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FOREWORD 

The decentralized evolution of allocations of resources among consumers 
described by their change functions is characterized by a regulation rule 
associating with each allocation the subset of prices regulating them. Suffi- 
cient budgetary conditions analog to the Walras law for the viability of such 
evolutions are then provided. Next, the issue of finding feedback controls 
is tackled: conditions under which slow evolutions are given. 

More to the point, dynamical feedback controls obeying the inertia prin- 
ciple are provided: prices are changed only when the viability of the evolution 
mechanism is at stakes. We then derive the differential equations governing 
the heavy evolution of prices: for a given bound on inflation rates, the price 
evolves with minimal velocity. 
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Evolution of Prices Under the Inertia 
Principle 

Jean-Pierre  Aubin 

Introduction 
Let M denote the set of scarce resources and K the set of allocations 

z = (zl,. . . , 2,) of scarce commodities y = Cr=l z; E M to n consumers. 
We interpret the basic law of economics: 

It is impossible to consume more physical goods than available 

by taking the allocation set K as a viability set, i.e., by requiring that the 
consumptions of the n consumers are allocations of available commodities. 

Static models assign one or several elements Z in the allocation set K. 
But it may be time to answer the wish J. von Neumann and 0. Morgenstern 
expressed in 1944 at the end of the first chapter of their monograph "Theory 
of Games and Economic Behavior": 

'Our theory is thoroughly static. A dynamic theory would unquestion- 
ably be more complete and therefore, preferable ..." 
'Our static theory specifies equilibria ... A dynamic theory, when one is 

found - will probably describe the changes in terms of simpler concepts." 
We study here some mechanisms which govern the evolution of alloca- 

tions of scarce resources1. 
In these dynamical models, the laws which govern the evolution of allo- 

cations are most often represented by differential equations (or differential 
inclusions) with or without memory. Static models are particular cases 
yielding "constant functions" z(.) E 2, which are also called "equilibria2". 

For that purpose, the behavior of each consumer is described by a de- 
mand function 4 allowing the consumer to choose a commodity z; = 4(p)  

'By the way, in dynamical models, we can assume that the subset K(t)  of allocations 
depends upon t, or even, upon the history of the evolution. 

2The concept of equilibrium often covers two different meanings in economics. The 
first one ia derived from mechanics, where an equilibrium ia a constant function, or a 'rest 
point". The second meaning is covered here by what we call the viability constraints, such 
as the sum of consumptions must be less than or equal to the sum of supplies, etc. 



knowing only the price p. The problem is then to find a price p (the Wal- 
rasian equilibrium price) such that (dl (p), . . . , d,(ji)) is an allocation. This 
is a decentralized model because consumers do not need to know neither 
the choices of other consumers nor the set M of allocations. The basic 
Arrow-Debreu Theorem states in this case that such an equilibrium exits 
whenever a budgetary rule, the Walras law - it is forbidden to spend more 
monetary units than earned - is obeyed by consumer's demand functions. 

Furthermore, such a price ji is an equilibrium of an underlying dynamical 
process, called the Walrasian tiitonnement: it is defined by the differential 
inclusion 

~ ' ( t )  E E(P(~)) 
where E is the ezcess demand map defined by 

We observe that if p(t) is a price supplied by the Walras tiitonnement 
process and if it is not an equilibrium, it cannot be implemented because 
the associated demand is not necessarily available. 

Hence, this model forbids consumers to transact as long as the prices 
are not equilibria. It is as if there was a super auctioneer calling prices 
and receiving offers from consumers. If the offers do not match, he calls 
another price according to the above dynamical process, but does not allow 
transactions to take place as long as the offers are not consistent. 

Tiitonnement is therefore not viable. And it may be too much to ask 
the entity which regulates the price (the market, the invisible hand, the 
Gosplan, ...) to behave as a real decision-maker. It may be more reasonable 
to let the real decision-makers, the consumers, to govern the evolution of 
their consumption through differential equations parametrized (controlled) 
by prices: 

z:(t) = ci(zi(t),p(t)) 

parametrized (or controlled.) by the price p(t), so that consumers change 
their consumptions knowing only the price p(t) a t  each time t,  without 
taking into account neither the behavior of the other consumers nor the 
knowledge of the set M of scarce resources. Hence it shares with the Walras 
static model its decentralization property. 



The problem is then to find a price function p(t) such that the solutions 
zi(t) of the above differential equations do form an allocation at each time t. 
We prove that this viability property holds true under a dynamical version 
of the Walras law and even prove the existence of an equilibrium, by using 
viability theorems are tehy can be found in DIFFERENTIAL INCLUSIONS 
by J.-P. Aubin & A. Cellina, Springer, 1984 and VIABILITY THEORY by 
J.-P. Aubin, to appear. 

Actually, we would like to know more than a time-dependent price func- 
tion (which can be regarded as an open loop control). We wish to obtain 
"closed loop controls", or, more generally, set-valued "regulation maps" as- 
sociating with each allocation z € K the set Il(z) of relevant messages, so 
that the evolution law of the relevant message is 

The set of viable prices (regarded as relevant messages) may contain 
more than one element. The question arises to select one of these prices , 
or, to shrink the set of viable prices by an adequate mechanism. This can 
be done by optimization techniques, or, more generally, by game theoretical 
methods. 

In the dynamical case, this question splits in two: we have to distinguish 
between "intertemporal optimization" problems and "myopic or instanta- 
neous optimization" problems. 

In intertemporal optimization, we maximize intertemporal utility func- 
tions of the form 

under the constraint (z(.), p(.)) E Graph(II). 
The use of such an intertemporal utility function assumes some knowl- 

edge of the future3. Furthermore, the choice of the optimal solution is made 
once and for all at  the initial time, and cannot be corrected. 

'This is thb requirement of the use of optimal control theory which led to the popular 
theory of rational expectations. It shares with general equilibrium theory the feature of 
growing up from available mathematical theories and being transfered to economics. The 
pretty large consensus around these concepts make them 'real" according to our definition 
of reality. But it should be time for thb consensus to evolve by looking for economic facts 
to motivate new mathematical theories and not the other say around. 



In myopic optimization, we use the feedback relation and we select for 
each allocation z E K a price p E n(z) by a static optimization technique 
(or any other kind of technique). For instance, we can choose the element 
rO(z) E n(z) of minimal norm. Despite the lack of continuity of such a 
selection, we still can prove that the system of differential equations 

has viable solutions, which are called "slow solutionsn. 
However, this type of selection may not enjoy economic meaning. We 

propose another one which may be closer in spirits to economic mechanisms. 
Actually, if the behavior of the consumers is well defined, what about 

either the market or the planning bureau, the task of which is to find the 
prices p(t)  in n(z(t))? They do not behave as actual decision makers, 
knowing what is good or not (this is the case of even a planning bureau as 
soon as it involves more than three bureaucrats!). Hence, their role is only 
a regulatory one. If they are not able to optimize, we may assume that 
they only are able to correct the prices when the viability of the economic 
system is at stake, i.e., when the total consumption is no longer available. 

Hence, we assume that the market (Adam Smith's "invisible handn) or 
the planning bureau are able to "pilotn or "actn on the system by choosing 
such controls according to the inertia principle: 

Keep the price constant as long as the evolution provides allocations of 
available resources, and change them only when the viability is at stakes. 

This is not enough to select an evolution of a relevant price, since we 
have to provide rules for choosing prices when viability is at stakes. 

The simplest one (and most often, the most reasonable one) is to assume 
that at  each instant, the prices are changed as slowly as possible. 

We called evolutions obeying this principle "heavy4 evolutionsn, in the 
sense of heavy trends. 

Hence heavy evolution is obtained by requiring that at each instant, the 
(norm of the) velocity of the price is as small as possible. 

'This is justified by the fact that the velocity of the price is related to the acceleration 
of the consumptions, a measure of which is then as amall as possible. 



Therefore, for implementing this inertia principle, we have to provide 
conditions under which relevant prices p(.) are differentiable (almost ev- 
erywhere), to built the differential inclusion which governs the evolution of 
differentiable relevant prices and then, select a differential equation in this 
differential inclusion (called a "dynamical closed loop) which will obey the 
inertia principle. 

The first task is solved (at least, partially) thanks to the concept of 
'tiability kerneln. We obtain the existence of a smaller regulation map 
ITc(.) c IT(.) such that the regulation law 

yields differentiable prices satisfying a rate of growth constraint J(pl(t) 1 1  5 
cllp(t) I I .  

By differenting this regulation law, we obtain a differential inclusion 
governing the evolution of relevant prices of the form 

The problem then is to select a particular solution by solving a differ- 
ential equation 

pl(t) = rC1(z(t),p(t)) 

where re'(., .) is a selection of ITc1(., a ) .  

The one of interest is the selection n l (z ,  p) E ITc'(z, p) of minimal norm, 
which obeys the inertia principle. 

In summary, given the decentralized behavior of the consumers described 
by the diflerential equations z: = ci(zi,p) and the set of scarce resources, 
we can built the dynamical behavior of the market, so that the evolution of 
the economic system is described by the system of differential equations 

z:(t) = ci(zi(t),p(t)) ( i=  1, ..., n) 
ti) pl(t) = ~ " l ( ~ ( t ) , ~ ( t ) )  

Contrary to other dynamical models, this law governing the evolution of 
prices is not a modelization assumption, but a consequence of the modeliza- 
tion data of this elementary model. 



Setting Up the Model 

1.1 The allocation set 

Our problem is to allocate scarce resources among n consumers, labeled 
i= 1, ..., n. 

The set of scarce resources is a subset M c Y of the commdity space 
Y. By assuming indivisibility of commodities6, one can represent the com- 
modity space by a finite dimensional vector-space Y := R', where 1 denotes 
the number of commodities6 (or services) considered in the model, where 
each commodity is endowed of a measure unit. 

We assume mainly that M is a closed subset satisfying M = M - R: 
(free disposal assumption). This means that any commodity y 5 z smaller 
than or equal to an available commodity z is still available. We assume 
also, for simplicity, that M is convex. This is interpreted by economists by 
saying that decreasing return to scale prevails. 

We begin now the mathematical description of a consumer i .  It starts by 
her consumption set Li c Y, which represents the set of potential consump- 
tions. Actually, it is better to say that she will never accept a commodity 
outside her consumption set Li. Most often, L; is chosen to be the orthant 
R:. In a symmetric way, we assume that the consumption sets L; are 
closed and satisfy Li = L; + R:. and, again for simplicity, that they are 
convex. 

Hence, the subset M of scarce resources and the n consumption sets 
L; being given, the allocation set K c X := Yn of resources to the n 
consumers is defined by 

(We use the same notation to represent a commodity z E Y and an allo- 
cation z = (zl, . . . , z;, . . . , z,) E X of a commodity to the n consumers, 
hoping that the context will make clear which is which.) 

6A way to accept that assumption ie to represent a commodity by the services that it 
yields, since services are more divisible than physical goods 

'The commodities we use are physical commodity, by opposition to fiduciary goods, 
whose scarcity ie not set by physical considerations, but by social consensus 



Prices are supposed to be nonnegative (this makes sense when free dis- 
posal prevails.) They can be normalized by fixing the value of a good chosen 
as a numdraire or the value of a commodity basket - an index- (there is 
no monetary illusion). We choose here the second normalization rule, by 
taking the commodity basket formed of one unit of each good and fixing 
its value equal to 1. By doing so, prices range over the price simplez 

We then translate the first law of economics 

It is impossible to consume more physical goods than available 

by saying the set K of allocations is a viability set. 

1.2 Change Functions 

Instead of describing the decentralized behavior of a consumer by a Wal- 
rasian demand function, which makes sense in the static case, we shall 
capture it to take into account the evolutionary aspect by a "change func- 
t ion" 

(Z,P) ~ i ( 2 , ~ )  

associating with each commodity z owned by consumer i and the price p she 
sees on the market the velocity with which she will change her commodity 

Hence, the behavior of consumer i is described by the differential equa- 
t ion 

4 ( t )  = ~i(Zi(t),P(t)) 

It is decentralized in the sense that the decision of consumer i does not 
involve the knowledge of the set M of available resources nor the behavior 
of her fellow consumers, but depends only upon her current consumption 
zi(t) and the "current price" (also called "spot price") p(t) at  time t. 

Now, we have to introduce an a priori law for price behavior. In the 
simplest case, we can choose prices in the price simplex 



But we can take into consideration external laws or regulations, and 
for that purpose, introduce a set-valued map P : K - R!+ associating to 
each allocation z a subset P(z) c S' of feasible prices (allowed by external 
regulations, for instance). 

Hence, the prices are requested to obey the evolution law: 

By summarizing, the dynamics of the evolution of the consumption is 
described by 

Equilibria of this dynamical system are solutions ( 2 , ~ )  to the system 

We first address the problem of finding viable allocations and/or viable 
equilibria, i.e., functions satisfying 

and/or equilibria satisfying 

The behavior of the consumers being given, we associate with each set 
M of scarce resources the regulation map IIM defined by 

where TM(y) := Uh,O(M - y)/h is the tangent cone to the convex subset 
M at y E M. 

We posit now the assumptions we need to prove our fundamental theo- 
rem. 



- Assumptions on the consumption and resource sets: 

and 

i) M = M - R: is a closed convex subset 

ii) V i = 1,. . . , n, Li = Li + R: is closed and convex 
iii) 3 zi E Li ( i= 1, ..., n) I xi",, zi E Int(R:) (2) 

iv) M cY-R:  - & V i = l ,  ..., n, Li c ~ + R :  

- Assumptions on the feedback map and the change functions: 

Graph(P) is closed, the growth of P 
is linear and the images of P are convex (3) 

ii) C i  : Li I+ Y is continuous 
iii) Ci : Li I+ (Y*, Y) is continuous (4) 

iv) V zi E Li, P E Im(P), ci(zi, p) E Tti(zi) 

We are now able to characterize the viability property, which says that 
for every initial allocation zo E K, there exists a price function p(-) and a 
solution z(-) = (zl (.) , . . . , zn(.)) to the system (1) which is viable (called a 
viable allocation starting at zo), thanks to the Viability Theorem. 

Theorem 1.1 We posit assumptions (Z), (9) and (4). Then the two fol- 
lowing conditions are equivalent: 

a) V ~ E  K, l l ~ ( z )  # 0 
6) V zo E K, there exists allocations starting at zo 

In this case, the viable allocations are governed by the regulation law 

for almost all t > 0,  p(t) E l l ~  ( ~ ( t ) )  ( 5 )  

Furthermore, under these conditions, there ezists at least a viable equi- 
librium ( ~ 1 , .  . . , z , , ~ ) .  

Remark  - Naturally, we can extend this basic result in many direc- 
tions and relax some of the assumptions. 

For instance, if we are not interested in the existence of an equilibrium, 
we can dispense of the convexity assumptions. In this case, we replace 



the tangent cone to a convex subset by the contingent cone TM(y)  to any 
subset M at y E M ,  defined as the subset of directions v E Y such that 
lim infh,o+ dK(z  + hv) /h  = 0. We say that M is sleek if the set-valued map 
M 3 y -.., TM ( y )  is lower semicontinuous. 

We assume instead that 

i) M = M - R: is closed and sleek 

ii) V i = 1,. . . , n,  Li = Li + R: is closed and sleek 
iii) V z E K,  Ee l  TLi (z i )  - TM (CyZl zi)  = Y 
iv) M C Y - R :  - & V i = l ,  ..., n,  Li c a + R :  

The first part of the theorem still holds true. 
We observe also that condition (2)iv) is one among many which implies 

the compactness of K .  Again, this compactness property is needed to 
obtain the existence of an equilibrium. For the first part of the theorem, 
we can relax it by assuming only that the functions ci : Li H Y has linear 
growth and Ci : Li H L(Y*,Y)  is bounded. 

Hence viability of the system as well as the existence of an equilibrium 
follows from the nonemptiness of the images of the regulation map l lM .  

We thus have to characterize this property and/or provide sufficient 
conditions. 

Proposition 1.2 We posit the assumptions of Theorem 1.1. Then M is a 
viable available commodity domain7 i f  

V z  E K,  sup inf < p,Cci(zi,q) >< 0 
p ~ S l  qEP(') i=1 

In the case when the set-valued map P is the constant map s', a suffi- 
cient condition for the above property is the collective instantaneous Walras 
law 

'A necessary and sufficient condition is 

n 

V Z E K ,  EuP inf <pjCci(zilq) >lo 
P E N ~ ( c ; - ,  ti) q E P ( z )  i=l 

where N M ( y )  := (TM(y))- denotes the normal cone to M at a point y E M. 
Since M = M - R\, we know that NM (C:='=, z;) c R; 



which itself can be decentralized by requiring the change functions c; to 
obey the (individual) instantanwus Walras law 

Indeed, we can interpret this property by saying that it is forbidden to 
spend more monetary units than earned in continuous transactions8. As we 
can see, the advantage of the Walras law is that it does not depend upon the 
set M of scarce resources, as long as it satisfies assumptions (2)i). Hence, 
the following corollary is the dynamical counterpart of the Arrow-Debreu 
theorem on the existence of an equilibrium (in the simple framework of an 
exchange economy) : 

Theorem 1.3 We posit the assumptions (2) and (4) of Theorem 1.1. If the 
change functions c i  obey the instantanwus Walras law, then the economic 
system has viable allocations starting at any allocation zo. 

Furthermore, under these conditions, there ezists at least a viable equi- 
librium (zl,. . . ,En, p). 

Remark - When P(.) is no longer the constant map P r s', we 
can assume that for all z E nL, Li, there exists a map Q(z, -) : S' H P(z) 
satisfying the condition 

Then the viability condition holds true. D 

8The Walraa law implies that along solutions to the system of differential equations 
(I), we have < p(t), z: (t) >5 0, and thus, for all h small enough, 



2 Slow Allocations 

Since the subsets L; and M have nonempty interiors (since Li = Li + R: 
and M = M - R:), we can provide sufficient conditions for the regulation 
map llM to be lower semicontinuous. 

Proposition 2.1 We posit the assumptions of Theorem 1.1. We further 
suppose that 

i )  P is lower semicontinuous 
ii) V i = 1,. . . , n, V zi E L;, V p E Im(P),  (6 )  

ci ( ~ i ,  P) E T L ~  (2;) - Int(R$) 

If 
Vz  E K, 3p E P(z) such that 
EY=, ci(zi,p) E TM(EY=~ zi) - Int(R!+) (7) 

then the regulation map llM is lower semicontinuous. 

We introduce now the minimal selection ~rh defined by 

It is not continuous, but we still infer the existence of a "slown viable 
allocation starting at  zo, i.e., a solution to  the system of differential equa- 
t ions 

~ : ( t )  = ci(zi (t), ~ rk(z( t ) ) )  (i = 1, . . . , n) 

Theorem 2.2 We posit the assumptions (2),(9),(4) of Theorem 1.1 and 
assumptions (6) and (7) of Proposition 2.1. Then, for all initial allocation 
zo E K, there ezists a slow viable allocation starting at zo. 

We could as well derive other selection procedures of closed loop prices 
in the regulation map (for instance continuous closed-loop maps from the 
Michael Continuous Selection Theorem). But it is possible that a more re- 
alistic selection procedure operates on the derivatives of the price functions 
according to the inertia principle. 



3 Evolution under Bounded Inflation 

In order to obtain absolutely continuous price functions which regulate 
allocations of the economic system, we introduce a further restriction on 
some kind of inflation rate measured by r ( t )  := Jlpl(t) Il/llp(t) 1 1 ,  by requiring 
that the inflation rate r(.) is bounded by a positive constant c. 

Theorem 3.1 We posit the following assumptions: 

i) the subsets M and Li are closed 

ii) the graph of P is closed 
iii) the functions ci are continuous 

(8) 

For any c 2 0, there ezists a largest closed graph regulation map llh c nM 
having the following property: 

For any initial allocation zo E K and any initial price po E nh(zo), 
there ezists a viable solution ( z ( - ) ,p ( . ) )  to  the system of diferential inclu- 
SIOtZS 

2: ( t )  = ci (2, ( t )  , p( t ) )  (i = 1, . . . , n) 
(9) 

regulated by the law 

~ ( t )  E n L ( z ( t ) )  

Naturally, the above theorem does not state that the regulation maps 
nh are not empty, or that their domains coincide with the allocation set 
K. This explains why the assumptions are weaker than the ones of Theo- 
rem 1.1. 

We observe right away that if 0 < cl 5 c2, we have the inclusions 

The regulation map llL plays an interesting role regarding the inertia 
principle, since it is related to the evolution of the economic system under 
constant price. 

Indeed, if we choose some initial allocation zo in the domain of the 
regulation map assumed to be nonempty, and if we take po E nL(zo), 



the above theorem shows that there exists a solution to the system of 
differential equations 

which remains in the viability cell IIL1(po) associated to the punctuated 
equilibrium po. If the evolution of the price hits a punctuated equilibrium 
pa, the solution may remain forever in the viability niche IIL1(po). 

Naturally, any equilibrium price p associated to an equilibrium (3, p) = 
(31,. . . , tn, p) is a punctuated equilibrium and we have Z E IIL1 (p). 

We want now to derive a differential inclusion which governs the evolu- 
tion of the allocation-price pair. 

The idea is then to differentiate the regulation law 

4 Heavy Allocations 

We first recall what is the contingent derivative of a set-valued map Il : 
X -+ Y at a point (z,y) of its graph. It is a set-valued map DIl(z, y) : 
X -+ Y whose graph is the contingent cone to the graph of Il at  (z, y). 
One can check that v E DIl(z, y)(u) if and only if 

II(z + hut) - y 
lim inf d(v, 

h 
) = o  

h+O+,ul+u 

Therefore, since Theorem 3.1 provides absolutely continuous solutions, 
we can differentiate the regulation law 

and obtain the following differential inclusion 

(since zl(t) = c(z(t),p(t))), where we set for simplicity 



From now on, it will be handy to introduce a notation for the right-hand 
side of the above differential inclusion: we set 

We observe that the smooth viable solutions to  the system (9) are the 
solutions to  the system of differential inclusions 

Therefore, finding smooth allocations of our model with an inflation rate 
bounded by c amounts to  solve the above system of differential inclusions. 

We have to assume some regularity properties on the set-valued map 
II&(z,p) to go further, and in particular, to find heavy evolutions. 

We say that our system is "dynamically regularn if 

i) the domain of IIL is equal to K 
ii) IIL is sleek (12) 
iii) V (z,p) E Graph(IIh), Dom(Dnh(z,p))  = X 

We know that the under these conditions, the set-valued map n&(z,  p) 
is lower semicontinuous with closed convez images. 

This allows to  find continuous selections &(., .) of this map thanks to  
Michael's Theorem, but our task is to select the element of minimal norm 
for obtaining an heavy allocation. 

We denote by w& E II&(z,p) the element of minimal norm: 

Although the map w& is not continuous (because II&(z,p) is not con- 
tinuous, but only lower semicontinuous), we can still prove the existence of 
heavy allocation. 

Theorem 4.1 We posit he assumptions of Theorem 9.1 and we assume 
that the system is dynamically regular. 



Then, for any initial allocation z o  E K and any initial price po E 
l l b ( z o ) ,  there ezists a viable heavy solution ( z ( - ) , p ( - ) )  t o  the system of 
diferential equations 

Naturally, much work remains to be done to check that a system is 
dynamically regular. 

It is interesting to consider the viability niches 

The heavy allocation z ( - )  starting at some zo E N&(po) will be regulated 
by the constant control po as long as z ( t )  remains in N&(po).  If z o  E 
N$(po) ,  then it will remain in this viability niche for ever. 
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