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FOREWORD 

The problem of studying the behaviour at infinity of a system has always been cen- 
tral in mathematical modelling, and there is a complete theory for systems converging to 
a limit point or a limit cycle. The study of systems which still converge to some subsets 
of points a t  infinity, but present a more complicated (chaotic) behaviour has only been in- 
vestigated in the last few decades and still remains to be fully understood. In particular, 
problems connected to control and observation of chaos are quite new and seem challeng- 
ing. This paper studies an example of imperfect observation of a chaotic dynamical sys- 
tem. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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Abstract: the concept of observability of a special chaotic system, namely the 
dyadic map, is studied here in case the observation is not exact. The usual concept 
of observable subspace does not distinguish among the behaviour of different 
models. It turns out that a suitable extension of this concept can be obtained using 
the idea of Hausdorff dimension. It is shown that this dimension increases as the 
observation error becomes smaller, and is equal to one only if the system is 
observable. 

$1. Introduction 

The study of nonlinear dynamical systems has recently attracted the attention of an 

increasing group of scientists involved in theoretical as well as in applicative fields. In 
particular there has been a growing interest for chaotic systems since it has been 

recognized that chaotic and random behaviour of solutions of deterministic systems is an 
inherent feature of many physical and engineering phenomena. 

Since a possible characterization of chaos is that, under a suitable observation mechanism, 

the output of the system behaves as a purely nondeterministic process, it is of interest to 

study the observability properties of such systems. Results in this direction can be found in 

[11.[41,[81. 

In this paper we examine the observability properties of a simple chaotic system described 

by the dyadic map, whose dynamic behaviour can be effectively characterized in terms of 

symbolic dynamics. 

It turns out that a natural extension of the concept of dimension of the observability space 

for linear systems can be given in terms of Hausdorff dimension of the observable set, The 

tool of Hausdorff dimension has been used in investigations on chaotic systems in 

connection with the study of the dimension of strange attractors [6]. 



62. The problem 

Let I be the unit interval. By chaotic system it is usually meant a map f: I + I with the 

following properties [5]:  

1. f has sensitive dependence on the initial conditions, i.e. there exists a 6 > 0 s.t. for each 

x,y E I there exists n E N, s.t. I F(x) - F(y)l> 6. 

2. periodic points are dense in I. 

3. f is topologically transitive, i.e. for any pair of open sets U,V c I, there exist k > 0 s.t. 
B ~ ) n v z @ .  

It is fairly straightforward to check that the dyadic (figure 1) 

for 0 5 x < 112 
f(x)= {E - 1 for 112 5 x 5 1 

satisfies the above requirements. 

figure 1 

There is another way to describe this model which is often used, called symbolic dynamics 
(see [5] ,  [6]).  By this term it is meant a representation of f in terms of a shift on a set of 

binary sequences. Defme the set of binary sequences 

endowed with the following metric: 

On 2 define a shift as follows 



Denoting by x: the map from I onto C2 which associates to a real number its nonterminating 

binary representation, it is clear that the following diagram commutes: 

By dynamical system we mean here a mathematical model evolving in time whose 
trajectories {x(t), y(t))= N (behaviours, see [7]) admit a representation through a pair of 

functions (F,H) on a suitable domain 

The variables x and y are called state and observation of the system. The above system is 

said to be observable at time t if there exists an injection form the range of x(t) into the 

cartesian product of the observation up to time t {y(l), y(2), ..., y(t)). The system is 

observable if here exists a to (possibly infinite) such that the system is observable at each 

t 1 to. Since F is a deterministic function, in this context, the system is observable as soon 

as the initial condition can be determined exactly. More generally, even for an unobservable 

system, we shall say that an initial condition x ir observable if it is uniquely determined by 

the observation of the corresponding trajectory. 

Consider now a particular example of (2). where F is the dyadic map (1) and H is the 

following two state observation function 

0 f o r  0 I x < 112 
1 fo r  112 I x I 1  

We get the following dynarnical system 

It is easy to see that this model is observable over an infinite interval of time, i.e. the initial 

condition (and hence the whole trajectory) is determined uniquely by the infinite 

observation of the system (to this end take the binary representation of an initial state xo: 

this will coincide with the history of the observations). One reason why this model is so 
interesting is that, in spite of its complete observability, any observation over a finite time 

interval is indistinguishable from the outcome of a coin tossing (see[6]). Another reason is 

that it introduces the symbolic dynamics in very natural way. In fact, the history of the 



observations of F(x) under h is precisely x(x). Observability here depends on the fact that 

the inverse images under ho of the states 0 and 1 coincide exactly with the two intervals 

[0,1/2), [1/2,1) (these are called Markov partitions of f, see [6]) .  For this reason we call 

this observation exact. The problem we want to consider now is the following: suppose our 

observation function does not distinguish exactly between the two intervals, but contains 
some error e > 0 as follows: 

0 for 0 I x < 112 + e 
~E(x)  = 

1 for 112 + E I x 5 1 

It can be seen that, for example, the initial conditions x and x + 112 are indistinguishable for 
x E [O,e). We give a precise characterization of this concept in theorem 1 below. However. 

if e < TJ, also hE yields a better observation than hq in the sense that more points are 

distinguishable.The questions we try to answer in this paper are the following: 

Does there exist a way to define observability of SE such that: 

a) this definition generalizes the usual observability concept for dynamical systems. 
b) the function which measures observability of SE is decreasing in e 

It should be noted that the first thing one would try, namely the measure of the observable 

set, fails, as shown in Proposition 1 below. 

We will study the special case E = 2-". and we write, by abuse of notation, with S,, h,, 
instead of SZ-n, h2-,,. We define R, to be the set of observable points of S,. By the notation 
0. ..O we mean a sequence of exactly k zeros. 
k 

Theorem 1: Rn is the set of points of I whose binary representation has the following 

properties: 

a )  the sequence 01 OK .O1 never occurs for k >n-2 
b )  the sequence 11 0 01 never occurs for k >n-I. F 

For the proof we need two lemmas. Defme by Yn the set of trajectories of &,: 

Yn:= ( s  E C2: S = ( h , ( f y ~ ) ) ) ~ ~ ~  for some x E [0,1)) 

Lemma 1: the set Yn consists exactly of the points of Zj in which the sequence (10 01)  li-1 
never appears. 

hoof:  if Nx) never has not more than n-2 zeros in a row, then h(fyx)) = hn(fyx)), and 
the number of zeros is preserved. If n(x) has more than n-1 zeros, the 1 preceeding the 



zeros is set to zero by h,, and so the output sequence will have at least n zeros. Therefore 
the sequence 10.. .0 1 can never occur as the output of S,. 

n- 1 

Lemma 2: the sequences of Y,, generated by observable points are those which have at 
most n consecutive zeros. 

Proof: if a sequence s = hn(fyx))Jt ,~ has less than n consecutive zeros, then in view of 

Lemma 1 it has at most n-2 zeros and thus h,,(fyx)) = h(fyx)). If s has exactly n zeros, than 
it is seen by inspection that it can only be generated by a sequence { l  li.-.iO1). If s has r 

consecutive zeros, r > n, then both the element 

yield the same output and thus the trajectory does not determine uniquely the initial point. I 

Proof of theorem 1: to characterize the observable points of [0,1), observe first that a 
point x for which Nx) has a subsequence of n or more consecutive zeros is not observable. 

In fact, in this case, s = hn( fyx) ) J t ,~  will have at least n+l zeros, and in view of 

Lemma 2 this trajectory is generated by more than one point. If there are less than n-1 
consecutive zeros, then h,(fyx)) = h(fyx)) for all t, and the point is observable. If a 
subsequence with exactly n- 1 zeros occurs, there are two possibilities: 

a) the subsequence is of the form 010.. 01 and it is thus indistinguishable either from n-i 

10 ... 01 (if there are less than n-1 zeros before the preceeding 1) or from !ylO1 (if there 
n 

are more than n-2 zeros before the preceeding 1). 

b) the subsequence is of the form 110.. 01. Then the image of the subsequence is 10 ... 01. n-i 
which in view of lemma 2 comes from an observable point. I 

Corollary: Q,,c f2,,+1 . 110 01 d-'I 

Proposition 1: Let f2, be the set of observable points for S,, Then. 

~ ( 4  = 0 

where p denotes the Lebesgue measure. 
Proof: from theorem 1, R, is the set of points x such that in ~ ( x )  some sequences never 

occur. In view of the Borel-Cantelli lemma the measure of this set is zero. 

This proposition says that the system So is very special with respect to the Lebesgue 
measure, because it is the only one whose observable set has measure one. 

It turns out that a reasonable tool to characterize the magnitude of the observable set is the 
Hausdorff dimension, as we show below. 



$3. Main result 

We are going now to define the Hausdorff dimension of a metric space X. The diameter of 

a set U of X. is defrned as 

dim(U) = sup (d(x,y) : x,y E U) 

Given 6 > 0 we denote by Ug a cover of X such that diam (U) < 6 for all U in Ug. 

Definition: the Hausdofldimenrion of a metric space X is 

HD(X) = irf {a: V E > 0 . 3  a cover Ug of X s.t. (diam (U)a) < E) (8) 
u E U S  

The Hausdorff dimension has several interesting properties (see [3]) : 

HD (X) I HD (XI) if X c  X' (94 

HD(X)=n for X c Wn if p(X) > 0 

HD (Un X J  = sup HD (Xn) 

The Hausdorff dimension is equal to the usual dimension in the case of a linear space or of 

a smooth manifold. As a consequence, we have the following: 

Proposition 2: let S be a linear dynamical system with observable space of dimenrion n. 

Then also the Hausdofldimenrion of this space is n. 

So the Hausdorff dimension is equivalent to the usual one in all classical cases. In general, 

though, it is a rather difficult object to compute whenever it does not coincide with the 

usual notion of dimension. Its interest for our application lies in the fact that Sn is not a 
classical case, but HI)(&) is still quite easy to compute. Denote, as above, by Rn the 

observable set of S, 

We are now ready to compute the Hausdorff dimension of & . 
2n+1- 6 

Theorem 2: HD (RJ = 2m 

Proof: we need first the following result (see [3], Theorem 14.1). Let uk(x) be the 

subinterval of I of the form [& ,%) containing x. Let v be n probability measures on I 

such that v(X) = 1, and let p denote the Lebesgue measure. If 



then HD (X) = 6. The problem thus becomes to construct the measure v on the set a. A 

standard procedure (see [3], p.143). is to use the measure induced by a Markov chain 
whose trajectories belong almost surely to a. Denoting by pij the transition probabilities 

and by pi the invariant measure, it is easily seen that 

log v(uk(x)) 1 
n 

1 i m = -- ex ~ i ~ i j l o g  Pij 
k + log ~ (uk(x ) )  bJ=l 

In our case, R, is the set of all numbers whose binary expansion never has the sequences 
OIOi;.O1 fork>n-2andthesequence llOk..O1 fork>n-1. WenowconstructtheMarkov 

chain z(t) as follows: if the first two digits of x(t) are 01 followed by i-1 zeros, set z(t) = i 
for i = (1, ..., n-1 1. If x(t) terminates with exactly i zeros preceeded by 11 then set z(t) = 
n+i. it is easy to see that z(t) has transition probabilities 

112 for j=i+l,i#n-1, 2n-1 
for i=j=n and i= 1, j=n 
for i=2 ,..., n-2,n+l, ..., 2n-2 and j=l 

[ ~ i j l  = 1 for i=n-1, i=2n-l j=l  and j=l 

The invariant measwe for [pij] is Seen to be 

a simple substitution in (1 1) yields the result. 

We still need to justify the choice of (12). It is easy to see that, when we condition on 
(x E Rn], the probability measure induced by the Lebesgue measure is exactly the 

measure induced by the Markov chain (12). To see that this conditional probability is 
indeed the one with support On,  we refer the reader to the original paper of 

Billingsley [2]. 1 

Another and perheaps more natural way to look at the observability problem is the one 
concerned with the set of possible output trajectories. Y,,. This set of binary strings can be 

inbedded in [0,1) in an obvious way, and we can thus define, with abuse of notation, the 
Hausdorff dimension of Yn. In a fashion completely similar to that of theorem 2 we can 

prove the following 



2n+1 
Theorem 3: the Hausdorff dimension of Yn is 

2"+1 + 1 

We would like to remark that the dimensions computed in theorems 2 and 3 converge to 1 
as n goes to in f i ty ,  yielding thus that consistency which was seeked in the beginning of 

the paper. 

$4. Conclusions. 

We have presented an example where the definition of dimension of the observable 
subspace of a dynamical system is extended to the case of noninteger numbers. We 

conjecture that this procedure can be generalized to a system of the form (2) whenever the 
function F admits a Markov partition on its domain and H takes only finite values. This 
problem is currently being investigated by the authors. 

Acknowledgments: it is a pleasure to thank Professor Tom Taylor for drawing our 

attention on this subject, and for the useful discussions we had together. 

This research took parly place while the second author was visiting the Division of Systems 

and Decision Sciences, IIAS A, Laxenburg, Austria 

References 

[I.] Aeyels D., Generic Observability of Differentiable Systems, SIAM J. Control and 
Optimization, Vol 19, 1981,595-603. 

[2] Billingsley P., Hausdorff dimension in probability theory 11, Illinois Journal of 
Mathematics, 5,1961.29 1-298. 

[3] Billingsley P., Ergodic theory and information, Wiley, 1965. 

[4] Drager L., Martin C., Global observability of a class of nonlinear discrete time 
systems, System and Control Letters, 6 ,  1985,65-68. 

[5] Devaney R.L., Chaotic DyMmical system, BenjamWCummings 1986. 

[6] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical System, and 
Bifurcation of Vector F i e l . ,  Springer-Verlag, 1983. 

[7] Willems J.C., From time series to linear systems, Part I. Approximate modelling. 
Automatica, Vol22, N.5, 1986,561-580. 

[8] Taylor T.J.S., On observation of chaotic systems and randomness, Proc. MNTS 
1987. 


