WORKING PAPER

NORMALIZED CONVERGENCE IN
STOCHASTIC OPTIMIZATION

Yuri M. Ermoliev
Viadsmir 1. Norkin

November 1989
WP-89-091

Illll
International Institute
for Applied Systems Analysis




NORMALIZED CONVERGENCE IN
STOCHASTIC OPTIMIZATION

Yuri M. Ermoliev
Viadimir 1. Norkin

November 1989
WP-89-091

Glushkov Institute of Cybernetics Kiev, USSR

Working Papers are interim reports on work of the International Institute for
Applied Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria




FOREWORD

A new concept of (normalized) convergence of random variables is introduced. The
normalized convergence is preserved under Lipschitz transformations. This convergence
follows from the convergence in mean and itself implies the convergence in probability. If
a sequence of random variables satisfies a limit theorem then it is a normalized conver-
gent sequence. The introduced concept is applied to the convergence rate study of a sta-
tistical approach in stochastic optimization.
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1.Introduction.

In the probability theory there are several types of the
convergence of random variables such as the convergence in mean,
in probability, a.s. and in distribution. They are preserved
under continuous transformations (exept the convergence in mean
which is preserved under Lipschitz transformations). In this
paper we introduce a new concept of normalized convergence, which
seems to be useful for the study of a convergence rate of random
variables. The normalized convergence is  preserved under
Lipschitz trasformations and with some restrictions under
locally Lipschitz transformations. The rate of normalized
convergence doesn't change under such transformations. The
normalized convergence follows from the convergence in mean and
itself implies the convergence in probability. Moreover, if a
sequence of random variables satisfy a limit theorem, then it is a
normalized convergent sequence.

As an application of the introduced concept we study the
convergence rate of so-called statistical method of stochastic

optimization.

2.Definition, consequences

Definition 2.1. Suppose (f,Z,P) is a probability space, w € ). A

sequence of random variables { _(w),s=1,2,..., from ) into a metric
space X is said to be normalized convergent to a random element
$(w (t‘-§+§), if there exists a sequence of positive numbers

y—+w and a distribution function H(t): R'—R' such that

lim inf P{v_p(_,LI<t)2H(L) vy teR'.

s+l



A similar type of convergence is known from the following
well known Kolmogorov’'s limit theorem.

Theorem 2.2 [10]. If F(x) is a continuous distribution
function and (F‘(x)) is a sequence of appropriate empirical
distribution functions, then

lim P(YEIF - F_IKt)=H(L),
s+

where
WF - F‘II = Syp |F(x) - F (x|,

«
HUD =1 -2 ] -Dkteskts,
k=

The following straightforward generalization of Kolmogorov
convergence

lim PCv_pCE_,E)CL ) = H(L)
s+

have been used by Lehman [11]. Unfortunatly such
generalization is not sufficient for the study of
convergence rates in the stochastic optimization. A special

case of the normalized convergence
_J1-c/t, t2¢50, _
P( v‘p(t‘,tK_t > 2 H(t,)-{o' £40, s=1,2,...,

have been used by Polyak [12].

The following statements show that the normalized convergence
occupies a place between the convergence in mean and  the
convergence in probability.

Theorem 2.3. If in a metric space X the sequence of random




variables ts:Q——+X convergences in mean to a random variable
F:0—X, i.e. linm Ep(ts,t)=0, then

s+

lim inf P{u_p(f_,£)<t) 2 H(L),

s 00

where

- >
v_=1/Ep(E_,E), H(t)={g in, %Z%f

Proof. For vs=1/Ep(ts,E) it follows that lim v_=+o and

s +00

stp(ts,t)Sl (with the agreement +w-0=0). By Chebychev inequaliny

for v_<+w
PC v pCE_ E02L ) < u Ep(E 0/t < 1t
If V=40 then Ep({_,{)=0 and
P{ v p(E_ B)2L0 3 = P{ p(E_,E)>0 3 = 0.
Therefore in all cases

P{ vsp(ts,t)ZL Y 14,
thus
P{ vsp(ts,t)<t Y 2 1-14,

and hence

-1, 21,
PC v p(E_ 5L ) 2 H(t)-{é L

N P
Theoren 2.4. If in a metric space {_ —{, then {,— { and
D
hence t,-—*f~
Proof. Suppose that




lim inf PO v plE ,E)<t ) 2 HIL) ¥ teR'.

s+

For arbitrary numbers t, T and for large enough s it follows that

vst?.T and hence
P{o(E . ,t)Zt)=P{vsp(ts ,t)szt)SP{vsp(ts JE2T)=

=1-Plv_p(E_,E)<T).

Then
lim sup P{p(ts,t)Zt) € 1-lim inf P{vsp(ts,t)<T) <

s+ s =+

< 1-H(L).

Since T may be an arbitrary large number and lim H(i)=1
s+

then lim P{p(E_,£)2t)=0.m

s++00
The following facts are essential for understanding the

phenomenon of normalized convergence.
Theorem 2.5. Let X be a Banach space and random variables
ts,t,h:Q—-»X satisfy a limit theorem :

D
v (- {—h
for some positiv numbers v, +. Then

lim inf PCw_ME -l <t) 2 HCL)=P{IhIl <t).

&=+

Proof. Since the norm is a continuous function then the
sequence v_ g ¢ Il converges in distribution to the random variable
Ihll, i.e. measures p_ induced in X by v_lif_-ENl weak™-converge to
a measure u induced in X by Uhll. Then for an open set
G={(xeX| Ixl<t) it follows (see [2], Theorem 2.1) that




lim inf p_(G)=lim inf P{u_IE_-2U<t) 2 p(GI=PLUihll <L),

£ 4+ S-++00 -

where H(t)=P{lhll <t) is some distribution function.®
Theorem 2.6. Let X, Y be metric spaces and y:X—Y be a

Lipschitz mapping in G<X with the constant L, i.e.
pY(y(x‘),y(xz)) < ka(xl.xz) Y xl,xzeG.

Suppose that a sequence of random variables {_:{—X, s=1,2,...

is normalized convergent to a random element &:00—X, i.e.

lim inf P{u_p,(Z_,E)<L) 2 H(L) v teR'.

s=++00
Then

lim inf Pl _p (y(Z ), y(E)It) 2 H(t/L) v teR'.

s+

Proof. From the inequality
Pl _p, (yCE 0, y(3I<ty 2 Py _Lp (L . 0X<L) = Py _p, (T _.EI<t /L)
it follows that

lim inf P{vsp&(y(ts),y(t))<t} 2

s+

2 lim inf Pl _p (E_,E)<L/L) 2 H(L/L).®
€ >+

Theoren 2.7. Let X, Y be metric spaces and y: X—Y be a local
Lipschitz mapping. Suppose that a sequence of random variables
cs:n-+x is normalized convergent to a deterministic element leX,
i.e.

lim inf P{y_p, (F_,8)<t) 2 H(L) vy teR'.
s-++0




Then

lim inf Pv_p (y(E),y(E)I<t) 2 H(L/L(E)) ¥ teR',

s+

where
L&) = ii? sup py(y(x),y(t))/pk(x,t).

Proof. Let
Ld = sup< py(y(x),y(t))/pX(x,t).

x:px,§1S

It is clear that Lg<+w for small &, L, decreeses monotonously

when 640 and éig Lg = L(I). We have inequalities

P{u_p, (Y(E D, Y(EIICED 2 Py p (yC(E ), y(E<L, p (E_ E)6) 2
> Pl Lep, (£ _EI<L, p(E LX) =
= Plv _Lep, (E_ EI<LY = Py Lep (E_EX<L, p(E_ E)26) 2

2 Pu_p,(L_,E)<t/Lg) - PLp, (L _.0)26).

P
By Theorem 2.4 it follows that ts——qt, i.e.

lim P{p, (5 _.§)26) = 0.
s =++00
Then for any 6

lim inf P{vspk(y(ts).y(t))<t} 2
s4+0

2 lim inf P{vspx(ts.:)<t/L6) 2 H(t/Ld).
s+

The left side of this inequality does not depend on 6. The right
side has a limit H(L/L(Z)) when 640 due to the continuity H from




the left. Therefore

lim inf P{v pY(y(t ), y(E))<ty 2 lig H(t/Ld) = HL/L(E)) . m

s ++00

Remark 2.8. In fact we have proven the statement of the

Theorem 2.7 for a mapping y(x) such that
pY(y(x),y(t)) < pr(x,t)

when x is near ¢ Qith fikéd’t and constant L.

From this theorem is observed the following stratergy ofa
convergence study in the stochastic optimization . Suppose we have
a Lipschitz functioal #(v) in a metric space X, for instance a
marginal functional of a STO problem. If we have a sequence of
estimates v_—v satlsfylng a 11m1t theorem v_ (v, v)—E»h then the

convergence rate of #(v_) ﬁ“*féllows from Theorems 2.6 and 2.7.

3. A statistical approach

Let us now discuss an application of introduced consepts to
the convergence study of so-called statistical approach in the
stochastic optimization (STO).

Consider the STO problem without constraints in expectations:
minimize

F(x) = Ef(x,8) = é f(x,OP(dE), xeX,
where X 1is a subset of a topological space, 8e®, (6,Z,P) is a
probability space.

Suppose that F(x) is a lower semicontinuous function with
the minimal value F* and the set of optimal solutions X*cX Cif
they exist). We are also interesting in a set of approximate
solutions XX=(xeX| F(X)F*+e).







Consider a sequence of approximate programms with empirical
measures Ps instead of P:

1 s
minimize Fs(x)=—s—k£f(x,8k), xeX,

where 81, 82,... are iid observations. The optimal value F: and

the sets of optimal solutions
X*={xeX |F_(x)=F*) and X* (xeX|F(x)SF*+e)
s s s €s s

depend on a random element w=(8’,82,...) of a new probability
space (Q,Z ,P ) which is a countable direct product of coppies of
the space (©,Z,P). The consistency question of estimates F:(w),
X:Cw), X:s(w) is the question of a convergence of optimal values
F:(w) and optimal sets X:(w), X:s(w) to the true values F*, X* and
X: (see [3], [4], [9], [15]1-[18] and references in [14]). The rate
of convergence F:, X: as a rule is defined by means of assymptotic
distributions of YS(FA-F™) and YS(XX-X). Such results depend on
differentiability properties of some marginal values and mappings
which are difficult to be varified (see [51-[8],[14]). The concept
of normalized convergence allows us to introduce another type of a
convergence rate without making use of directional derivatives.

Let us rewright the approximate problem in a parametric form:

minimize Q(x,ys(x,m))=F(x)+ys(x,m), xeX,

where

1 s _
ys(x,m)=Tk§l f(x,ek)-F(x) ,

and consider a parametric problem:



minimize &(x,y(x))=F(x)+y(x), xeX.

Let us denote

3%(y)= inf €¥(x,y(x))| xeX),
X*(y)={xeX| &(x,y(x))=3*(y)),
XZ(y)={xeX| 3(x,y(x)I<8™(y)+£)

The functional Q*(y) and the multivalued mappings X*(y), X*(y) are
defined here on the Banach space C(X,R') of continuous functions

y:X—R' with the norm
HyHc=max{|y(x)| I xeX).

Theorem 3.9. If F(x) is a lower semicontinuous function on a
metric compact X then Q*(y) is a Lipschitz functional with a
constant L=1.

Proof. Let y, ,yzeC(X,R’) and

$(y )=8(x ,y (x)), &%y )=8(x_,y_(x D).
We have
#(x,y (x)) = $(x,y, (x))+y, (x)-y_(x) = $(x.y, (x))+0(x)

where a(x)=yx(x)-y2(x). Thus
$(x,y (x))-lioll, < #(x,y, (X)) = &(x,y (x))+loll,.
Then on the one hand
$7(y_) = 8(x_,y (x)) 2 Q(xz,yxtxz))-ﬂaﬂc 2

= X -
2 ﬁ(x!,y!(xx))-naﬂc =& (y!) loll,




I0

and on the other hand

$ (y d+loll, = 8(x ,y (x M+loll, 2 8x ,y (x ) 2

v

_ x¥
Q(xz,yz(xz)) =¥ (y).
Combining both inequalities we have

$7(y d-loll, < 8%Cy) < §7Cy d+lol
or
* &k _
& (yz) $ (y‘)l < ly,-y Il.m

For sets A and B from a metric space let us define the values

ACA,B) = sup inf p(A,B), p (A B) = max (ACA,B), A(B,AD.
a€A bE€B

Theoren 3.10. If F(x) is a continuous function on a metric
compact X then the mappings y—X*(y), y—»XZ(y) are upper

semicontinuous (and closed) and the functionals
y—6Cy) =ACX®(y) , X, y—o(y)=p, (X2(y), X2

are upper semicontinuous with the continuity at y=0 and
6(0)=p(0)=0.

Proof. Firstly let us show that the mapping y—X*(y) is
closed. Suppose {yn(x)) converges to an element y%C(X,R'),
x eX"(y ) and x —x’. We need to show that x/eX*(y). The functions
F (x)=F(x)+y (x) uniformly converge to a continuous function
F'(x)=F(x)+y’(x). In other words for any sequence x _eX, X —%x’, it
follows F‘n(xn)-—vF’(x'). Since xnex*(yn) then F (x J<F (2) for all
zeX. Coming to the limit we have F'(x)<F'(z) for any zeX. Hence
indeed x’€X®(y). From here by X¥(y)cX it follows that X*(y) is



I1

upper semicontinuous and the functional y—6(y) is continuous at
y=0eC(X,R'). Besides this functional y—&6(y) is a superposition of
two marginal functions and its upper semicontinuity follows from
marginal function theorems. Actually. the function
6'(x)=inf‘{llx—x'|||x'e)(*) is continuous for a compact X¥, and the

functional

y—5(y) =sup{6*(x) |xeX™*(y))

is upper semicontinuous for compact valued upper semicontinuous
mapping y—»X*(y) (see [1], ch.3, par.1). The proof of the analogous
statements for X:(y) and p(y) is carried out similarly.®s

Theoren 3.11. Let F(x) be a lower semicontinuous convex
function defined on a compact subset X of some Banach space B.
Then the multivalued mapping y—+X:(y) is lipschitzian at
y=0eC(X,R') for £>0, i.e. for Housdorf metric p,

2D
p (XYY, X2 £ Fliyll, v yeC(X,R"),

where D is a diamiter of X.

Proof. For x_eX (y) by the difinition
B8(x_,y(x,.)) = F(x D+y(x) < 8%(y)+e.
Since Q*(y) is lipschitzian
F(x_) < 8%C0)+llyll +]y(x ) |+e < F*s2llyll e,

i.e. X, ex* or X (y)cx

ee2llyll eezliyll’

It is clear that

* : 3
N SOPIENNS wld oI




I2

Let us show that for &2¢

&-&

t JEVE ]
PuXgXgd & — Dy

where D =sup{lix-xll|xeX,x-€X} is the diamiter of the compact X.

From here it follows that
2D
Py (X2 X2(y)) < iyl
and thus the theorem is proven. Actually we have

* oW W
py(XZ.X2) = AKXZ.XD) =

= sup inf Hy-zW=1y*-2*y,
yEX:, zEX:

where y* provides the suppremum of the continuous function
¢(y)=inf{|ly—zlllze)(:) on X:, and z* provides the infinum of the
function w(z)=||y*-zll on the compact X:. Let us choose a point

x*eX® and construct

From the convexity of F(x) we have

&
F(x) < F(x™) + — Fiy™ <

E=-E

&
» : t
< Y F*?(F +e) SF +¢,

i.e. x'e)(:. Then

p (X2 X20 = My 2™l <y -xl <



I3

4. Consistency results, the rate of convergence

Coming back to the consistency of estimates F‘:. X:. X:s and

the rate of convergence we can see that

*, . ) X, | _y ) »* _yM )
Fs(w)-§> (ys( ,w)), Xs(w)—)( (ys( ,w)), Xes(w)-Xe(ys( ,w)),

where

mI -
~n

Y (x,w) = f(x,6,) - F(x).

k

1

Since Q*(y) and pH(X:(y),X:) are lipschitzian functionals at
y=0 then the convergence F:(w) to F* and X:s(w) to X: follows
from the convergence of ys(-,w)eC(X.R‘) to 0eC(X,R') in some
probabilistic sense (a.s., 1in probability, in distribution,
normalized).

For any fixed point xeX by the strong law of large numbers
Y (x,w)J—0 P -a.s. We need additional assumptions to ensure a
uniform (in X) convergence ys(x,w) to O0eC(X,R') in some
probabilistic sense. Let us mention some of them.

A. Suppose D is a relativly open convex set in R" and
f: Dx&—R' is a convex function on D for all 8e® and f(x. ) is
integratable for all xeD.

Then for any compact XcD from the convergence Y (X, )—0
Pm-a.s. for rational points x it follows (see [13], theorem 10.8)

a uniform convergence of y_(-,w) to 0eC(X,R') on X, i.e.

1«
Iy o= max | == FX.6)F(x) | — 0 Pas




14

B. Suppose X is a compact in a separable Banach space and
If(x,8)-f(y,8| < LA Ix-yll ¥ x,yeX,

where f(x, ) and L(-) are integratablfor all xeX.

Then y (-,w) is lipschitzian in X with the constant

1 s
L5 11(6), L) Pras. and y,(-,)—0eC(XR)

Pw-a.s.l

C. Suppose X is a compact in R" and

1) £f:X-©6 — R' is measurable in 8e® for all xeX,
2) |f(x.0)-f(y,8)| £ LB Ix-yll vy x,yeX,

3) E{)L"'(B)P(de)ﬂoo and é f2(x,08)P(d8)<+m for some X.

Then (see [71) there exist a Gaussian random variable h

taking values in C(X,R') such that
D
s Y (0w — h m

Lemma 4.12. Under assumptions A, B or C functions w-—-»F:(w),
w—-»ACX *(w), X and w——tpH(X (w), X ) are measurable.

Proof. By Theorem 3.8 y—% (y) is a Lipschitz functional and
by Theorem 3.10 6(¥)=AX*(y),X™), p(y)=p,(XX(¥),XX) are upper
semicontinuous (and hence Borel) functionals. Functions f (x,6 ()
are continuous in x for all w and measurable in w for all x (as a
superposition of two measurable mappings f(x,-):6—R' and
8,:0—0 ). The function y (-,w) clearly has the same properties
therefore the mapping w-—oy‘( -,w) is measurable as a mapping from )
inte C(X,R') (see [71). Finally functions FX(w)=8"(y (-,a)),
ACX_ *w) X*)-d(y (-,0)) and pH(X (w), X* )=p(y_(-,w)) are measurable
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as superpositions of a measurable mapping y (-, -):0—C(X,R') "and
Borel functionals #%(y), 6(y) and p(y) from C(X,R') into R'.m

Theorem 4.13. Under assumptions A or B Fl(w)—F",
ACKX(w) , X*)—0 and p (X (@), X2)—0 P -a.s., s—w.

Proof. Under assumptions A or B y (-,w)—0 P -a.s. Under A
the function F(x)=Ef(x,8) is convex in a neighbourhood of X and
under B F(x) is lipschitzian in X, hence in both cases F(x) is
continuous on X. By Theorem 3.9 the functional Q*(y) is
lipschitzian and by Theorem 3.10 the functionals 6(y)=ACX*(y),X*)
and p(y)=pH(X:(y),X:) are continuous at y=0. Therefore
Fr(w) ="y _(-,w))—8™(0)=F", 6Cy, (- ,w))—6(0)=0 and
p(y‘( <, 0))=2p(0)=0 Pw-a.s.l

Theorem 4.14. Under assumptions C

1) lim P (YS|F (w)-F*|<t) 2 P CIhI LY,
c-H'm

Pw
2) Acx:(w),x*)—-. 0.
If in addition f(-,8) is convex for all 8e8 then

3) lim inf P (¥Sp (X7 (w),X2)<t) 2 H(et/(2D)),
s++®

where D, is a diameter of X, i.e. the values Fl(w)-F* and
pH(x:s(m).x:) are normalized convergent to O with the rate of
1,75,

Proof. Under assumptions C ¥Sy ( -,m)—boh therefore by
Theoren 2.5

lim inf P_(+Sly_(-,udl <L) 2 HLI=P (MhHCL).
g++Q

* »® * * % %
Since Fr(w=t"Cy (-, ), p, (X% (@), X =p X2y C-,02), X5 and




{6

y—3"(y), y-opH(XZCy),X:) are Lipschitz functionals at y=0 (see
Theorems 3.9, 3.11) then statements 1), 3) follow from Theorem
2.7 and Remark 2.8 As for statement 2) the value
AN, XM =ACX (y (-,0),X*) is measurable by Lemma 4.12 and a

corresponding functional 6(y)=A(x*(y).X*) is continuous at y=0.

Pw
That is sufficient for preserving the convergence Y (o w)—0

under the transformation y—é6(y) (see [2), Corollary 2 of Theorem
5.1).

The generalization of the discussed results to the STO
problems with constraints in expectations can be done directly
under common regular requiements.
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