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FOREWORD 

This paper indicates a sequence of ev.olutionary "funnel equations" with set-valued 
solutions which are crucial for the construction of respective feed-back control strategies 
along the schemes introduced by N.N. Krasovskii. The integration of these funnel equa- 
tions leads to  a sequence of multivalued integrals that generalize some of those introduced 
earlier (Auman's integral, the Convolution integral, Pontryagin's Alternated integral). 
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This paper deals with the problem of synthesizing a feedback control strategy for a 

linear controlled system subjected to  unknown but bounded input disturbances and con- 

vex state constraints (see [l-71). While seeking for the solution in the form of an 

"extremal strategy" as introduced by N.N. Krasovski, it is shown that the respective sets 

of solubility states that are crucial for the solution of the control problem could also be 

treated as cross-sections of trajectory tubes for some specially designed "funnel equa- 

tions". The set-valued solutions to these could be then presented in the form of specially 

derived multivalued integrals. 

1. The Problem of Synthesizing 'Guaranteedn Cont ro l  Strategies. 

Consider a controlled system 

i E u - Q(t) , 

~ E T  = [tO,tl] , z € R n  

under restrictions 

Here (1.1) is the equation for the controlled process, u is the control parameter res- 

tricted by the set-valued function P(t)  rrs in (1.2), (1.3) is the state constraint, (1.4) is the 

terminal condition. The functions P( t ) ,  Q(t) are set-valued, with values in conv ( R n )  

and measurable in t, Y(t) is set-valued with values in cl(Rn),  continuous in t. The 



notions of continuity and measurability of multivalued maps are taken in the sense of 

[12]. The set M E  conv ( R n ) .  

Here and further we assume the notations: 

- conv(Rn) for the set of convex compact subsets of R n ,  

- cl(Rn) for the set of closed convex subsets of R n ,  

- comp(R ") for the set of compact subsets of R n ,  I - for the unit matrix. 

The set-valued function Q(t) describes the range of uncertainty in the process 

assuming that the system is affected by unknown but bounded input disturbances v(t), so 

that 

with 

The aim of this paper is to  describe a certain unified scheme for solving the following 

problem of "guaranteed" control synthesis: 

Specify a synthesizing strategy 

so that for every solution to  the system 

the inclusions 

would be satisfied for any initial condition z0 = z[tO], from a given set XO : zOEXO.  

The clam U of strategies u(t,z) within which the problem is to  be solved is taken to  

consist of set-valued functions u(t,z) with values in conv (Rn) ,  meaaurable in t and upper 

semicontinuous in z. The inclusion u(t ,z)€U here ensures the existence of a solution to  

the equation 



for any DE conv(Rn). The solution control strategy u(t,z) should thus guarantee the 

inclusions (1.1), (1.3), (1.4) whatever are the disturbance v(t), and the vector Z O E X O .  

A crucial point in the solution of the control synthesis problem is to  find the set 

W[to] = (2,) of all initial states z0 that assure the solvability of the problem (so that 

W[to] would be the largest of all sets that ensure the solution). A similar question 

may be posed for any instant of time 7E(t0,tl). This leads to  a multivalued function 

W[r], ET. 

As demonstrated in [I] the knowledge of function W[t], in particular for the "linear- 

convexn problems (1.1), (1.2), (1.4), allows to  devise a solution u(t,z) in the form of an 

"extremal strategyn of control. However, the basic scheme also remains true for the prob- 

lem (1.1)-(1.4) with a state constraint. The main accents of this paper are not on the dis- 

cussion of the relevance of the extremal strategy (which will nevertheless be specified 

below) but rather on the unified formal scheme for describing W(t). It will be shown in 

the sequel that W[t] may be defined as the solution to  an evolution "funnel equationn 

which allows a representation in the form of a special multivalued integral that general- 

izes some of the conventional multivalued integrals (Auman's integral, the convolution 

integral, Pontriagin's alternated integral [7]). 

The treatment of equation (1.1) rather than 

causes no loss of generality, provided P(t)  does not reduce to  a constant transformation. 

2. The Basic  uFunneln Equation 

In this paragraph we introduce a formal evolution equation whose solutions are set- 

valued functions which will later be shown to describe the required sets W[t]. 

Assume the multivalued functions P(t) ,  Q(t), Y(t) are t o  be given as in $ 1. With 

P', P"E conv(Rn) we introduce the standard "Hausdorff semidistancen as 

h+(P', P") = min{r : P'c P" + rS) 
r>O 

where S = {z:(z,z)<l, z€Rn)  a unit ball in R n  ((z,z) is the inner product in Rn) .  

Definition d.1. A multivalued map Z(t) with compact values will be said to  be h+ - 
absolutely continuous on an interval [to,tl] if V&>O, 36>0: 



where {(t,!,t,!')) - is a finite or countable number of nonintersecting subintervals of [to$,]. 

Consider the =funnel equation" 

lim u-'h+(Z(t-u) - uQ( t ) ,  ( Z ( t ) n Y ( t ) )  - u P ( t ) )  = 0 
u-0 (2.1) 

with boundary condition 

Definition 2.2. An h+-solution to  equation (2.1) will be defined as an h+-absolutely con- 

tinuous set-valued function Z ( t )  with values in comp(Rn) that satisfies (2.1) almost 

everywhere on [to,tl]. 

In general the h+-solution to (2.1), (2.2) is nonunique. The unicity may be achieved 

by selecting a "maximaln solution to  (2.1), (2.2) in the sense of the partial order 5 for the 

set of all h+-solutions { Z ( - ) )  to  (2.1), (2.2), t€[r,t l] introduced by assuming that 

Z l ( - )  5 Z2(-)  iff Z1( t )  G Z2( t )  for all t ~ [ r , t , ] .  

Lemma 2.1. If W [ T ) # ~  for some r€(tO,tl), then the variety of all solutions to (2.1)) (2.2)) 

t€[r,t l] is nonvoid and has a unique mazimal element uith respect to the partial order 5 .  

3. The Formal Solution 

The solution to  the problem of synthesizing controls that guarantee the restrictions 

(1 . I ) ,  (1.2), (1.4) is given by the following theorem: 

Theorem 3.1 (i) The solution to the problem of control synthesis for the system (1.1)-(1.4) 

in  the class U E U  from the initial position z: = z[r] does ezist i f  and only i f  W [ T ] # ~  and 

(ii) The condition W[r]#c$ is fulfilled i f  and only i f  on the interval [r,tl] there ezists an h+- 

solution Z ( t )  to equation (2.1) with boundary condition (2.2); then W [ t ]  is the unique maz- 

imal solution to (2.1) with respect to the partial order 5 ,  

(iii) the guaranteed synthesizing strategy that resolves (1.1)-(1.4) is given in  the form 

Here p( tJZ)  = max { ( t , z ) l z ~ Z )  i s  the support function for set Z,  8,f(t,t) stands for 

the subdiflerential of f(t,t) in t, t? = t?(t,z) is a unit vector that solves the problem 



and the symbol d(z ,Z( t ) )  stands for the Euclid distance from point z to  set Z( t ) .  

Eztremal strategies of type (3.2), (3.3) were introduced by N.N. Krasovski (see [ I ]  , 
[GI 

The proof of Theorem 3.1 is based on the following assertions. 

Lemma 9.1. Suppose Z ( t )  is an h+-solution to equation (2.1), (2.2) for the interval [r,tl] 

Then 

For any h+-solution Z ( t )  to (2.1), (2.2) we may define an extremal strategy u,(t,z) 

according to (3.2), (3.3), (substituting W for 2). 

Lemma 9.2. The multivalued map u = u,(t,z) is such that uEU, i.e. u,(t,z) is mearrurable 

in t and upper semicontinuous in z.  

This ensures the existence of solutions to equation 

for any zO€ W[tO].  

Lemma 9.9. Assume the inclukon (9.4) is generated b y  a strategy u,(t,z) for a given h+- 

solution Z(.) of the evolution equation (2.1), (2.2). Then, for almost all values of tE T ,  in 

the domain d(z ,Z( t ) )  > 0 the follouring estimate is true along the solutions to (9.4) 

where u [ t ] € P ( t ) ,  v[ t ]€  Q( t ) .  

Lemma 9.4. For a eolution zO[t] of (9.4) the initial condition zO[r]€Z(r) yield8 z O [ t ] € z ( t )  

for any t€[r , t l] .  



4. Multivalued Integration 

Once the evolution equation (2.1), (2.2) is given it is possible to define the crossec- 

tion W[t] of the solution tube W(-), W(tl)cM as a certain multivalued integral. As we 

shall see in the sequel this integral generalizes a whole range of Usimpler" multivalued 

integrals. Let us proceed with constructing the corresponding integral sums. Suppose 

M[tt,ttt] stands for the set of ( n x  n)-matrix valued functions continuous on [tt,t"], and M 

for the set of square matrices of dimension n. Introduce a subdivision P, of the interval 

[ ~ , t l l  as 

and define integral sums of the following three types: 

(1) 

Ti t 

xll\ = n{( $ (I- $ M(€)d€)P(t)dt 
Ti-1 Ti-1 

Ti Ti 

+ $ M(t) Y(t)dt + (I- $ M(()~()x,(')] 
Ti- I Ti- 1 

Ti 

x/!\ = n{- ~ ( t ) d t  + MY(T,) + (I-M)x{~)] 
Ti- 1 

Ti 

[- $ Q(t)dtI IMEMI 
Ti- I 



Symbol - stands for the "geometricaln ("Minkowskin) difference, i.e. for sets A,B given 

The convergence of the integral sums with m+oo to a value that does not depend on 

the subdivision P ,  is ensured by the following assumption: 

Assumption 4.1. There exists a function p ( t ) ,  continuous in t ,  t € T  and such that 

p(t)>O for t € [ t o , t l )  and that for any subdivision P ,  of the interval T the following inclu- 

sion is true 

Theorem 4.1. Under Assumption 4.1 the limit 

J ( r , t l , M )  = lim xLi ) (prn ,M)  
mdoo 

depends neither on the sequence of subdivisions P ,  nor on the indez i = 1,2,3. The follow- 

ing equality is true 

The definition of the integral J ( r , t l , M )  is therefore correct. 

We will now follow several particular cases starting from the simplest one. 



5. Attainability Domains for Control Systems 

Assume Q(t) = {0), Y(t) = Rn. Then W[r] is the attainability domain for system 

written in backward time from tl t o  to and evolving from set M .  A funnel equation for 

differential inclusions in the absence of state constraints wae studied in [8,9] in terms of 

the Hausdorff distance h(Z1,Z2), where 

The funnel equation for W[r] is as follows 

Lemma 5.1. Under conditions Q(t) {O), Y(t) E Rn, the set W[t], W[tl] = M is the 

unique solution to equation (5.1) and also the unique mazimal solution to equation 

It  may be represented as a amultivalued Lebesque integral* (Oilumann's integral*) 

6. "Viabilityn Tubes. 

Consider the particular case Q(t) G (0) (a system with state constraints in the 

absence of uncertainty). Then W[r] is the set of states from each of which there exists a 

"viable" trajectory (relative t o  constraint (1.3)) that  ends in M . In other words, for each 

zO€ W[sj there exists a control u[t] restricted by (1.2) that  generates a trajectory 

z[t]€ Y(t) for all t E T  and such that  z[tl]€M. ( W[r] is also the attainability domain for 

system (1.1)-(1.4), Q(t) = (0) in backward time.) 



The evolution equation (2.1) here forms to  be 

lim a - l h + ( ~ ( t - a ) ,  ( Z ( t )  n Y ( t ) )  - a P ( t ) )  = 0 . 
o++O 

Theorem 6.1. Under condition Q = ( 0 )  the multivalued function Z = W [ t ]  i s  the only 

mazimal solution t o  equation (6.1), ( t .2)  with respect to  the partial order 5.  This  solution 

may  be presented i n  the form of a multivalued convolution integral 

where S ( t )  and M ( t )  are connected through the equation 

The intersection (6.2) is taken over all matrix functions M ( - ) € M [ r , t l ] .  The integral 

(6.2),  introduced in [4] is a "multivalued" version of the convolution integral described in 

[121. 

Another version of the funnel equation for W [ t ] ,  as given in [4], is the following: 

Here we use the Hausdorff distance and the equation is true if either the function 

Y ( t )  has a convex graph, where 

graph Y ( t )  = { t , z : z ~ Y ( t ) ,  S T )  

or if the support function p(!l Y ( t ) )  = f(t,!) is continuously differentiable in t,!. The 

transition t o  the Hausdorff semidistance in the context of equation (6.1) allows to  drop 

the additional requirements on Y ( t )  but yields no unicity of solution. The latter is 

regained, however, if we consider the maximal ( 5 )  solution to  (6.1). 



7. So lu t ion  S e t s  f o r  Game- theore t i c  Control Synthes is .  

Assume Y(t) = Rn so that  there is no state constraint. Then the initial problem 

transforms t o  one of synthesizing a control strategy in a differential game with fixed time 

with terminal cost being the distance t o  set M .  A guaranteed solution strategy u(t,z) 

should ensure d(z[tl],M) = 0 so that  z[tl]€M. 

The funnel equation for the set W[t] that  would generate a solution strategy of type 

(3.2) is now as follows 

lim O-lh+(Z(t-O) - uQ(t) ,  Z(t) - uP(t ) )  = 0 
u++O 

The formulae (4.1)-(4.3) for the integral sums (with Y(t) - R n )  now coincide with 

the "alternated sumsn introduced in [7]. 

Theorem 7.1. With Y(t) = R n  the multivalued map W[r] is the unique mazimal (I) solu- 

tion to equation (7.1)) (2.2). Under Assumption 4.1 the function W[r] is continuous and 

satifies (7.1) for all ~ E T .  It may be presented through the "alternated integral" of L.S. 

Pontriagin /7]) as 

Assuming that  P ( t ) ,  Q(t)  are of "similar typen (i.e.,O€P(t),O€Q(t) and 

P ( t )  = a Q ( t ) ,  a>O), the Hausdorff semidistance h+ in (7.1) may be substituted for the 

distance h and the integral (7.2) transforms into 

We then arrive a t  the "regular case" for the respective differential game [I] 
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