) )  with the initial resource vector b L ( 0 )  = 6: in the interval [ 0 ,  T ]  (in the 
sense of definitions ( l o ) ,  ( 1 1 ) ) .  

B. For every t  2 0 ,  the pair (a:, b:+,) provides the maximum t o  

for all ( a ,  b) E T o ,  where 

Here $:+, = $:+,(t + 1 )  is the  initial price vector for the sequence {$:(I  + I ) ,  k 2 t  + 1 ) .  

C. For every t  1 0 ,  the pair ( C Y , ~ + ~ )  provides the maximum t o  

for all ( c ,  d )  E Q .  

D. The prices at satisfy the relation ' 

Here, 

E. For every t  > 0 ,  
$:(by - a: - c:) = o . 

'Ram now on x l ( y )  denotes the vector (3,. . ., s) . 



Theorem 1 Let the plan {ZP), {Z:(0)} be optimal and the following regularity condition be 
satisfied: if there exist technological modes 

(not necessarily forming the plan) such that 

then there ezist prices stimulating the plan {ZF), {Zt(0)). 

The proof of the theorem is postponed until Section 3. 
Remark Recursion relations (20) can be resolved for at: 

2.5 A property of the optimal plan: the necessity of risk 

Let {y;, t > 0) be a sequence which is a component of the optimal plan. Let us assume that 

Then n(y:) < 1 for all t 2 0. 
In other words, the strategy of the investment to  the new technology resulting in the emer- 

gence of the latter with probability one is not optimal. 
Proof. Let us assume the contrary, i.e., there exists 0 < k < T - 1 such that n(y:) = 1. Then, 

by virtue of the smoothness of ~ ( y ) ,  A'(~:) = 0 and, using (20), we obtain ak = 0. Then, using 
# 0 from (19), we have cz!l = 0. But, according to  the assumption, (0, d)CQtld > 0. Hence e = 0. So we arrive at y: = YE-, + 4 = Y:-l. Therefore, ~r(y:-~) = ~(y:) = 1. Proceeding on 

in the same way, we obtain ~(y:) = A(Y:-~) = . . . = ~(y:) = 1. But, by assumption, n(y:) = 0, 
which is a contradiction. 

2.6 Economic comment 

First of all we note that, as in the deterministic Gale model, the stimulating prices make it 
possible to  "untien the balance constraints in time and to  screen inefficient technological modes 
on the basis of the local information without recalculating the entire problem. In this sense 
the function Ft(a, 6) from (17) can be treated as a local efficiency criterion in the production 
sphere. The main difference from the deterministic situation is that the output in the production 
sphere a t  instant t + 1 is evaluated in the prices rather than in the prices As formula 
(18) shows, the prices qttl are the expected (forecasting) prices. Indeed, a t  instant t when a 
technological mode is being chosen for the planning period (t, t + I), it is not known whether 
the new technology will appear a t  instant t + 1. The probability of the new technology emerging 
at  instant t + 1, provided that it did not emerge before t, will be shown in Section 3 to equal 

The price of the resources output during the planning period (t, t + I ) ,  provided that the new 
technology will appear a t  instant t + 1 equals = $ttl(t + 1). The price of the resources at 
instant t+  1, provided that the old technology remained at  instant t + l ,  equals $L1. Thus, $t + 1 



is an average weighted (calculated) price a t  instant t + 1 with weights equal to the conditional 
probabilities of emergence and nonemergence of the new technology at instant t + 1. 

Now we proceed to the analysis of relation (19). The function Qt(c,d) plays the role of a 
local optimality criterion in the sphere of TP. The quantity at+1d is the value of the funds, 
and the quantity 4:c characterizes, in terms of value, the input of the resources in the interval 
(2, t + 1) for the creation of the funds. 

Equation (20), determining the quantity at, can be rewritten as 

r ' ( v O )  The quantity R t m  + at+1 characterizes the estimate of the funds if the new technology 
did not appear a t  instant t; otherwise, this estimate equals zero since only a single technology 
extension is considered in our model. Thus at is the expected estimate of the funds in the sphere 
of TP. The quantity Rt  can be treated as a characteristic (an estimate) of the new technology. By 
virtue of (21), it expresses the gain, from instant t onwards, of the system due to  the emergence 
of the new technology at  instant t compared to its emergence at  instant t + 1. The quantity Rt  
is determined in the optimal plan only by the parameters of the new technology T1. If the fund 
increment Ayt is sufficiently small, then it follows from (25) that 

The expression in brackets in (26) is the conditional expectation (conditioned on the nonemer- 
gence of the new technology at  instant t )  of the random variable taking the two values at+l -Ayt 
and Rt and representing the gain from the additional funds Ayt. The quantity Rt  corresponds 
to the gain from the emergence of the technology T1 at instant t. The quantity at+1Ayt corre- 
sponds to the value of the funds Ayt a t  instant t + 1, if the new technology did not emerge at 
instant t. Thus, relation (26) represents the balance in monetary form for the adjacent instants, 
which holds on the average. 

s ' (vO)  The quantity at - = Rt+ naturally can be treated as a lease estimation of the 
1 - d v t - ,  1 

funds at  instant t. It shows an infinitesimal gain from one unit of the funds at  instant t. 

2.7 A simplified model of investment in the new technology 

Let us assume that, in the model described by (12), the instant of emergence of the new tech- 
nology is determined by the equation 

This model is a specific case of the initial model (12), when the set of pairs of the form (c, c), 
c 2 0 is taken as a technological set Q. In this case it follows from (19) that if cf > 0, then 
at+l = $;, and the inequality at, < 4: implies cf = 0. Thus, the value at determined by (20) or 
by (24) can be considered as the efficiency norm of the resource distribution between investment 
in production and the T P  sphere, and 4: can be considered as the limiting value of this norm. 

In conclusion, we present some properties of the optimal plan and its stimulating prices. Let 
us denote 7 = min{t : n(y;) > 0). The time interval [O,? - 11 will be called the "initial section" 
of the optimal plan. Let some components of c; be strictly positive in this section. Then it 
follows from the above that for these components the equality at+l = 4: holds for 0 5 t 5 7 - 1. 
In the interval [O,? - 11, at = C;I' Rkr1(y;) = a, where a is a constant vector. Therefore, the 

-7 
prices of the resources allocated to  the T P  sphere in the initial section of the optimal plan are 
const ant. 



Let us now show that  if in the initial section c: > 0 for all the coordinates, i.e., every 
resource is used in the  T P  sphere in this section, then the optimal plan in this section involves 
the application of the constant technological mode (a0, bO). 

Indeed, by virtue of the stationarity of the prices in the initial section, (17) implies 

(a0, bO) = arg max [vO(a, 6) + + ( b  - a)] . 
(a ,b)€TO 

If we additionally assume that  for any i-th resource there exists an instant m 2 7 such that 
R,*(&) > 0 then cy = c0 is a constant vector in the initial section and b0 = aO + cO. Indeed, 

m 

the vector a = Il, is strictly positive in this case and (22) implies 

3 Proof of the Existence of Stimulating Prices 

The proof is organized as follows. First, a general control problem for stochastic difference 
equations is formulated and the corresponding necessary optimality conditions (the maximum 
principle) are presented. Then, the initial model of economic dynamics is reformulated in terms 
of the optimal control problem. The maximum principle is applied to  the resulting problem. 
Finally, the adjoint variables of the maximum principle are deciphered in terms of the economic 
dynamics model. 

3.1 Smoothly convex control problem 

Let (st ,  x t )  be a controlled process in which the first component, s t ,  assumes its values in a finite 
set S, and the second component assumes its values in the n-dimensional Euclidean space Rn. 

The dynamics of the process {xt) is described by the set of stochastic difference equations 

xo(so) is a given function. The controlling parameters w = (u,  v) are functions of the history 
t of the process {st), ut = ut(s  ), vt = vt(st), st = (so, 81,. . . , s t ) .  The evolution of the pro- 

cess {st) is defined by the initial distribution no(so)  and the set of the transition functions 
n t+ ' ( s t ,  x, v, s t+l) ,  specifying the transition probabilities from the state st t o  the state si+l a t  
instant t+ 1 and depending on the process values xt  and the controlling parameter vt a t  instant t .  

The  choice of the controlling parameters wt is restricted by the following constraints: 

Here Ut(S), &(s) are given sets depending on the parameter s E S, Vt(s) E R', and gt is a vector 
function with values in the k-dimensional Euclidean space Rk. If some controls Wt = (u,, vt) are 
chosen, then by virtue of system (29) the process {xt) is defined together with the transition 
probabilities nt+'(st, xt,  vt, s t+l)  that ,  together with the initial distribution no(so)  generate the 
probability measure nW in the space of all sequences {st). The problem is t o  maximize the 
function 

in all controls {wt) satisfying constraints (30) and (31). Here, E~ stands for the expectation 
with respect t o  the measure nw, and v(s,  x, u, v) is a given function. 

Let us formulate some assumptions for the problem under consideration. 



A. The functions f t+l(st ,  z ,  u ,  v ,  (pt(st, x ,  u,  v ) ,  gt(st, x ,  U ,  v ) ,  and nt+l(s t ,  z ,  v ,  st+,) are 
jointly continuously differentiable with respect t o  the arguments ( x ,  v) .  

B. For every set s t , z ,  v  E &(st ) ;  u l ,  u2 E Ut(st), 0 5 CY I 1 there exists an element u E U ~ ( s t )  
such that  

2 CY(pt(st, 2 ,  u l ,  v )  + (1 - a)(pt(st, 2 ,  , v )  I vt(3t, z ,u ,  2 ) )  

CYgt(st ,~,ul ,v)  + (1 - ~ ) g ~ ( ~ t , z , u ~ , v )  I g t ( ~ t , z , u , v )  
2 2 CYft+l(st ,z,~l,v,st+l) + (1  - a) f t+ l ( s t , z , u  , ~ , ~ t + l )  5 f t+l (s t , z ,u  ,v,st+1) 

= f (st ,  2 ,  u ,  v,  ~ t+l)V~t+l  E S 

Let { z ; ,  u;, v;) denote the solution of (29)-(32), n* be the corresponding measure in the space 
of all sequences { s t ) ,  t  = 1,2,. . . , T ,  and E* be the expectation with respect t o  the measure n* . 

Let us introduce the Hamiltonian 

Theorem 2 (The Maximum Principle) Let {x; ,  u;, v;) be the solution to (29)-(32). Then 
there ezist the functions 11,t = ll,t(st) with values from Rn, X = X(st) 2 0 with values from R k ,  
and ht = ht (s t )  with values from R1,  11, 2 0 such that 

I )  u; = arg max E* [Ht+l(st ,  z ; ,  u,  v;, st+l)lst] , 
uEUc(s1) 

(34) 

If, additionally, the following regularity condition holds: 

there ezists an element iit = Gt(st) E Ut(st)Vst E S 
such that gt(s t ,z; , f i t ,v;)< 0 , t  =0,1 ,  ..., T -  1  , (38) 

then $Jo > 0 and one can specify $Jo = 1. 

The  above theorem is a Ufinite-dimensionaln modification of the result from [2] and can be 
proved following the  approach taken in [3]. 

3.2 The formulation of the economic dynamics model in terms of the control 
problem 

Let us introduce into consideration the random process with two states (0 )  and { I ) ,  and a single 
transition from the state ( 0 )  t o  the  state { I ) ,  so = 0. 



Let us consider the following control problem: 

T o ,  s = 0  
Here T ( s )  = . The control ut = (a t ,  bt+l), vt = ( ~ t , d ~ + ~ )  a t  instant t is chosen 

T 1 ,  s = 1  

dependent on the history s t ;  ut = u t ( s t ) ,  vt = vt(s t ) .  
The transition functions of the process st are defined by 

n ( y  + d )  - 4 ~ )  for st = 0  , st+l = 1 
II  t+ l ( s f ,  ~ , ~ , ~ t + l )  I - X ( Y )  

1  - n ( y  + d )  
for st = 0  , st+l = 0  

1  - X ( Y >  

I I t + ' ( s t ,  Y , d , ~ t + l )  
1  for st = 1  , st+l = k ,  
0  for st = 1  , st+l = . 

The choice of the control wt = ( u t , v t )  satisfying constraints (39)  generates the probability 
measure nW on the space of all sequences { s t ) ,  t = 0,1, .  . . , T - 1. 

One seeks to  maximize the function 
r-1 

EW C v ( s t ,  at, bt+l) - max , 
t =O 

where E~ is the expectation with respect to  the measure nW and 

The optimal control problem (39)-(41) is equivalent t o  the economic dynamics problem (15)- 

(16).  
Indeed, every sequence of the controls {w, )  is related t o  the plan {zP, t i (@)) in the economic 

dynamic model 

Obviously, the reverse is also true. 
Let us show the validity of (40).  Indeed, by virtue of the fact that  the vector function yt is 

not decreasing in all the coordinates, 

Here, yt 2 ( is the complement of the set {yt  2 €1. 



3.3 Application of the maximum principle 

It easily can be seen that, by virtue of the conditions of Theorem 1, problem (39)-(41) satisfies 
all the assumptions of Theorem 2. 

By virtue of the regularity condition, the Hamiltonian in (39)-(41) has the form 

It follows from the maximum principle that there exist vector functions $t = $t(st), At = 
Xt(st) 2 0, p t  = pt(s t )  with values in Rn, and a scalar function ht = ht(st)  such that  

1) (a* b* m a  {yt(st, a ,  b) + E*[$t+l Ist]b - &a} , = arg ( a . b ) € T ( ~ , )  

3.4 Deciphering the adjoint variables 

Let us denote 

Gt(st) = $: for s k  = 0 ,  0 _< k 5 t , 
$t(st)=$:(0) f o r s k = O ,  k s O - 1 ,  s k = l ,  O s k s t ,  

For t 2 O we obtain from relation 1) that the optimal plan t : (O)  = (a:(O), b:+,(@)) provides 
the maximum t o  the value 

vl (a ,  6) + $;+l(@)b - $;(@)a - . 

It also follows from 1) that, for all T 1 0, the optimal plan (a:, b:+l) provides the maximum to  
the value 

vO(a, b) + $t+lb - $:a - m u  , 
(a,b)€TO 

where 

Let us denote 



It  follows then from 2) t ha t  the  value 

a t + l d  - $;c - max 
c,d€Q 

reaches its maximum on the  optimal plan (c:, dp+l). 
Our objective is t o  obtain a recursion equation for the vector at. For conciseness, let us 

denote 

nt  = 7r(yP) , 7ri = 7r1(yZ)) . 
It follows from 3)  t ha t  p: satisfies the following recursion equation: 

Then, (42) together with (43) gives 

Here. 

On the  other hand, one can immediately verify tha t  

This  results in 

Theorem 1 is completely proved. 
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