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FOREWORD 

Existence of viable (controlled invariant) solutions of a control problem 
regulated by absolutely continuous open loop controls is proved by using 
the concept of viability kerneb of closed subsets (largest closed controlled 
invariant subsets). This is needed to provide dynamical feedbacks, i.e., dif- 
ferential equations governing the evolution of viable controls. Among such 
differential equations, the differential equation providing heavy eolutione (in 
the eense of heavy trends), i.e., governing the evolution of controls with 
minimal velocity is singled out. 

Among possible applications, these results are used to define global con- 
tingent subsets of the contingent cones which allow to prove the convergence 
of a modified version of the structure algorithm to a closed viability domain 
of any closed subset. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Science Program 
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Dynamic Regulation of Controlled Systems, 
Inertia Principle and Heavy Viable Solutions 

Jean-Pierre Aubin & Hdlhne Frankowska 

Introduction 

Let us consider two finite dimensional vector-spaces X and Z, X being 
the state space and Z the control space and a closed subset K of the state 
space X. 

We define the control system (f, U) by a set-valued map U : K ?.t Z 
associating with each state z the set U(z) of feasible controls (subject to 
state-dependent constraints) and by a single-valued map f : Graph(U) X 
describing the dynamics of the system 

(i) for almost all t 2 0, z' (t) = f (z(t), u(t)) where u(t) E U (z(t)) 

Viable solutions are the ones which satisfy 

We recall that the contingent cone to K at z E K is the set 

v E X 1 lim inf 
h+O+ h 

We introduce the regulation map & associating with every state z E K 
the subset of controls u E U(z) such that the corresponding velocity is 
contingent to K a t  z: 

v z E K, & (z) := {u E U(z) ( f (2, u) E TK (z)) 

The Viability Theorem states in essence that under adequate assump 
tions, for any initial state zo E K, there exists a viable solution to the control 
problem if and only if &(z) # 0 for any z E K. (This property enjoyed 
by K is called controlled invariance.) Furthermore, if this is the case, the 
viable solutions are regulated by controls satisfying the regulation law 

for almost all t 2 0, u(t) E &(z(t)) 



In this paper, we are looking for a system of differential equations or a 
differential inclusion governing the evolution of both viable etatee and con- 
trols, so that we can look for 

- heavy eolutione, which are evolutions where the controls evolve 
with minimal velocity 
- punctuated equilibria, i.e., evolutions in which the control ii re- 

mains constant whereas the state may evolve in the associated viability cell, 
which is the viability domain of z H f (z ,  ti), 

The idea which allows to  achieve these aims is quite simple: we difieren- 
tiate the regulation law. This is possible since we know how to  differentiate 
set-valued maps. The idea is very simple, and goes back to  the prehistory 
of the differential calculus, when Pierre de Fermat introduced in the first 
half of the seventeenth century the concept of a tangent t o  the graph of a 
function: 

We regard the contingent cone to  the graph of the set-valued map F : 
X - Y a t  some point (z, y) of its graph as the graph of the associated 
ucontingent derivativen of F at  this point (2, y): 

If a viable control u(-) is absolutely continuous, we deduce then from the 
regulation law that 

(ii) for almost all t 1 0, u'(t) E D& (z(t), u(t))(f (z(t), u(t))) 

This is the second half of the system of differential inclusions we are looking 
for. 

We observe that this new differential inclusion has a meaning whenever 
the state-control pair (z(-), u(-)) remains in the graph of &. Fortunately, 
by the very definition of the contingent derivative, the graph of & is a 
viability domain of the new system (i),(ii). 

Unfortunately, as  soon as viability constraints involve inequalities, there 
is no hope for the graph of the contingent cone, and thus, for the graph 
of the regulation map, t o  be closed, so that, the Viability Theorem cannot 
apply. 

We also observe that if the contingent derivative of U obeys a growth 
condition of the type1 

(5) v ( z , ~ )  E G r a ~ h ( U ) ,  inf 
uEDU(z,u)(f (z,u)) 

llvll 5 c(llull + IlzII + 1) 

'which follows for instance from the boundednew of the contingent derivative: 
IIDU(z,u)ll < c and the linear growth of j. 



then absolutely continuous controls verify the growth condition 

So, a strategy to overcome the above difficulty is to introduce2 the a 
priori growth condition (iii) and to look for the viability kernel of (i.e., the 
largest closed viability domain contained in) Graph(U) of the system of 
differential inclusions (i),(iii). Such a viability kernel does exist (see Thee  
rem 1.5 below). 

If we regard this viability kernel as the closed graph of a (possibly empty) 
set-valued map denoted by RCu : X ?* 2, then we infer from Theorem 1.5 
that whenever the initial state zo i s  chosen i n  Dom(RCu) and the initial 
control uo i n  Rb(zo), there ezists a solution to  the sys tem of diflerentid 
inclusions (i) and 

This is how we shall obtain absolutely continuous viable state-control 
solutions to our regulation problems. 

As an example, we shall compute the regulation maps RC for one dimen- 
sional affine system in section 2. 

We observe for instance that by taking c = 0, inequalities (iii) p r e  
vide constant controls uo, and thus solutions z(-) to the problem zl(t) = 
f (z(t), uo) which are viable in the closed subset U-'(uo) whenever this s u b  
set is not empty. If this is the case, we shall say that uo is a punctuated 
equilibrium and that K 1 ( u o )  is its associated viability cell, which i s  the 
closed subset of states regulated by the constant control uo. 

Instead of looking for closed loop control selections of the regulation map 
&, we shall look for selections g ( - ,  .) of the set-valued map Gc(., -) defined 
above, which we shall call a dynamic& closed-loop. 

Naturally, under adequate assumptions, ~ ichael ' s  Theorem implies the 
existence of a continuous dynamical closed loop. But under the same as- 
sumptions, we shall show that we can take as dynamical closed-loop the 

'even if growth conditions on the contingent derivative of U are absent. 
'We remark that the above growth condition (5) means that the graph of U is a 

viability domain of the system of differential inclusions (i),(iii), and consequently, that it 
coincides with its viability kernel, i.e., that & = U. 

Therefore, growth condition ( 5 )  impliea that abrolutely continuow viable rtate-controb 
do eEirt for everu initial rtate 20 E Dom(U) and initid control uo E U(z0). But this 
property (and thus, condition (5 ) )  is too strong in the framework of viability (or controlled 
invariance) problems, where we look only for the existence of at l e ~ t  a control providing 
a given condition. 



Figure 1: Heavy Viable Solutions 
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minimal selection a )  defined by 

We shall call the smooth viable control-state solutions to  the system of 
differential equations 

heavy viable solutions to  the control problem, heavy in the sense of heavy 
trends. They are the ones for which the control evolves &th minimal velocity. 
In the case of usual differential inclusions4 z' E F(z) ,  where the controls are 
the velocities, they are the solutions with minimal acceleration, or maximal 
inertia. 

They obey the inertia principle: 

'keep the controls constant as long as they provide viable solutions" 

because gO(z, u) = 0 when 0 E G,(z, u). Indeed, if the velocity 0 belongs 
to  G,(z(tl), u(tl)), then the control will remain equal to u(tl) as long as 
for t 2 t l ,  a solution z(-) to the differential equation zl(t) = f (z(t), u(tl)) 
satisfies the condition 0 E G,(z(t), u(tl)). 

If a t  some time t j ,  u(tj) is a punctuated equilibrium, then the solu- 
tion enters the viability cell associated to this control and may remain in 
this viability cell forever5 and the control will remain equal to this punctu- 
ated equilibrium. Viable heavy solutions are studied in the general case in 
section 3 and in the case of smooth viability constraints, in section 4. 

We already mentioned that in general, the graph of the contingent cone 
map TK(-) is not closed. In order to obtain this property, we suggest in 
section 5 to replace the contingent cone TK (z) by the subset Tk(z) of direc- 
tions v E TK(z) such that there exist a measurable function zN(-) bounded 
by the constant c satisfying 

We shall see that the graph of the set-valued map Tk(-) is the viability 
kernel of the closure of the graph of the contingent cone map TK(-) of the 

4we tker U(z) = F(z) and f (z, u) = u. 
'an long an the viability domain does not change for external reanona which are not 

taken into account here. 



map (z, v) - {v) x cB. It is therefore closed. These subsets, which can be 
interpreted as global contingent sets, enjoy properties that the contingent 
cones may not have. 

These properties are used in section 6 to prove the convergence of a 
modified version of the Byrnes-Isidori zero dynamics algorithm6 to a closed 
viability domain (instead of the viability kernel). 

In this paper, X, Y, Z denote finite dimensional vector-space and B the 
unit ball of any of these spaces. 

1 Smooth State-Control Solutions 

Let us consider a control system (U, f )  defined by a set-valued map U : Z - 
X and a single-valued map f : Graph(U) H X ,  where X is regarded as the 
state space of the system, Z the control space, f as describing the dynamics 
and U the a priori feedback. The evolution of a viable state-control pair 
(z(.), u(.)) is governed by 

{ ) ~ ' ( t )  = f (.(t),u(t)) 
i i)  V t 2 0, u(t) E U(z(t)) (2) 

We shall say that it is smooth is both z(.) and u(.) are absolutely continuous 
and that they are p-smooth if they are smooth and satisfy 

for almost all t 2 0, Ilul(t) 1 1  I p(z(t), ~ ( t ) )  

We can obtain smooth viable solutions by setting a bound to the growth 
to the evolution of controls. For that purpose, we shall associate with this 
control system and with any non negative continuous function (z ,u)  I+ 

p(z,  u) with linear growth7 the system of differential inclusions 

) .'(t) = f (z(t),u(t)) 
ii) ul(t) E p(z(t) ,  u(t)) B (3) 

We observe that any solution (z(.), u(.)) to the system of diflerential inclu- 
sions (3) which is viable in Graph(U) is a p-smooth solution to the control 
system (2). 

'which ir a generaliration of the rtmcture algorithm introduced by Silverman in 1271 
and Baaile & Marro in [7] for linear control ryrtemr. 

'which can be a constant p > 0, or the function ellull, or the function (z,u) + c(llull+ 

11z11 + 1). 



Let us recall the statement of the Viability Theorem. We say that a 
set-valued map is a Peano map if it is upper semicontinuous with nonempty 
compact convex images and with linear growth8. 

A subset K c Dom(F) is called a viability domain of F if and only if 

Theorem 1.1 (Viability Theorem) Let us consider a Peano mapF : X -u 

X and a closed subset K c Dom(F) of a finite dimensional vector space X .  
If K ie a viability domain , then for all initial state zo E K,  there eziete 

a viable solution on [O, oo[ to  differential inclusion 

We thus deduce from this Viability Theorem applied to the system (3) 
on the graph of U the following Regularity Theorem: 

Theorem 1.2 Let us  assume that the graph of U i s  closed and that f i s  
continuous and has linear growth. 

Then for any initial state zo E Dom(U) and any initial control uo E 
U(zo), there emi t s  a p-smooth state-control solution (z(.), u(.)) to  the control 
sys tem (2) starting at (20, uo) if and only if the set-valued map U satisfies 

Proof  - The conclusion of the theorem amounts to saying that the 
closed subset Graph(U) enjoys the viability property. By Viability Theo- 
rem 1.1, which we can apply since the set-valued map (z, u) -u { f (z, u)) x 
p(z ,  u )B is upper semicontinuous with compact convex values and has lin- 
ear growth, this is the case if and only if it is a viability domain, i.e., if and 
only if 

By the very definition of the contingent derivative of U, this is the necessary 
and sufficient condition of the theorem. 

We know that whenever the right-hand side of an ordinary differential 
equation is differentiable, its aolutions are twice differentiable. The extension 
of this property to the case of differential inclusions is just a consequence of 
the above theorem when we take f (z, u) = u: 

'or equivalently, in the case of finite dimenrional rtate rpaces, closed net-valued maps 
with convex valuer and linear growth. 



Corollary 1.3 Let F : X -u X be a closed set-valued map such that 

Then, for any zo E Dom(F) and vo E F(zo), there ezists a solution z(.) to 
the diferentid inclusion 

such that both z(-) and zl(.) are absolutely continuous. 

The assumption of the above theorem is too strong, since it requires that 
property (4) is satisfied for all controls u of U(z) (so that we have a solution 
for every initial control chosen in U(zo)). We may very well be content with 
the existence of a smooth solution for only some initial control in U(zo). 

So, we can relax the problem by looking for the largest closed set-valued 
feedback map contained in U in which we can find the initial state-controls 
yielding smooth viable solutions to the control system. This amounts to 
studying the viability kernels of Graph(U) for the system of differential 
inclusions (3), where the viability kernel is defined as follows: 

Definition 1.4 (Viability Kernel) Let K be a subset of the domain of a 
set-valued map F : X -u X .  We shall say that the largest closed viability 
domain contained in K (which may be empty) is the viability kernel of K 
and denote it b y  ViabF(K) or, simply, Viab(K). 

We recall that such a viability kernel does exist and can be characterized. 

Theorem 1.5 Let us consider a nontrivial Peano map F : X -u X .  Let 
K c Dom(F) be closed. Then the viability kernel of K ezists (possibly 
empty) and is the subset of initial states such that at least one solution 
starting from them is viable in K .  

R e m a r k  - When K := h-l(0) is defined by equality constraints 
(where h : X H Y is an observation map), the restriction of the control 
system to the viability kernel of h-'(0) is called zero dynamics. See the 
series of papers [21,9,10,11,13] devoted to this question. In this case, the 
viability kernel is obtained by the zero dynamics algorithm described in 
section 6. 

This leads us to  introduce the following 



Definition 1.6 (p-growth regulation m a p )  Let us consider the control 
system (2). We shall denote by  Rp := RE the set-valued map whose graph 
is the viability kernel of Graph(U) for the system of diflerential inclusions 
(3). We shall call it the pgrowth regulation map to the control system (2). 
If p = 0, we shall say that pu is the punctuated regulation map. Controls 
u such that (@)- '(u)  are not empty are called punctuated equilibria. 

We thus deduce from Theorem 1.5 the following result on the existence 
of smooth viable solutions. 

Theorem 1.7 Let w assume that the graph of U is closed and that f is 
continuous and has linear growth. 

Then for any initial state zo E Dom(Rp) and any initial control uo E 
Rp(zo),  there ezists a smooth state-control solution ( z ( - ) ,  u(.)) to the con- 
trol system (2) starting at ( zo ,  uo), where the solution z(.) is regulated b y  a 
control u ( - )  starting at uo through the smooth regulation law: 

Remark - We observe that the graph of RE is also the viability 
kernel of the graph of the regulation map & and that the regulation maps 
Rp are increasing with p. I3 

The case when the growth p is equal to  0 is particularly interesting, 
because it determines areas where the evolution of the control is constant. 

Propoeition 1.8 The subset (@)- l (u)  is the viability kernel of U- l (u)  for 
the diflerential equation 

zl( t )  = f ( ~ ( t )  , to 
parametrized b y  the constant control u.  

Proof  - Indeed, (@)-'(u) describes the subset of Dom(U) which is 
controlled by the constant control u because for any initial state zo given in 
( @ ) i l ( u ) ,  there exists a solution z(.) to  the differential inclusion 

i)  zl( t)  = f ( z ( t ) ,  u )  u remains constant 
ii) ul(t) = 0 

i.e., of the differential equation zl( t)  = f ( z ( t ) ,  u )  which is viable in (@)cl (u) .  
I3 

Naturally, when (@)cl (u)  is reduced to a point, this point is an equilib- 
rium. 



2 Example 

We illustrate these concepts of regulation maps in the case of the simplest 
dynamical economic model (one commodity, one consumer). 

Let K := [0, b] the subset of a scarce commodity z.  Assume that the 
consumption rate of a consumer is equal to a > 0, so that, without any 
further restriction, its exponential consumption will leave the viability subset 
[0, b]. Hence its consumption is slowed down by a price which is used aa a 
control. In summary, the evolution of its consumption is governed by the 
control system 

for almost all t 2 0, zl(t) = az(t) - u(t), where u(t) 2 0 

subjected to the constraints 

V t 2 0, ~ ( t )  E [0, b] 

The a priori feedback map U is defined by U(z) := R+. Hence the 
regulation map is given by the formula 

RK(0) = {0), RK(z) = R +  when z €]O,b[ & RK(b) = [ab,+oo[ 

Its graph is not closed, and its closure is the graph of U, equal to  [0, b] x 
R+ 

We see at once that the viable equilibria of the system range over the 
equilibrium line u = az. Viability is guaranteed each time that the price u(t) 
is chosen in R(z(t)), i.e., u = 0 when z = 0 (and thus, the system cannot 
leave the equilibrium because negative prices are not allowed "to start" the 
system) and u 2 ab when z = b, so that the price is large enough to stop or 
decrease consumption. 

Assume that the system obeys the inertia principle: it keep8 the price 
conatant a.9 long a.9 it worka. Take for instance zo > 0 and uo E [0, azo[. 
Then the consumption increasesQ and when it reaches the boundary b of the 
interval, the system has to switch very quickly to  a velocity large enough to  
slow down the consumption for the solution to remain in the interval [0, b]. 

But there is a bound to  growth of prices (and inflation rates), so that 
we should set a bound1' on price velocities: lul(t)l < c. We shall associate 
with such a bound a 'last warning" threshold to  modify the price: there 
is a level of consumption after which it will be impossible to  slow down 
the consumption with a velocity smaller than or equal to  c to  forbid it to  
increase beyond the boundary b. 

'it ia equal to (eat(azo - uo) + uo)/a. 
'Owe take p(z,  u) = c. 



Figure 2: Evolution of a Heavy Solution 



We shall find this bound" and introduce heavy solutions which will be 
studied in full generality later for building this regulation law. They are the 
one whose controls evolve with the 'smallest velocity". It may be useful to  
be acquainted with this concept on an example, and this one illustrates well 
how heavy solutions evolve. 

We thus consider the c-bounded state-control solutions, which are the 
solutions t o  the system 

i )  for almost all t 2 0, z l ( t )  = az(t)  - u( t )  
i i) and - c 5 ul( t )  5 c (6) 

which are viable in Graph(U). 
We introduce the functions and pb defined on [O, oo[ by 

i )  p!(u) := 5 (e-au/c - 1 + qu) m 2 2e 

i i) p!(u) := -cea(u-ab)le/a2 + u l a  + c/o2 

and the functions r l  and rb  defined on [0, b] by 

I i )  r b  ( z )  = u if and only if u = pL(z) 

i i) d ( z )  = 0 if z E [0, &o)] (#(o)  = 5 ( 1  - e-a2blc)) 

i i i) r l ( z )  = u if and only if u = # ( z )  when z E lp!(0), b] 

Proposition 2.1 The c-bounded growth regulation map of system (6) i s  
defined by 

V z  E [O ,b ] ,  Re(z) = [ r l (z ) , rb (z ) ]  (7) 

Proof - Indeed, set u l ( t )  := + ct and ub := uo - ct and denote by 
= @ ( a )  and zb(-)  the solutions starting a t  zo t o  differential equations 

and 
I b 

Z = az - u (.) 

respectively. Then any solution (z(.), u(.)) t o  the system (6) satisfies ub( - )  5 
u(.) 5 uI(.) and thus, z'(.) 5 z(.) 5 zb (.) because 

"provided by the c-regulation m a p  &. 



We also observe that the equations of the curves t (z'(-), u'(-)) and 
t H (zb(-), ub(.)) passing through (20, UO) are solutions to the differential 
equations 

1 1 
dp' = -(ap' - u)du & dpb = - -(apb - u)du 

C C 

the solutions of which are 

Let p! be the solution passing through (O,O), which is equal to  

and 
p!(u) = - ~ e ~ ( ~ - ~ ~ ) / ~ / a ~  + u/a + c/a2 

be the solution passing through the pair (ab, b). 
- We check that the viability kernel is contained in the graph of Rc 

by contraposition. 
Ifuo > rb(zo), then any solution (z(.), u(.)) startingfrom (zo, uo) satisfies 

because p:(.) is nondecreasing. Hence, when z(tl) = 0, we deduce that 
u(tl) > 0, so that such solution is not viable, and thus, (20, uo) does not 
belong to  the viability kernel. 

If 0 I uo < rl(zo), any solution (z(-), y(-)) satisfies inequalities 

Therefore, when z(tl) = b for some time tl ,  its velocity zl(tl) = ab - u(tl) 
is positive, so that the solution is not viable. 

- It remains to  prove that the viability kernel is equal to  the graph 
of F by constructing particular viable solutions starting from any point 
(20, uo) of this graph. We choose the heavy eolutione. 

The equilibrium line u = a z  is contained in the viability kernel: if we 
start from an equilibrium, both the state and the controls can be kept con- 
stant. 

We shall now investigate the cases when the initial control uo is below 
or above the equilibrium line. 



Consider the case when zo > 0 and the price uo E [r'(zo), azo[. Since we 
want t o  choose the price velocity with minimal norm, we take12 ul(t) = 0 
aa long as the solution z(-) t o  the differential equation z' = az - uo yields 
a consumption z(t)  < p:(q,). When for some time t l ,  the consumption 
z(t l)  = p:(q,), it  has to  be slowed down. Indeed, otherwise (z(tl + E ) ,  q,) 
will be below the curve p: and we saw that  in this case, any solution will 
eventually cease to  be viable. Therefore, prices should increase t o  slow down 
the consumption growth. The idea is to  take the smallest velocity u' such 
that  the vector (zl(tl), u') takes the state inside the graph of Re: they are the 
velocities u' 1 zl(tl)/pf(q,). By construction, it is achieved by the velocity 
of zl(-), which is the highest one allowed to  increase prices. Therefore, by 
taking 

and u(t) := uo + c(t - t l)  for t E [tl, t l +  (ab - uo)/c], we get a solution which 
ranges over the curve d ( t )  = p:(un(t)). This a heavy solution because, 
for the same reason than above, the smallest velocity of the price (which 
is unique along this curve) is chosen. According to  the above differential 
equation, we see that z(t) increases to  b where it arrives with velocity 0 and 
the price increases linearly until i t  arrives to  the equilibrium price ab. Since 
(b, ab) is an equilibrium, the heavy solution stays there: we take z(t) - b 
and u(t) - 0 when t > t l  + uo/c. So we have built a viable solution starting 
from (20, uo), so that  the region between the "curve pun and the equilibrium 
line is contained in the viability kernel, i.e., the graph of RC. 

Consider now the case when uo E [azo, rb(zo)], where we follow the same 
construction of the heavy viable solution. We start by taking ul(t) = 0, and 
thus, u(t) = uo, as long as the solution z(.) to  the differential equation z' = 
az - uo, which decreases, satisfies z(t) > p:(uo). Then, when z(t l)  = p:(uo) 
for some t l ,  we take 

and u(t) := uo - c(t - t l)  for t E Itl, t l  + q,/c] in order to  avoid leaving the 
viability kernel. Finally, for t 1 t l  + q,/c, we take z(t) 0 and u(t) r 0. 
This particular solution, is viable, so that the pairs (zo,q,) where q, E 
[azo, rb(zo)] belong to the viability kernel. 

laand realize in thir case the dream of economirtr, which, deopite the teachinp of 
hirtory, are looking for conrtant pricer and commoditier ... 



Remark - We observe that for any z €10, b[, 

b lim r (2 )  = lim r U ( z )  = az,  lim r'(z) = 0 & lim rb(z)  = +oo 
c+o+ c+O+ C+OO C+OO 

In other words, the graph of Re starts from the equilibrium line when c = 0 
and converges in some sense to the graph of U when c + +oo. 

3 Heavy Viable Solutions 

Let us consider a control system (U, f )  which has a nontrivial pgrowth 
regulation map Rg for some p 1 0. 

Proposition 3.1 The smooth viable state-control paire ( z ( - ) ,  u ( - ) )  to the 
control eystem (,?) are also solutione to the eyetem of differential inclusione 

Proof - Indeed, since the absolutely continuous function (z(-) , u ( - ) )  
takes its values into Graph(Rg), then its derivative (z'(.),ul(.)) belongs 
almost everywhere to the contingent cone 

We then replace z l ( t )  by f ( z ( t ) ,  u( t ) ) .  
The converse holds true because equation (8)  makes sense only if ( z ( t ) ,  u ( t ) )  

belongs to  the graph of Rg. 
The question arises whether we can construct selection procedures of the 

control component of this system of differential inclusions. It is convenient 
for this purpose to introduce the following definition. 

Definition 3.2 (Dynamical Closed Loops) We shall say that a eelec- 
tion g of the contingent derivative from the p-regulation map Rg in the 
direction f defined b y  

is a dynamical closed loop. 
The eystem of differential equatione 

{ ) ~ ' ( t )  = f ( 4 t h  u ( t ) )  
it-) ul( t)  = 9(z ( t ) ,  u( t ) )  

is called the aeeociated closed loop differential system. 



Therefore, a dynamical closed loop being given, solutions to  system of 
ordinary differential equations (10) (if any) are smooth viable state-control 
pairs of the initial control problem (2). 

Such solutions do exist when g is continuous (and if such is the case, 
they will be continuously differentiable). But they also may exist when g is 
no longer continuous, as is the case of slow solutions (see [14,3,4,6]) closed 
loop controls. This is the case for instance when g(z, u) is the element of 
minimal norm in D Rg (z, u) (f (2, u)). 

In both cases, we need to  assume that the righbhand side of this system 
ie lower semicontinuous with closed convex images. This happens when we 
posit the following condition: 

Definition 3.3 We shall say that a control system (U,fJ is pdynamically 
regular if 

i) the domains of U and Rg coincide 
ii) the pregulation map Rg is sleek (11) 

sup(z,,)~Graph(ng) llDRg(z, U) 1 1  < -trn 

Indeed, assumptions (1 1)ii) and iii) imply that the set-valued map (z, u, v) -u 

D Rz  (z, u, v) is lower semicontinuous (see [5] for more details). 
Then we begin by deducing from Michael's Theorem (see [I.]) the exis- 

tence of continuously differentiable viable state-control solutions. 

Theorem 3.4 Let us assume that the graph of U is closed and that f is con- 
tinuous and has linear growth. If the control system (U, f )  is p-dynamically 
regular, then there ezists a continuous dynamical closed loop. The associ- 
ated closed-loop diflerential system regulates continuously diflerentiable vi- 
able state-control solutions. 

Since we do not know constructive ways to  built continuous dynamical 
closed loops, we shall investigate whether some explicit dynamical closed 
loop provides closed loop differential systems which do possess solutions. 

The simplest example of dynamical closed loop control is the map g i  
associating with each state-control pair (2, u) the element of minimal norm 

of DRz(2, u)(f  (z,u))-  

Definition 3.5 (Heavy Viable Solutions) We denote by g i (z ,  u) the el- 
ement of minimal norm of DRg(z, u)(f (z, u)). We shall say that the solu- 
tions to the ansociated closed loop diflerential system 

i 1 .'(t) = f (z(t), u(t)) 
ii) ul(t) = gi(z(t) ,  u(t)) 



are heavy viable solutions to the control system (U, f ) .  

Theorem 3.6 (Heavy Viable Solutions) Let us assume that the graph 
of U is closed and that f is continuous and has linear growth. If the con- 
trol system (U, f )  is p-dynamicdly regular, then for any initid state-control 
(zo, uo) in Graph(RE), there exists a heavy viable solution to the control 
system (2). 

R e m a r k  - If for some tf > 0, u(tf) is a punctuated equilibrium, 
then u(t) = ur, for all t 1 tf and z(t) remains in the viobilily cell ~ O ( u ( t ~ ) )  
for all t 5 t f .  

The reason why this theorem holds true is that the minimal selection is 
obtained through the selection procedure of a set-valued map F : X w Y 
we are about to describe. 

Let F : X w Y be a set-valued map with closed convex values. The 
projection of 0 onto the closed convex set F(z)  is the element u := m(F(z)) E 
F(z)  such that 

IIu1J2 + a ( - ~ ( z ) ,  u) = sup < u - 0, u - y >< 0 
vEF(2) 

If we introduce the set-valued map SF : X w Y defined by 

u E SF(z) if and only if (lu(12 + a ( - ~ ( z ) ,  u) 5 0 (13) 

then we observe that the graph of the minimal selection is equal to: 

Therefore, the minimal selection is obtained through a general selection 
procedure defined as follows (see [3,4]): 

Definition 3.7 (Selection Procedure)  Let Y be a Banach space. A se- 
lection procedure of a set-valued map F : X w Y is a set-valued map 
SF : X w Y satisfying 

i )  V z E Dom(F), S(F(z))  := SF(z) n F(z) # 0 
ii) the graph of SF is closed 

We can easily provide other examples of selection procedures through 
optimization thanks to the Maximum Theorem. 



Propoeition 3.8 Let us assume that a set-valued map F : X - Y is lower 
semicontinuous with compact values. Let V : Graph(F) I-+ R be continuous. 
Then the set-valued map SF defined by: 

SF(Z) := {y E Y I V(z, y) 5 inf ~ ( z ,  y')) 
u'EF(4 

ia a selection procedure of F .  Consequently, i f  the graph of F is also closed, 
so is  the graph of the selection S ( F )  equal to: 

For simplicity, we set 

Theorem 3.9 We posit the assumptions of Theorem 1.7. Let SG, be a 
selection procedure of the set-valued map G, with convez values. Then, 
for any initial state (20, uo) E graph(U), there ezists a viable state-control 
solution starting at (20, uo) to the associated closed loop system of diferential 
inclusions 

In particular, i f  for any (z ,u)  E Graph(U), the intersection 

is a singleton, then there ezists a viable state-control solution starting at 
(zo, uo) to the associated closed loop diferential system 

Proof - We shall replace the system of differential inclusions (8) by 
the system of differential inclusions 



Since the convex selection procedure SG, has a closed graph and convex 
values, the right-hand side is upper semicontinuous set-valued map with 
nonempty compact convex images and with linear growth. It remains to  
check that GraphRg is still a viability domain for this new system of dif- 
ferential inclusions. Indeed, by construction, we know that there exists an 
element w in the intersection of G,(z, u) and SG, (z, u). This means that 
the pair (f (z, u), w) belongs to f (z ,  u) x SG, (z, u) and that it also belongs 
to  

Gra~h(G,) := T~ra~h(J$)(z ,  ''1 
Therefore, we can apply the Viability Theorem. For any initial state-control 
(20, uo), there exists a solution (z(.), u(.)) to  the new system of differential 
inclusions which is viable in Graph(Rg). Consequently, for almost all t > 0, 
the pair (zl(t), ul(t)) belongs to the contingent cone to the graph of Rg a t  
( ~ ( t ) ,  u(t)), which is the graph of the contingent derivative DRg(z(t), u(t)). 
In other words, 

for almost all t > 0, ul(t) E G,(z(t), u(t)) 

We thus deduce that for almost all t > 0, ul(t) belongs to  the selection 
S(G,)(z(t), u(t)) of the set-valued map G,(z(t),u(t)). Hence, the state- 
control pair is a solution to the system of differential inclusions (14). 

4 Heavy Viable Solutions on Smooth Viability 
Domains 

Consider the case when K is a smooth viability domain defined by 

where A : X - Y is a twice continuously differentiable map such that A1(z) 
is surjective for every z E A-'(0). 

Since TK(z) = ker A1(z), we deduce that the regulation map is equal to  

We begin by computing its contingent derivative: 

Proposition 4.1 Aesume that A1(z) E L(X, Y) i s  8urjective whenever A(z) = 
0, that the graph of U i8 8leek and that for any y E Y and v E X, the subdeb 



are not empty. Then the contingent derivative of the regulation map is equal 
to 

D&(z,  = DU(z,  u)(v)n 
-(A1(z)f:(z, u))-'(A"(z)(f (2, u),v) - A1(z)fL(z, u)v) 

when A1(z)v = 0 and D&(z,v) = 0 if not. In particular, if U(z) 2, 
then i t  b sufficient to aeeume that A1(z) fh(z, u). b surjective and we have 
in t h b  case 

D&(z,  u)(v) = - ( ~ ' ( z ) f : ( ~ ,  u))-'(AM(z)(f (2, u), v) - A1(z)f;(z, u)v) 

when A1(z)v = 0 and D&(z,  v) = 0 if not. 

Proof - The graph of & can be written as the subset of pairs 
(z, u) E Graph(U) such that  C(z ,  u) := (A(z), A1(z) f (z, u)) = 0. We apply 
[5, Theorem 4.3.3.1, whcih states that  since the graph of U is closed and 
sleek, the transversality condition 

c'(z, u ) T ~ ~ ~ ~ ~ ( ~ ~ ( z ,  U) = C'(Z, u)Graph(DU(z, u)) = Y x Y 

implies that  the contingent cone t o  this closed subset is the set of elements 
(v, w) E Graph(DU(z, u)) satisfying 

But the surjectivity of A1(z) and the non emptiness of the intersection 
imply this transversality condition. 

Therefore, the set-valued map G defined by 

G(z,  u) := D&(z, u)(f (2, u)) 

is equal to  right-hand 

When we take U(z) 2, we have explicit formulas for computing the 
dynarnical closed loop yielding heavy solutions. 



Corollary 4.2 Assume that U ( z )  = Z ,  that the regulation map 

R ( z )  := { u  E Z I ~ ' ( z )  f ( z ,  u )  = 0 )  

has non empty valuea, that A1(z) ia  surjective whenever z E A-'(o) and that 
A1(z)  f:(z, u )  E L (Z ,  Y )  ia surjective whenever u E R ( z ) .  

Then there eziat heavy aolutiona viable in K ,  which are the aolutiona to 
the ayatem of differential equation8 

ii) u' = - f:(z, u)*A1(z)* 

Proof - The element g(z ,  u )  E G ( z ,  u )  of minimal norm is the unique 
solution to  the quadratic minimization problem with equality constraints: 

inf 
A1(z)f:(z,u)w=-A1(z)f:(z,u)f (z ,u) -Au(z) ( f  ( z ,u) , f  ( z ,u) )  

llw1I2 

It is equal to  

because the linear operator B := A1(z) f:(z, u )  E L(Z,  Y )  is surjective13. 
Example: Heavy viable solutions in affine spaces. Consider the 

case when K := { z  E X I Lz = y) is an affine subspace, with Az = Lz - y 
where L E L ( X ,  Y )  is surjective. 

Let us assume that 

i) V z E K ,  R ( z )  := { u  E Z such that L f ( z ,  u )  = 0 )  # 0 
ii) V z E K ,  V U E  R ( z ) ,  Lf:(z,u) is surjective 

Then, for any initial state zo E K and initial velocity uo satisfying L f ( zo ,  uO) = 
0,  there exists a heavy viable solution of the control problem, obtained as a 
solution to  the system of differential equations 

( ii) U' = - f:(z, u)*L*(L f:(z, u )  fL(z, u)*L*)-'L f ; (z ,  u )  f ( 2 ,  u )  

"Recall that the unique element which minimises z I-+ llzll under the constraint B z  = y ,  
where B E l(X, Y) is surjective, b equal to B+y, where B+ = Be(BB')-' denote0 the 
orthogond right-inuerre of B. 



When Y := R and K := {z E X I < p, z >= y) is an hyperplane, the above 
assumption becomes 

i)  V Z E K ,  R ( z ) : = { u ~ Z l  < p , f ( z , u ) > = 0 ) # 0  
ii) V z  E K, V u E  R(z), f:(z,u)*p# 0 

and heavy viable solutions are solutions to the system of differential equa- 
tions 

i)  z l =  f(2.u) 

Example: Heavy solutions viable in the sphere. Let L E L(X, X )  
be a symmetric positive-definite linear operator, with which we associate 
A(z) :=< Lz, z > - 1 and the viability subset 

We assume that 

i)  V Z E K ,  R ( z ) : = { u E Z I  < L z , f ( z , u ) > = 0 ) # 0  
ii) V z E K, V u E R(z), f:(z, u)*Lz # 0 

Then there exist heavy viable solutions in the sphere, which are solutions to 
the system of differential equations 

ii) u1 = - 

(< Lf (z,u), f (2, u) > + < Lz, fL(2, u)f (2, U) >) 

5 Application: Global Contingent Sets 

Definition 5.1 Let K c X be a closed subset of a finite dimensional vector- 
space X and c > 0 be a positive constant. We shall denote by T&(z) the 
subset of elements v E TK(z) such that there ezisb a measurable function 
z"(.) bounded by c satisfying 

V t 2 0, z + tv + (t - r)zw(r)dr is viable in K Lt 



Figure 3: The Graph of TIolb1(-)  

We introduce the Peano F from X x X to itself defined by F ( z , v )  := 
{ v )  x cB. The functions t  H z ( t )  := z (0)  + tv(0) + j i ( t  - r )zM(r)dr  where 
llzM(r) 1 1  5 c are solutions to the differential inclusion Ilz"(t) 1 1  5 c, as well as 
solutions to the differential inclusion 

We remark a t  once that the graph of the set-valued map  T& i s  the viability 
kernel of Graph(TK) for the set-valued map  (z ,  v )  - { v )  x cB.  

Observe that 0 E T&(z)  for all z E K. 

Example 
We can check easily that for K := [O ,  I . ] ,  the contingent cone T K ( z )  is 

defined by 
R+ if z = 0  
R if z € ] O , l [  
R- if z = 1 

and the global contingent set is equal to 

We deduce from the properties of the viability kernels the following state- 
ments. 



Proposition 5.2 The graph of the set-valued map z -u Tfi(z) ie cloeed. Let 
K' := limsup,,, K, denote the (Kuratoweki) upper limit of a sequence of 
closed subset8 K,. Then the (Kuratowski) upper limit of the graphs of Tfi, 
b contained in the graph of T i I .  

Proof - It follows from the fact that the viability kernel of a closed 
subset is closed and that the (Kuratowski) upper limit of a sequence of closed 
viability domains is a viability domain. 

Let us consider any element (z, v) of the (Kuratowski) upper limit of the 
sequence of viability kernels Viab(Graph(TKn)). Then (z, v) ie the limit of a 
subsequence (z,, v,) of elements of Viab(Graph(TKn)), so that there exist 
solutions z,(-) to the differential inclusion /lzgll 5 c satisfying the initial 
conditions 

zn(0) = 2, & z',(0) = v, 

and converging to some function z(.) satisfying z(0) = z and z'(0) = v. 
Since z,(t) E K for all t 2 0, then z(t) E K I  for all t 2 0. Therefore, 
zl(t) E TKI ( ~ ( t ) )  . Hence, the pair (z(t) , zl(t)) is a solution which is viable 
in Graph(TKr) and consequently, (z, v) E Viab(Graph(TKa)). 

Obviously, if cl 5 cz, then T z  c T g  . Also, we deduce from the upper 
semicontinuity of the solution map that for any E > 0, there exists r) > 0 
such that T g  c T z  + E(B x B). 

We also observe that 

Proposition 5.3 Let A E t(X, Y) be a linear operator and K c XI M c Y 
be cloeed subeete. Then, setting d := cl(AIJ and L := A(K), 

and thus 
E A ( M )  T;-I(~)(Z) C A-' (T?"(AZ)) 

If we assume furthermore that A b surjective, then there eziet8 a constant 
p > 0 such that 

Proof - Let v E Tfi(z). Then there exists a solution z(.) to  llz"ll 5 c 
viable in K and satisfying ( ~ ( 0 ) )  zl(0)) = (z, v). Then y(t) := A(z(t)) is 



solution to the differential inclusion yl(t) = w(t) and wl(t) E cA(B) c 
ell All B, viable in A(K), such that (y(O), yl(0)) = (A(z), A(v)). 

The second statement follows by taking K := A-~(M) .  
To prove the last one, consider w E TM(y) and a viable solution 

Since A is surjective, there exists a constant p > 0 and solutions z and 
v to the equations Az = y and Av = w satisfying inequalities llzll I pllyll 
and Ilvll 5 pllwII. By the Measurable Selection Theorem, there exists a 
measurable selection z(.) to the equation Az(r) = yM(r) satisfying inequality 

IIz(r)ll I PIIY"(~)II I PC. 
Then z(t) := z + tv + j i ( t  - r)z(r)dr is a solution to the differential 

inclusion llzM1l 5 pc which is viable in A-~(M) .  

6 The Modified Zero Dynamics Algorithm 

The zero dynamics algorithm has been devised to obtain the viability kernel 
of closed subsets defined by equality constraints, i.e., subsets of the form 
K := h-I (0) where h is a map from X to a finite dimensional vector- 
space Y. It is shown to converge for linear control systems (see [7,27]) and 
for smooth nonlinear control systems (see [9,10,11,13]. In this framework, 
viability property is called controlled invariance and the restriction of the 
control system to the viability kernel is called zero dynamics). 

Ln the general case, let us consider a closed subset K of the domain of a 
set-valued map F : X ?.t X. 

We start with KO := K and we construct 

K1 := Dom(RKo) where RKo (z) := F (z) n TK (z) 

Since the viability kernel ViabF(K) is contained in K and since TL(z) c 
TK(z) whenever K c L, we infer that ViabF(K) c K1 

Assume that a decreasing sequence of subsets Ki satisfying ViabF(K) C 
Ki C Ki-l c K has been defined up to n. We then set 

RK, (z) := F (2) n TK, (2) 

define Kn+1 := Dom(RK,) and we observe that ViabF (K) C Kn+1. 



Therefore 
00 

ViabF(K) c n Kn 
n=O 

The problem is to show that equality holds true. Several requirements have 
to be met to solve the problem. The first one is that the subsets K, should 
be closed. The second one is that the (Kuratowski) upper limit of the con- 
tingent cones TK, (z) is contained in the contingent cone to the (Kuratowski) 
upper limit of the subsets Kn (which, in this case, is the intersection of the 
decreasing sequence of the subsets K,). 

These conditions are not met for finding the viability kernel of K := 
[O, 11 x R for the system F(z, v) := {v) x cB since 

, K1 = KO and since the viability kernel is the graph of Ti(.).  
Thanks to Proposition 5.2, by replacing the contingent cones TK(z) by 

the subsets T i ( z )  in the structure algorithm, we can prove that the modified 
version converges to a closed viability domain. 

Let us set Ki  := K. For defining Kf c Kt, we introduce the set-valued 
map & defined by &(z) := F(z) n Ti,(z) and set K; := Dom(&). 

If the subsets Kf have been defined0up to n, we set 

and we defined 
KA+, := Dom(RC,) 

Proposition 6.1 Assume that K is compact and that F : K w X is upper 
semicontinuoue with nonempty closed values. Then either Kt is empty for 
8ome step i or K, := (7z1 Kf is a nonempty closed viability domain of F: 

Proof - First, since the graph of is the intersection of the graph of 
F and the graph of T i ,  which are both closed, it is also closed. Furthermore, 
the subset Kf is closeh since F(K) ia compact (If z, E Kt converges to z, 
the sequence of elements v, E F (z,) n T i ,  (2,) lying in a compact set, a 

1-1 
subsequence (again denoted by) vn converges to some v. Since the graphs 
of F and TKc (-) are closed, we infer that v E F(z) n T i F  (z), i.e., that z 

1-1 1-1 

belongs to Kt). Then the Kf's form a decreasing sequence of closed subsets 



of a compact subset. Either one of the Kt's is empty or the intersection K, 
is not empty. In this case, let z be chosen in K,. For any n, there exists 
v, E F(z) n T i .  (2). Since the v,'s remain in the compact subset F(K),  a 
subsequence (aiain denoted) vn converges to some v. Since (z, v,) belongs 
to the graph of Ti . ,  we know that (z, v) belongs to the graph of Ti,, 
because K, is the r~uratowski) upper limit of the decreasing sequence of 
the aubsets Kt. Hence v belongs to F(z) n TK,(z). 
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