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Foreword 

In this paper a reaction is studied which describes competition of two species for a 
common resource in the limit where the number of linearly coupled vessels goes to 
infinity. Using the theory of Foias, Sell and Teman the author proves the existence of an 
inertial manifold, this is, a finite dimensional manifold which exponentially attracts all 
solutions. 
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ABSTRACT 

The existence of inertial manifold for a reaction-diffusion equation model 
of the chemostat is established. 

1. Introduction 

The purpose of this paper is to show that inertial manifolds exist for a system of 

reaction diffusion equations which was used to  model competition in a chemostat (c.f. [So 

and Waltman]). The equations are: 

where S(t,z) (resp. u(t,z), v(t,z)) denotes the concentration of the limiting substrate 

(resp. the competing micro-organisms) a t  time t>O and position O l z l L .  Here 

for S 2 0, where m, a, n and b > 0. The boundary conditions are: 

t Research rupported in part by grantr from Natural Sciencer and Engineering Rerearch Council of Canada, 
Central Rerearch Fund of the Univemity of Alberta and Fonds sur Fiirderung fiir wirrenschaftliche 
Fomchung of Austria. 
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S,(t,L) + y S ( t , L )  = u,(t,L) + yu( t ,L )  = vz(t ,L) + y v ( t , L )  = 0  

where and y  > 0. 

Let z  = S  + u  + v. Then z  satisfies 

zt = 2, 

with boundary conditions: 

z,(t,O) = -do) , z,(t,L) + yz ( t ,L )  = 0  . 

We will need the following form of the Poincard inequality. 

Proposition 1.1 (c.f. Theorem 11.11 of [Smoller]) Let w c W'I~[O,L] .  Then 

IIwtlIg + r w ( L I 2  > clIwlIg 

where c > 0  is the smallest eigenvalue of the boundary-value problem 

Proof. Let 0  < X I  L X 2  5 -  . be the eigenvalues of (1.6) and let p l ,  p2, be the 

corresponding orthonormal eigenfunctions. Let w = C %pi. Integrating by parts, we 

get 

Proposition 1.2. Let z ( t , z )  be a solution of (1.4) and (1.5). Then z ( t , z )  converges to  
1  

the steady state solution i ( z )  := s(')(L + - - z )  of (1.4), (1.5) in the L~ norm. 
7 

Proof. Let w = 2-2. Then w satisfies q = w= and w,(t,O) = wz(t, L )  + yw( t ,  L )  = 0. 

Now 



By Proposition (1. I ) ,  

1 d - - I  2 dt Iw(t,.) l  1 ;  I -c ( lw( t , . ) l  1 ;  

which in turn implies 

I l w(t7.1 I 12 s e-d  l Iw(O,.) I 12 . 

We now use i ( z )  t o  reduce (1 .1 )~  (1.3) t o  

u1 = % + f ( i ( z ) - l u l - l v l ) u  

vt = v, + g ( i ( z ) - l u l - l v l ) ~  

with boundary conditions: 

,',(t,O) = v,(t,O) = u,(t,L) + 7u ( t , L )  = vz(t,L) + 7v( t ,L )  = O 7 (1.9) 

where 

mS for s 2 -1 

for S < -1 

nS f o r s t - 1  

for S < -1 

Note that  this definition of f (S )  and g(S) for S<O will not affect solutions 

(S(t ,z) ,u(t  ,z),v(t ,z)) of ( 1 1 )  (1.3) satisfying S( t  ,z), u ( t  ,z), v ( t  ,z) 2 0 and 

S(t,z)  + u( t ,z)  + v(t ,z)  = i ( z ) .  I t  is t o  (1.8), (1.9) for which we will show that  inertial 

manifolds exist. 

We will need the following simple estimates on f and g. 

Proposition 1.3. For all S, S1 and S2, 

I f (S) I  s m ,  lo(S)I 5 n 7  



2. Inert ial  Manifolds.  Genera l  Theory.  

There are a number of existence theories for inertial manifolds (c.f. [Kamaev], 

[Moral, [Foias, Sell and Teman], [Mallet-Paret and Sell], [Chow and Lu] and [Teman]). 

In this section we will recall one that  is immediately applicable to  (1.8) and (1.9). 

Consider an abstract evolution equation of the form 

on a Hilbert space H. A is a linear, unbounded, self-adjoint operator on H with dense 

domain, D(A),  in H. Moreover, A is assumed t o  be positive and that  A- I  is compact. 

Under these assumptions on A, there exists an orthonormal basis {w,} of H consisting of 

eigenvectors of A,  AW, = Xjwj, where the eigenvalues satisfy 0 < X1 5 X2 5 -, Xj+m 

as j+m. The nonlinear term R : H + H is assumed to  be locally Lipschitz continuous. 

Definit ion 2.1. A subset M of H is said t o  be an inertial manifold for (2.1) if it satisfies 

the following properties: 

(i) M is a finite dimensional Lipschitz manifold, 

(ii) M is positively invariant, and 

(iii) M attracts exponentially all solutions of (2.1). 

Assume that  (2.1) is dissipative, i.e., there is a po > 0 such that  

for all solution u(t)  of (2.1). In this case, one can modify (2.1) t o  the secalled prepared 

equation 

Here, 8 : [0,m) + [0,1] is a fixed smooth function with B(s) = 1 for 0 5 o 1 1, 8(o) = 0 

for s 2 2 and JBt(s) I 5 2 for s > 0. And 8,(o) = ~ ( 2 )  for o 2 0, where p = 2po. 
P 

Theorem 2.2. (Theorem 2.2 of [Foias, Sell and Teman]) Under the above assumptions, 

there exist No, K12, Kls > 0 such that  if one has 

then (2.3) possesses an inertial manifold of dimension N. 



3. Inertial Manifolds.  Our Model. 

In order to  show that  (1.8), (1.9) possess an inertial manifold, we will first cast 

them in the form (2.1) and verify the hypotheses of Theorem 2.2. Let H be the Hilbert 

d d2 ) defined on the s u b  space L~[o ,L]  x L2[0,L]. Let A be the linear operator (-- -- 
dz2 ' dz2 

space of H consisting of all pairs (u,v), where u, v c c2[0,L] satisfy the boundary condi- 
du dv du dv tions (1.9), i.e., -(O) = -(O) = 0 and -(L)+yu(L) = -(L)+yv(L) = 0. By 
dz dz dz dz 

Friedrichs extension theorem, we can extend A t o  a closed operator, again denoted by A. 

Then A is an unbounded, self-adjoint, positive operator from its domain D(A) t o  H with 

A-' compact. Moreover, if we denote the eigenvalues of A by: 0 < A1 5 A2 5 . -, then 

A2n-l = A f n  = p i ,  where p, is the n-th positive root of the equation tan(pL) = 2. 
Cr 

1 
Since ( n - l ) x ~ - '  < p, < (n--)xL-', (2.4) can be satisfied with a large enough N. 

2 

Let R : H -, H denote the Nemitski operator corresponding t o  the reaction term, 

1.e. 

We will first show that  R is globally Lipschitz continuous on H. Consider the 

integral 

Then 

I = $  
M t  n M 2  + $Mi nM2 + $Mt nMT + $Mi "Mr 

where 

for i = 1,2. Denote these integrals by 11, 12, Is and 14, reap. 

For z c M i  n M 1 ,  the  absolute value (i.e. without the square) in the integrand of I 

is (with the z suppressed): 

Therefore, I4 5 c4 I 1 ul-u2 I I I ,  for some c4 > 0. 



For z c Mf n M $ ,  by Proposition 1.3, the absolute value is: 

2 
Therefore, I1 5 e l  [ I  lul-u2l 12 + I Ivl-v2ll2] , for some el > 0. 

There are similar estimates on I2 and Is as well as on the second component of R.  

Hence, R is globally Lipschitz continuous. 

Next we show that the dissipative condition (2.2) is satisfied. Lutegrating 

we get 

by Proposition 1.1. Fix any t and consider the integral 

L 
I := lo f ( i - l u l - ( v l ) u 2  = lM+ f ( i - l u l - l v l ) u 2  + lM- f ( i - l u l - l v l ) u 2  

where 

M+ := {z c [O,L] : i ( z ) -  I u ( t , z )  I - 1 v(t ,z)  1 > -1 ) 

M- := {z c [O,L] : i ( z ) - l u ( t , z ) I - ( v ( t , z ) l  5 -1 ) . 

Denote these integrals by Il and I2 resp. The first integral II is bounded above by 

Let i > 0 be such that 3 = max{ [o+l)x (b+l)K) + ( i ( ~ ) + l ) ' L .  and pick any 
m ' n 

po > i. Suppose I l u (6 . )  1 12 1 po for some C Then for t = 6 we have 

J{rlo,Ll:Iu(td ~<#(z)+l) u2 + l{YPCI: Iu(t,z) lz#(z)+l} u2 2 POZ 

which implies 



Therefore, at t = 

d Hence, I < O  and consequently - I l ~ ( t , . ) ( 1 ~ < - 2 c l l u ( t , . ) J I ~ ,  whenever 
dt 

d I lu(t,.) 112 2 Po. Similarly, I v(t,.) I l 2  < -2cl Iv(t,.) 1 1 2 ,  whenever I I v(t,.) I 12 2 Po- 

Thus, by Theorem 2.2, we have proved that the prepared equation for (1.8), (1.9) 

possesses an inertial manifold Mpo. 

Actually the above argument shows a little more. If we let 

where pl > then B is is positively invariant and absorbing, i.e., if we denote the solu- 

tion operator for (1.8), (1.9) by T(t)  then T(t)B C_ B and for each bounded set B1, there 

exists tl such that T(t)  Bl G B for all t 2 tl. Moreover, T(t)  maps bounded sets to  

bounded sets. Hence, by Theorem 4.2.4 of [Hale], (1.8), (1.9) possess a global attractor 

which lies in B. If we now pick po > p l  so large that the ball in H with radius po and cen- 

tered at  the origin contains the B, then Br)Mpo is an inertial manifold for (1.8), (1.9). 

Thus, we have proved that 

Theorem 3.1. Under the above assumptions, (1.8), (1.9) possess an inertial manifold. 
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