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FOREWORD 

A new concept of (normalized) convergence of random variables is introduced. The 
normalized convergence is preserved under Lipechitz transformations. This convergence 
follows from the convergence in mean and itself implies the convergence in probability. If 
a sequence of random variables satisfies a limit theorem then it is a normalized conver- 
gent sequence. The introduced concept is applied to the convergence rate study of a sta- 
tistical approach in stochastic optimization. 

Alexander B. Kurzhanski 
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1 . Introduction. 

In the  probabili ty theory there are several  types of the  

convergence of random variables such a s  t h e  convergence in  mean, 

in  probabili ty,  a . s .  and i n  dis t r ibut ion.  They a r e  preserved 

under continuous transformations (exept t h e  convergence in  mean 

which is preserved under Lipschitz transformations). In t h i s  

paper we introduce a new concept of normalized convergence, which 

seems t o  be useful for  the  study of a convergence r a t e  of random 

variables. The normal ized convergence is preserved under 

Lipschitz trasformations and with some r e s t r i c t i ons  under 

local ly  Lipschitz transformations. The r a t e  of normalized 

convergence doesn* t change under such transformations. The 

normalized convergence follows from the convergence in  mean and 

i t s e l f  implies the  convergence in  probabili ty.  Moreover, i f  a 

sequence of random variables s a t i s f y  a limit theorem, then it is a 

normalized convergent sequence. 

As an application of t h e  introduced concept we study the  

convergence r a t e  of so-called s t a t i s t i c a l  method of s tochast ic  

optimization. 

2. Definition, consequences 

Definition 2.1. Suppose CQ,C,P) is a probabili ty space, w E Q. A 

sequence of random variables tsCw) , s=1,2 , .  . . , from S I  in to  a metric 

space X is sa id  t o  be normalized convergent t o  a random element 
N 

tCo1 Ct -1, i f  there  ex i s t s  a sequence of posi t ive numbers 
s 

vs-+a and a d is t r ibut ion  function H ( t 1 :  R1-R1 such t ha t  

l i m  inf P(v p(( ,t)<t)LH(tI y td?'. 
s++w 

s s 



A similar type of convergence is known from the following 

well known Kolmogorov's limit theorem. 

Theoren 2.2 [lo]. If F(xI is a continuous distribution 

function and <Fs(xI) is a sequence of appropriate empirical 

distribution functions, then 

lim P<%llF - F Il<t)=H(tI, 
8++a 

8 

where 

IIF - F 11 syp )F(xI - F (XI), 
8 8 

The following straight for ward generalization of Kolmogorov 

convergence 

lim P<v p(C ,CI<t 1 = H(tI 
s++a 8 8 

have been used by Lehman [ 11 I. Unfortunatly such 

generalization is not sufficient for the study of 

convergence rates in the stochastic optimization. A special 

case of the normalized convergence 

have been used by Pol yak 121 . 
The f 01 lowing statements show that the normal ized convergence 

occupies a place between the convergence in mean and the 

cdnwrgence in probability. 

Tbeorem 2.3. If in a metric space X the sequence of random 



variables f : W X  convergences i n  mean t o  a random variable s 

( : W X ,  i . e .  l i m  Ep(f , f l = O ,  then 
s*w s 

l i m  inf P<v p(f , f l< t )  1 H ( t l ,  
s*w s s 

where 

Proof. For v =i/Ep(t , f l  it follows that l i m  v =+a and s s s*w 
vsEp(ts .f IS1 ( w i t h  the agreement +w.O=Ol.  By Chebychev inequal i n y  

for v <+m s 

P< v s p ( t S , t l z t  1 5 V E P ~  . t ~ n  s in. s s 

If v =+a t h e n  EpCf , f l = O  and s s 

Therefore i n  a l l  cases 

P< v s p ( t s . f l t t  1 s l/t. 
thus 

P< v p(t , t l< t  1 1 1-i / t ,  s s 

and hence 

P< v pCf , f l < t  1 1 H C t l =  1-1/t9 t11, s s {o. t < l .  I 

N P 
Theorem 2.4. I f  i n  a metric space C 4, then f + f and 

D r s 

hence C 4. 
r 

Proof. Suppose that  



lirn in f  P< v p(t J I < t  1 H ( t 1  v teR1 
+ ++o 6 6 

For a r b i t r a r y  numbers t ,  T and f o r  l a r g e  enough s it fol lows t h a t  

v t l T  and hence 
6 

Then 

l i m  sup  P<p(t s . t 1 2 t )  S 1 - l i m  i n f  P<v p(t . t I<T> -< 
s++o 

s S 
s++w 

Since  T may be an a r b i t r a r y  l a r g e  number and l i m  H(tI.1 
s + m  

t h e n  l i m  P<p(t  s , t l L t ) = O . ~  
s++w 

The fol lowing f a c t s  are e s s e n t i a l  f o r  understanding t h e  

phenomenon of normalized convergence. 

Theorem 2.5. Let X be a Banach space  and random v a r i a b l e s  

ts . t  .h: k X  s a t i s f y  a limit theorem : 

f o r  some p o s i t i v  numbers v --, +OD. Then 
s 

l i m  i n f  P<v IIt -ell <t) 'L H(tI=P<llhll <t). 
6 s 

s++o 

Proof. S ince  t h e  norm is a continuous funct ion  t h e n  t h e  

sequence v IIC -C II converges i n  d i s t r i b u t i o n  t o  t h e  random v a r i a b l e  
s 6 

Ilhll. i. e. measures ps induced i n  X by vs lit s -t ll weakN-converge t o  

a measure p induced i n  X by llhll. Then f o r  an open set 

G=<xQ I llxll<t) it fol lows (see 121. Theorem 2.11 t h a t  



lirn inf p ( G l = l i m  inf  P<v Ilt -(ll<t) 3 p(Gl=P<llhll <t), 
s s-+w . s s c ++w 

where H(tl=P<llhll <t) is some d is t r ibu t ion   function.^ 

Theorem 2,6. Let X ,  Y be metric spaces and y:X+Y be a 

Lipschitz mapping i n  GSX with t h e  constant L,  i .  e .  

Suppose t h a t  a sequence of random var iables  t : h X ,  s=1 ,2 ,  . . . , 
6 

is normalized convergent t o  a random element t : h X ,  i .  e .  

lirn inf P<vspx( t s , t l< t )  1 Htt l  y tal. 
s ++m 

Then 

l i m  inf P<vspy(y(t s l . y ( t l l < t )  t H(tfi) y td? ' .  
s ++a 

Proof, From t h e  inequal i ty  

~ < v ~ p , ( y ( t  s l . y ( t l l < t )  L p<vS~px( t s  , t l<t> = p<vspX(t s . t l< th)  

it follows t h a t  

l i m  inf P<v=p,(y(t s l . y ( t l l < t )  t 
s ++w 

1 lirn inf P<vspx(t .tl<t/Ll 2 H(t1L1.m 
6 ++OD 

s 

Theoren 2.7. Let X ,  Y be metric spaces and y: X-Y be a local  

Lipschitz mapping. Suppose t h a t  a sequence of random variables 

t : k X  is normalized convergent t o  a de te rmin is t ic  element  EX, 
6 

i .  e. 

lirn inf  PivtpxCtt.t l<t) 2 H C t l  y tQ1. 
r++m 



Then 

l i m  inf P<vspy(y(t s ) . y ( t ) ) < t l  2 H ( t / L ( t ) l  v td?' . 
s++w 

L ( t )  = l i m  sup py(y(x) .y(t))/p,(x.tl .  
x + t  

Proof. Let 
- La - x : p x , t  s u p  ) I 6  py(y(x) ,y(t))/px(x.t) .  

I t  is clear  tha t  L6<+m for  small 6. L6 decreeses monotonously 

when 6 4  and l i m  L6 = L(t1. We have inequal i t ies  
6 4  

P 
By Theorem 2.4  it follows tha t  t s 4. i . e .  

l i m  P<px(ts.t)>-al = 0. 
s++m 

Then for  any 6 

l i m  inf Pivspx(y(t,) , y ( t ) )< t )  > 
s + m  

2 l i m  inf P<vspxCts , t )<t/L6) 2 H(t/L6). 
s + m  

The l e f t  s i de  of t h i s  inequal i t y  does not depend on 6. The r i gh t  

s i d e  has a limit H(t /LCtl)  when 6 4  due t o  the continuity H from 



the left. Therefore 

lim inf P<vspy(y(t s ),y(t))<t) L lim H(t/L6) = H(t/L(t)).m 
s ++a3 6 4  

Remark 2.8. In fact we have proven the statement of the 

Theorem 2.7 for a mapping y(x1 such that 

1; - .  . . .. . 
when x is near t with fixed and constant L. 

From this theorem is observed the following stratergy ofa 

convergence study in the stochastic optimization . Suppose we have 
a Lipschitz functioal Q(v3 in a metric space X, for instance a 

marginal functional of a ST0 problem. If we have a sequence of 
D 

estimates v -v satisfying a limit theorem v (v -v)Ah then the 
S 8 (v) , S s 

convergence rate of P(v 1 t~ollous from Theorems 2.6 and 2.7. 
6 

3. A statistical approach 

Let us now discuss an application of introduced consepts to 

the convergence study of so-called statistical approach in the 

stochastic optimization (STO). 

Consider the ST0 problem without constraints in expectat ions: 

minimize 

F(x> = Ef(x,B> = S f(x,O>P(dO>, 
8 

x a ,  

where X is a subset of a topological space, 868, (8 ,C .P)  is a 

probabi 1 ity space. 

Suppose that FCx) is a lower semicontinuous function with 

the minimal value F* and the set of optimal solutions X*CX (if 
they exist). We are also interesting in a set of approximate 

solutions X;=<X& I FCX)S*+C). 





Consider a sequence of approximate programms with empirical 

measures P instead of P: 
s 

1 s 
minimize F s  XI=^ 1 f(~.9~I. xeX, 

k =1 

where 8 . 1 
8+.... are iid observations. The optimal value F* and 

6 

the sets of optimal solutions 

XW=<xd s IF s (XI =F*I s and X* ES .ixd IF(XISF*+~) s 

depend on a random element w(8 . 8+ . .  . .I of a new probability 
1 

space CP,C,.P,I which is a countable direct product of coppies of 

the space (O.C,PI. The consistency question of estimates FZ(oI. s 

X*(UI. xZs(~I is the question of a convergence of optimal values 
S 

F*(d s and optimal sets xr(o1. X~~(UI to the true values F*. X* and 
X; (see [ 31. 141. [91. [ 151 -1  181 and references in [ 1411. The rate 

of convergence F:. X: as a rule is defined by means of assymptot ic 
* * distributions of 6(F -F 1 and 6(XZ-X*) . Such results depend on 
S S 

differentiability properties of some marginal values and mappings 

which are difficult to be varified (see 151-[81, [1411. The concept 

of normalized convergence a1 lows us to introduce another type of a 

convergence rate without making use of directional derivatives. 

Let us rewright the approximate problem in a parametric form: 

minimize @(x,ys(x.o11=F(x1+y s (x.u1. XEX. 

where 

and consider a parametric problem: 



9 

minimize @(x,y(x11=F(x>+y(x>, XEX. 

Let us denote 

P * ( ~ I =  inf i ~ x , y ( x ) ) l  x d ) ,  

X * ( ~ ~ . ~ X € X I  @ ( ~ , ~ ( x 1 1 = @ * ( ~ 1 ) ,  

x ~ ( y ) = i x d (  @ ( X . ~ ( X ~ ~ U * ( ~ ~ + C )  

The functional 0*(~1  and the multivalued mappings ~ " ( ~ 1 ,  ~ " ( ~ 1  are 

defined here on the Banach space C(X,R1 1 of continuous functions 

y:X-R1 with the norm 

Ilyll,=maxi ly(x1 I ( x d ) .  

Theorem 3.9. If F(x1 is a lower semicontinuous function on a 

metric compact X then 0 * ( ~ 1  is a Lipschitz functional with a 

constant L=l. 

Proof. Let y ,y eC( X.  R' 1 and 
1 2  

P * ( ~  1 = U x  , y  (X 11, I P * ( ~  1=@(x , y  ( x  11. 
1 i l l  2 2 2 2  

We have 

U x , y  ( X I >  = IP(x,y (x11+y (XI-y (XI  = H x , y  (x>>+Cr(x1 
1  2 1  2 2 

where d x I = y  (XI-y (XI .  Thus 
1  2 

P(x,y I (XI)-lloll, 5 P(x,y 2 (XI)  S P(x,y I (xll+llallc. 

Then on the one hand 

l = P(x2*y2(x211 L P(x * y  (x 1)-lloll, L 
P 2 1 2  

2 *yl (x  1 ))-l\crllc = P*cY 1 1-llollc 



and on the other hand 

Combining both inequal it ies we have 

@"(y 1 ~-lloll, s @"(y 2 1 s @"(y 1 l+llollc 

or 

~@'(y 2 1-@"(y 1 1 ( s Ily 2 -y 1 11.. 

For sets A and B from a metric space let us define the values 

A(A.B1 = sup inf p(A.B1. pH(A.B1 = max (A(A.B1. A(B.Al1. 
a€A bEB 

Theorem 3.10. If F(x1 is a continuous function on a metric 

compact X then the mappings y-~*(y1, y-xZ(y1 are upper 

semicontinuous (and closed1 and the functionals 

are upper semicontinuous with the continuity at y d  and 

6(01=p(OI=O. 

Proof. Firstly let us show that the mapping y-X*(yl is 

closed. Suppose <yn( x1 1 converges to an element yOcC( X. R' 1, 

x dNCy 1 and xn+x8- We need to show that xJd(*(yJ1. The functions n n 

F Cxl=F(xl+yn(xl uniformly converge to a continuous function n 

F'Cx>=FCx1+y(xI. In other words for any sequence x EX, x +x', it n n 

follows F (x 1-F'(x3. Since x  EX*(^ 1 then F Cx 1SF Cz1 for all n n n n n n  n 

zd. Coming to the limit we have ~'(xXF'(z1 for any zEX. Hence 

indeed XJEX*C~~I. From here by x"(y1cX it follows that x*(y1 is 



upper semicontinuous and the functional y-+d(y> is continuous at 

y20eC(X,R11. Besides this functional y4(y1 is a superposition of 

two marginal functions and its upper semicontinuity follows from 

marginal function theorems. Actually the function 

bD(xl =inf< llx-xNll ~x~Ex*) is continuous for a compact x*. and the 

functional 

is upper semicontinuous for compact valued upper semicontinuous 

mapping y-rX"(y1 (see [11, ch.3, par.ll. The proof of the analogous 

statements for XZ(y1 and fly1 is carried out similarly.. 

Theorem 3.11. Let F(x1 be a lower semicontinuous convex 

function defined on a compact subset X of some Banach space B. 

Then the multivalued mapping y--rXE(y) is lipschitzian at 

yaeC(X,R11 for s>O. i.e. for Housdorf metric pH 

where Dx is a diamiter of X. 

Proof. For x,~XZ(y1 by the difinition 

Since B"(y1 is lipschitzian 

It is clear that 



Let us  show t h a t  for  &.LC 

where Dx=sup( llx-xcll JxcX, x#EX) is t h e  d iamiter  of t h e  compact X .  

From here  it fol lows t h a t  

and thus  t h e  theorem is proven. Actual ly we have 

= sup  inf  II y - z 11 = II y* - z* 11 ,  

where y* provides t h e  suppremum of t h e  continuous funct ion 

@(y)=inf(lly-zll lzcxt )  on x:, and z* provides t h e  infinum of t h e  

funct ion y(z)=lly*-zll on t h e  compact x:. Let us  choose a point  
* * x EX and cons t ruc t  

From t h e  convexity of F(xl we have 

i . e .  xg. Then 

* * *- * p,(X,,X,,) = Ily z I1 s lly*-x~ll 5 



4, Consistency results, the rate of convergence 

Coming back t o  the consistency of estimates F:. x:. xEs and 

the ra te  of convergence we can see that 

where 
1 

Since IP*(yl and pH(~r(yl  .X;I are 1 ipschitzian functionals a t  

y a  then the convergence FZ(ol t o  F* and X* (ol t o  XZ fol lows s &s 

from the convergence of y ( , ol EC(X, R1 1 t o  OEC(X, R' 1 i n  some 
s 

probabilistic sense (a.  s. , i n  probability, i n  distribution, 

normal izedl. 

For any fixed point XEX by the strong law of large numbers 

y ( x . o l 4  Po-a.s. We need additional assumptions t o  ensure a 
6 

uniform ( i n  XI convergence y(x,wl  t o  OECCX,R'I i n  some 
s 

probabilistic sense. Let u s  mention some of them. 

A, Suppose D is a relat ivly open convex se t  i n  Rn and 

f :  Dx+R1 is a convex function on D for a l l  8 ~ 8  and fcx. -1 is 

integrabble for all XED. 

Then for any compact X c D  from the convergence y C x , w l 4  
s 

P,-as. for rational points x it follows (see [131, theorem 10.81 

a uniform convergence of y,(.,ol t o  OEC(X.R'I on X .  i . e .  

1 E 

Ily E (.,oIll,= max ),If(x,B,l-FCxI 1 - 0  Po-as.. 
xrX )C =i 



B. Suppose X is a compact in a separable Banach space and 

where fCx, -1 and LC -1 are integratabk for all xd. 

Then y (.,a> is lipschitzian in X with the constant 
s 

- 
L L C U ) = ~ ~  L(8k1, L s (ol<+m Pa-as. and ysC-.td4~C(X:Rl 

k =1 

Po-a. s. 

C. Suppose X is a compact in Rn and 

1) f:X4 -+ R1 is measurable in BE@ for all xeX, 

2) (f(x,B)-f(y,81( 5 L(81 llx-yll y x,y€x, 

3) S L2(8lP(d81<+a, and I f2(x,BlP(d81<+m for some x. 
8 8 

Then (see [71) there exist a Gaussian random variable h 

taking values in C(X,R1 1 such that 
D 

6 y,( . . ~ 1  --r h. m 

Lemma 4.12. Under assumptions A. B or C functions MF*(~), 
s 

-A( x*(co), x*) and -pH( x:~ (a) .XI) are measurable. 
s 

Proof. By Theorem 3.9 y4*(y1 is a Lipschitz functional and 

by Theorem 3.10 6( j.1 =A( x*( y1 . X*I , P( y) =pH( x:( Y1 , XI) are upper 
semicontinuous (and hence Bore1 1 functionals. Functions f (x, 8,(~) 1 

are continuous in x for all o and measurable in w for all x (as a 

superposit ion of two measurable mappings f Cx, -I : k R 1  and 

8,:- I. The function yS(-,oI clearly has the same properties 

therefore the mapping -y=C ..w) is measurable as a mapping from n 
into C(X,Ri I (see 1711. Finally functions F*CUI=P*C~ C -,oII, 

0 t 

AC x*C oI , x*) =6( C . . o) I and &C XIs C oI , x:I =fi ( , oI 1 are measurable s t 



as superposi t ions of a measurable mapping y ( - ,  .l:Q-C(Xepl a n d  
B 

Bore1 funct ionals  #*(y1. 6(y1 and p(y1 from C(X,R11 i n t o  R1 . D  

Theorem 4.13. Under assumptions A or B F:( 01 -F* , 

A( x*( 01 , x*) -PO and pH( xZB ( 01 , X:I 4 P;a. s . , s++ao. 
B 

Proof. Under a s s m p t  ions A or B y ( . 3 4  Pea. s. Under A 
l 

t h e  function F(x1=Ef(xe81 is convex i n  a neighbouthood of X and 

under B F(x1 is l i p s c h i t z i a n  i n  X ,  hence i n  both cases F(x1 is 

continuous on X. By Theorem 3.9 t h e  funct ional  is 

l i p s c h i t z i a n  and by Theorem 3.10 t h e  func t iona l s  b ( y l = ~ ( X * ( ~ 1 , ~ * 1  

and p(yl=p, (~Z(yl ,~Z1 are continuous at yz0. Therefore 

F*(o~=#*(~ 8 B ( .,0114*(01=~*. 6(y l ( - ,o114(01=0 and 

p(yB( *,011-tpCO1=0 Po-a. S.D 

Theorem 4.14. Under assumptions C 

11 l i m  P J ~ S I F * ~ ~ I - F * ( < ~ >  L P,<II~II,<~I, 
r+m l 

If i n  addi t ion f ( * , 8 1  is convex for all 8E8 then 

31 l i m  inf  P , < ~ ~ ( X Z ~ ( U ~  .X;l<t) L H(ctX2Dx11. 
r+m 

where Dx is a diameter of X, 1.e. t h e  values F:(wI-F* and 

p H ( ~ Z S ( o 1 , ~ ~ 1  are normalized convergent t o  0 with t h e  rate of 

I&. 
D 

Proof. Under assumptions C %ym( . o1--rh the re fo re  by 

Theorem 2.5 

l i m  in f  PJdlIy C -,dll,<t) 2 H(tI=P,<llhl,<t). 
8+4a 

l 

s i n c e  F*COI.~*CY 8 8 ( *.&I. p H ( ~ z B ( 3 e ~ z ~ + p n ~ ~ z ( y B C  *.dl and 



yi~*(y), y-pH($~ y) , $1 are Lipschitz f unct ionals at (see 

Theorems 3.9, 3.11) then statements 11, 3) follow from Theorem 

2.7 and Remark 2.8. As for statement 2) the value 

A( x*( a), x*) =A( x*( y,C , o) , x*) is aeasurable by Lemma 4.12 and a 
8 

corresponding functional 6( y) =ACX*(~), x*) is cont inuous at ydl. 

Po 
That is sufficient for preserving the convergence y C , a 1 4  

8 

under the transformation y4Cy) {see El, Corollary 2 of Theorem 
5.11. 

The generalization of the discussed results to the ST0 

problems with constraints in expectations can be done directly 

under common regular requiements. 
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