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Foreword 

This paper deals with an inverse problem: the estimation of an initial distribution in 
the first boundary value problem for the heat equation through some biassed information 
on its solution. Numerically stable solutions to  the inverse problem are normally 
achieved through various regularization procedures. It is shown that these procedures 
could be treated within a unified framework of solving guaranteed estimation problems for 
systems with unknown but bounded errors. 
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This paper deals with the selection of an initial distribution in the first boundary- 

value problem for the heat equation in a given domain [0,6] x R, 6 < oo with zero values 

on its boundary S so that the deviation of the respective solution from a given distribu- 

tion would not exceed a preassigned value 7 > 0. The result is formulated here in terms 

of the "theory of guaranteed estimation" for noninvertible evolutionary systems. It also 

allows an interpretation in terms of regularization methods for ill-posed inverse problems 

and in particular, in terms of the quasiinvertibility techniques of J.-L. Lions and R. 

Lattes. 

1. The Problem. 

Assume R to be a compact domain in R n  with a smooth boundary S;  6 > 0 , 7  > 0 

to  be given numbers, functions y(t,z), z(z)(R x R n  + R'), ( R n  + R') to  be given and 

such that y(.,.) E L2([0,6] x R), I(-) E L2(R). 

Denote u = u(t,z; w(-)) to  be the solution to the boundary value problem 



Also denote 

with a > 0, ,~9 1 0. 

Consider the following problem: among the possible initial distributions w ( . ) € L 2 ( R )  

specify a distribution wO( . )  that ensures 

The latter is an inverse problem [I.] .  With a = 0 it was studied by J.-L. Lions and 

R. Lattes within the framework of the method of "quasiinvertibilityn [2]. Numerical sta- 

bility was ensured in this approach. 

Let us now transform the previous problem into the following: among the distribu- 

tions w ( . )  E L 2 ( R )  determine the set w*(-)  = { w t ( . ) )  of all those distributions cut(.) that 

yield the inequality 

Assuming that the problem is solvable ( w*( . )  # 4) we may describe its solution in 

terms of the theory of "guaranteed observationn [3]. Namely, assume y ( t , z ) ,  z ( z )  to be 

the available measurements of the process (I), so that 

where ( ( t , z ) ,  o ( z )  stand for the measurement noise which is unknown in advance but 

bounded by the restriction 



Then w*(.) will be precisely the set of all initial states of system (1) consistent with 

measurements y(t ,z) ,  z(z)  (4) and with restriction (5). 

The  aim of this paper will be to  describe some stable schemes of calculating the sets 

w*(.) and their specific elements. (A direct calculation of these may obviously lead t o  

unstable numerical procedures.) 

2. The R e g u l a r i z i n g  Problem (A G e n e r a l  S o l u t i o n )  

Consider a rather general problem. Assume the  values (, o ,  w t o  be unknown in 

advance while satisfying a joint quadratic constraint 

Here N(E),  M(E),  K(E)  are nonnegative self-adjoint operators from L 2(R) into itself 

(with N(E) invertible) and such tha t  each of them depends on a small parameter E>O. 

The  symbol (-,.) denotes a scalar product in L2(R). 

An informational set WE(.) of distributions w(-) consistent with measurements y and 

z will be defined as the  variety of those and only those functions w(.) E L2(R) for each of 

which there exists such a pair ((-,-) E L2([0,8] x R) and o ( - )  E L2(R)  t h a t  equalities (I) ,  

(4) would be fulfilled together with the  inequality (6). 

Lemma 2.1. The informational set WE(.) consists of all those functions w(.) E L2(R)  

that satisfy the inequality 

where 



and where U *  s tands  for the respective adjoint operator.  

It is further assumed that h, is such that W ,  (.) is nonvoid. 

If there exists an a0 2 0 such that 

with a  -, EO 

then the problem of estimating the distributions w( . )  due to the system ( I ) ,  (4), ( 6 )  will 

be further referred to as the regularizing problem for problem ( I ) ,  (3). 

3. Quasiinvertibil i ty 

With cw = 0 in equation ( 2 )  we arrive at the problem investigated in [2] by means of 

the quasiinvertibility techniques. Following the latter consider an auxiliary boundary- 

value problem 

Then taking 

we come to 

The following question does arise: is it possible to select the operators 

N ( E ) ,  M ( E ) ,  K ( a )  that define the quadratic constraint ( 6 )  in such a way that the center 

w f ( - )  of the informational ellipsoid W e ( - )  would coincide with the solution V,(O,-) of 

Lions and Lattes? 

Assume 0 5 XI 5 X2 5 5 Xi . . to be the eigenvalues and {pi(.)) to  be the 

respective complete system of orthonormal eigenfunctions in the first boundary-value 

problem for the operator A = -A in the domain R. 



Assume 

with wi (respectively ai ,  zi) being the Fourier coefficients for the expansion of functions 

w(-) (respectively a(-) ,  z(.)) in a series along the system of functions {pi(-)). 

T h e o r e m  3.1. A s s u m e  a = 0 and operators N(E), M(E), K(E) of inequali ty (6) t o  be 

defined as  i n  (9) with M(E) = 0. T h e n  for all E > 0 the  center  wO(.) of the  ellipsoid We(.) 

(7) will coincide wi th  the  Z i o n s  - Lattes" solution we(-) (8). N a m e l y  

and lo:(.) will be represented as  

The next theorem indicates that an appropriate selection of the operators 

N(E), K(E) in (6) (with M(E) = 0) would allow to approximate the set 

with respective informational sets WE (.) 

T h e o r e m  3.2. A s s u m e  a = 0, /3 = 1, E > 0, u > 0 and the  operators 

N(E), M(E), K(E) of inequali ty (6) t o  be defined as  

T h e n  wi th  he = 0 there  ez is ts  a pair co > 0, uo > 0 such that  wi th  E 5 EO, u 5 u0 the  

respective in format ional  ellipsoidal set  WE(.) = WE,,(.) # 4. I ts  centers  wf,, converge: 

lim WE, = wE(-) (~'0) 



and 

lirn WE,,(-) = we(-) (a - 0 ,  v -+ 0 )  

in  the sense of Kuratowski [dl.  

4. Extremality and the General Regularization Scheme 

Consider the minimization process for the functional (2). With a = 0 a numerically 

stable scheme for calculating inf J is ensured by the quasiinvertibility method discussed 

above. We will now proceed with the construction of a respective algorithm for the gen- 

eral case, particularly for /3 1 0.  

Theorem 4.1. The value 

e 00 -xi@ 
inf J =  a J lly(t)1I2 dt + ~ 1 1 ~ ( . ) 1 1 ~  - C vi(api + B e ~ i ) ~  , 
4.1 o i= 1 

where 

y i ( t ) ,  pi are the Fourier coefficientsfor y ( t , . ) ,  P ( - ) ,  

is a sequence in  12. The sequence 

minimizes J(w(.))  with a -+ 0.  

Theorem 4.2. Suppose /3 = 0.  Then for we(.) of (10) we will have 

and consequently 

J(w,(.)) - inf J(w(.))  with E -+ 0 
4.1 



Remark 4.1. Once there exists a distribution w ( - )  E L 2 ( R )  that ensures the equali- 

ties 

the value 

inf J ( w ( - ) )  = 0 . 
4 . 1  

The next question is whether the functions we(- )  of (10)  could serve as centers of 

some "informational ellipsoidsn W ,  that would correspond to an appropriate selection of 

operators N ( E ) ,  M ( E ) ,  K ( E )  in the restriction ( 6 ) .  The answer is affirmative and is given 

by the following theorem. 

Theorem 4.9. Suppose the restriction (6) i s  defined through the operators 

with N ( E ) ,  K ( E )  being the same as i n  ( 9 ) .  Then the center w t ( . )  of the respective informa- 

tional domain W ,  for equation ( 1 )  under restriction ( 6 ) ,  ( 9 ) )  (11)  will coincide with the 

distribution given by formula (10):  w f ( - )  = w,(.). 

Remark 4.2. Define a minmaz  estimate w0 for a bounded convex set W as its Che- 

byshev center: 

sup{llwO - w ( (  I w E W )  = min sup {llz - wll I w E W )  . 
zE W 

Then once W is an ellipsoid its Chebyshev center w0 will coincide with its formal center. 

For an arbitrary bounded informational set that may appear in nonlinear nonconvex 

problems its Chebyshev center may be taken as a natural "guaranteed estimaten for the 

unknown parameter w. 

5. Other Regularizing Procedures 

Consider cr = 0. (a) Another regularizing procedure may be designed through the 

solution v,(t,z) to  the following problem: 



a 
( v ,  - CAW,) - A v ,  = 0 ,  0  5 t 5 0 

v~ I [o,e]xs = 0 ,  vE It=@ = 4.) 

so that  

The system ( 1 2 )  was introduced in paper [ 5 ] .  The function w,(.)  = v,(o,.) will be 

the center of the respective informational ellipsoid consistent with measurement r ( . )  if we 

assume 

Here the center of the  ellipsoid is defined in a formal way, through formula (7). The ellip- 

soid itself is however unbounded. 

(b) With r ( . )  given, assume that  there exists a solution t o  equation 

U e w ( - )  = r ( . )  

Consider the constraint ( 6 )  with 

( N ( s ) w ) ( - )  = n,w( . ) ,  ( K ( s ) a ) ( . )  = k,a( - )  , M ( s )  = 0  

where n,  > 0 ,  k, > 0 are real numbers. 

Then with n, = s2,  k, = 1  the  center w:(.)  of the respective ellipsoid WE(.) will 

coincide with the quasisolution (in the sense of V.K. Ivanov [ 6 ] )  t o  the equation 

on the set 

M = { w ( . )  I Ilw(.)ll I l lw:( ' ) l l )  , i. e. 

.I:(.) = arg min I (Uow( . )  - r(.)l l  , w ( - )  E M .  

(c) Assuming n,  = 1 ,  k, = E - ~  the function lo:(.) will be an approximate solution 

t o  the equation 



Vow(.) = z(.) 

by the "bias method" with bias 

~ ( U B ' D ( ' ) , ~ ( ' ) )  = J ( w ( ' ) )  

So that 

w: (.) would solve the problem 

min {11~(.)11 : d(Uew(.),  ~ ( - 1 )  I J(w,O(.))) 

In both cases (b), (c) we observe that J(W;(.)) -+ 0 with E -+ 0.  

6. A Continuity Theorem 

Taking the solution (10)  present it as a linear maping 

we(.) = F,(Y (. , .) ,z(.)) 

from L2([0,e] x R )  x L 2 ( R )  into L2(R) .  

Suppose 

where 

Theorem 6.1. The mapping F,  is  uniformly continuous i n  L2([0,e] x n )  x L 2 ( R ) .  

The following estimate i s  true 

With E -+ 0 ,  5, -, 0 ,  ( 5 ; ~ - l )  -+ 0 ,  i=1,2, there i s  a strong convergence 

F , (Y~( ' , ' ) ,  r g ( ' ) )  -, W * ( . ) .  
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