
W O R K I N G  PAPER 

A UNIFIED MATHEMATICAL 
PROGRAMMING FORMULATION FOR 
THE DISCRIMINANT PROBLEM 

Antonie Stam 
Cliff T. Ragsdale 

July 1989 
W P-89-047 

I n t e r n a t i o n a l  I n s t i t u t e  
for Appl~ed Systems Analysis 



A UNIFIED MATHEMATICAL PROGRAMMING 
FORMULATION FOR THE DISCRIMINANT PROBLEM 

Antonie  S t a m  
Cl i f l  T .  Ragadale 

July 1989 
W P-89-047 

Department of Management Sciences 
and Information Technology 

College of Business Administration 
University of Georgia 
Athens, Georgia, 30602 U.S.A. 

Working Papera are interim reports on work of the International Institute for 
Applied Systems Analysis and have received only limited review. Views or 
opinions expressed herein do not necessarily represent those of the Institute 
or of its National Member Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



FOREWORD 

The purpose of classification analysis is to predict the group membership of individu- 
als or observations based on limited information about the group characteristics. The 
resulting classification or discriminant rules provide a powerful methodology in decision 
analysis. In fact, classification analysis has been touted as one of the most significant 
tools to  analyze scientific and behavioral data. Applications of discriminant analysis can 
be found in such diverse fields as predicting bank failures, artificial intelligence, medical 
diagnosis, psychology, biology and credit granting. The most widely used statistical tech- 
niques are based on the assumption of multivariate normality. Frequently, this assump 
tion is violated and nonparametric techniques are appropriate. One such technique which 
was recently proposed uses mathematical programming formulations of the problem. 

This paper introduces a unified mathematical programming-based approach to the 
two-group discriminant problem which does not suffer from many of the theoretical inade- 
quacies that have plagued previously proposed formulations. Moreover, the formulation 
appears to  be simple, making it a promising contribution from both a theory and practice 
viewpoint. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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A Unified Mathematical Programming Formulation 

for the Discriminant Problem 

Abstract 

In recent years, much research has been done on the application of mathematical programming 

(MP) techniques to the discriminant problem. U'hile very promising results have been obtained, many 

of these techniques are plagued by a number of problems associated with the model formulation 

including unbounded, improper and unacceptable solutions as well as solution instability under linear 

transformation of the data. Some have attempted to prevent these problems by suggesting overly 

complex formulations which can be difficult to solve. Others have suggested formulations which solve 

certain problems but which create new ones. In this paper we develop a simple MP model which 

unifies many features of previous formulations and appears to avoid any solution problems. This 

approach also considers a classification gap often encountered in the related statistical techniques. 

Subject Areas: Linear Programming, Linear Statistical Models, and Statistical Techniques. 



A Unified Mathematical Programming Formulation 

for the Discriminant Problem 

1. Introduction 

The discriminant problem involves studying the differences between two or more groups and/or 

classifying new observations into one of two or more groups. This is one of the most fundamental 

problems of scientific inquiry and has found application in diverse fields from biology to artificial 

intelligence and the social and administrative sciences. For many years, well-known statistical 

techniques such as Fisher's linear discriminant function (LDF) (Fisher 1936) and Smith's quadratic 

discriminant function (QDF) (Smith 1947) have been the standard tools for attacking such problems. 

Recently, however, much has been written about the application of mathematical programming (LIP) 

techniques t.o solve the problem in discriminant analysis. These hlP technniques attempt to identify a 

hyperplane which can be used to distinguish between observations belonging to two different groups. 

After their introduction by Hand (1981) and Freed and Glover (198la, 1981b), various hlP 

techniques have been shown to rival or outperform Fisher's LDF when the assumptions underlying the 

LDF are seriously violated (usually encountered when the data depart from multivariate normality). 

The most widely proposed MP techniques are the hlSD formulation (Freed and Glover 198lb), which 

minimizes the sum of absolute exterior deviations from the classification hyperplane, the MMD 

formulation (Freed and Glover 198la), which minimizes the maximum exterior deviation from this 

hyperplane, and hybrid methods which attempt to both minimize the exterior deviations and maximize 

the interior deviations (Freed and Glover 1986; Glover, Keene and Duea 1988; Glover 1988). A 

deviation is said to be external if its associated observation is misclassified (ie. falls on the wrong side 

of the hyperplane). Internal deviations refer to the extent to which an observation is correctly 

classified. Thus, external deviaitions are undersirable while internal deviaitons are desirable (Glover, 

Keene and Duea 1988; Glover 1988). 

For experimental evaluations of the hlP formulations' performance on simulated and real-world 



data ,  the reader is referred t o  studies by Bajgier and Hill (1962), Glorfeld and Olson (1962), 

Freed and Glover (1986b), hlarkowski and Markowski (1987), Joachimsthaler and Stam (1968), 

Koehler and Erenguc (1989), Rubin (1969), and those studies referred to  in these papers. 

\flhile these h l P  techniques have provided very promising results in overcoming problems encounter- 

ed by the standard statistical techniques, they are not without problems of their own. Three 

problems, in particular, have been known t o  plague the various h lP  formulations. These problems are: 

1) unbounded solutions, 2) unacceptable solutions, and 3) improper solutions. A solution is unbound- 

ed if the objective function can be increased or decreased without limit. Obviously, in such a case no 

meaningful discriminant rule will result. Following Koehler (1989) we call a solution t o  the discrimi- 

nant problem unacceptable "...if i t  generates a discriminant function of zeros, in which case all 

observations will be classified in the same group" (p. 241). An improper solution occurs if all obser- 

vations in both groups fall on the classification hyperplane. In such a case, the objective of zero mis- 

classification has been achieved but the resulting classification rule is meaningless and has no discrim- 

inatory power. Koehler (1989) also notes that none of the existing M P  formulations overcome all of 

the above problems without creating new ones. This emphasizes the need for a simplified formulation 

which does not suffer from these problems. 

In section 2 we will develop a simple M P  formulation for the discriminant problem that  unifies 

many features of the previous formulations. In section 3 we will show that  this new formulation is not 

plagued by the previously mentioned problems. In section 4 we discuss methods of classification using 

this formulation. Specifically, we indicate how t o  deal with the issue of the -called classification gap. 

Finally, in section 5 we will recommend directions for further research in this area. 

2. A Unified MP Formulation 

Consider the problem of two-group discriminant analysis. Suppose we have n observations on k 
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independent variables where nl of the observations belong to group 1 and n2 belong to group 2. Let 

P1 represent the (nl  x k) matrix made up of the observations from group 1 and define p2 similarly for 

group 2. Then following Freed and Glover (1981b) it would appear that the formulation in problem (1) 

can be used to determine a reasonable discriminant function for these two groups. 

(I) MIN z = l'dl + 1'd2 

S.T. P1x - Idl 5 c1 

P2x + Id2 > cl 

dl, d2 2 0 

x, c unrestricted. 

In this formulation (also known as the MSD formulation) 1 represents a column vector of ones of 

conformable dimension, dl and d2 are, respectively, (nl x 1) and (n2x 1) vectors of deviational variables, 

I represents an appropriately dimensioned identity matrix, and c is a real-valued variable. In (4), 0 

represents an appropriately dimensioned column vector of zeros. 

Intuitively, this formulation has considerable appeal as its solution, (x, c), identifies a hyperplane in 

k R that either completely separates the two groups (if z= 0) or minimizes the amount of misclassifi- 

cation if separation is not possible. Unfortunately, since the strict inequality in (3) cannot be directly 

enforced by the simplex method, this formulation always has an unacceptable (trivial) solution. R'otice 

this trivial solution (x= 0, c= 0) may be produced even if an alternate optimal solution producing 

perfect separation with x # 0 exists. Various remedies to this problem have been suggested such as 

I adding a linear equalit'y constraint (ie. a x= 1 ) or non-convex constraints (such as J x =  1 or 1x1 = 1) to 

prevent these solutions (Markowski and Markowski 1985; Freed and Glover 1986a; Koehler 1989). The 

linear constraint a'x = 1 implicitly eliminates any possible solution x, satisfying a'x = 0 from consider- 

ation and is therefore too restrictive. The non-convex constraints, on the other hand, make the result.- 



ing problem much more difficult to  solve. Additionally, neither alternative does anything to  prevent 

improper solutions from occurring. Thus. these alternatives are not appealling. 

Consider the revised formulation of problem (I) given in (11) below: 

(11) MIN r = l 1 d l  + 11d2 

S.T. P l ~ - I d l < c 1 1  

P2x  + Id2 2 c21 

C 1  < C2 - E 

d l ,  d2 L 0 

x, c1 ,  c2 unrestricted 

The term E in (10) represents an arbitrarily small positive number. The optimal solution to  this 

problem (x* ,  c f ,  c z )  defines two hyperplanes ( p x *  5 cf and px* 2 c z ,  where /3 is a (1 x k )  vector of 

variables representing possible observations on our independent variables) that will be used for discrimi- 

nation and/or classification purposes. A "gap' of size E separates these hyperplanes. 

It is easily seen that the objective in (7) will be minimized by taking c2 as small as possible and cl 

as large as  possible. Thus, (10) will be satisfied as a strict equality in the optimal solution. Therefore, 

we may substitute c2 - E for c1 in (8) and let the scalar xo = -c2 + E to  re-write (11) as follow*s: 

(IIa) hlIN t = l 1 d l  + 11d2 

S.T. xo 1  + P1x  - Idl < O 

xo 1  + p2x + Id2 2 E 1  

d l ,  d2 2 0 

xo, x unrestricted. 
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It  remains t o  select a value for the constant c .  Given that we have a general linear model it seems 

intuitively appealling to  set c = 1. This is consistent with the related treatment of binary choice models 

in regression analysis in which the dependent variable is analogous to  our right-hand-side values in 

(IIa) (Neter, MJasserman and Kutner 1989). In fact, it can be shown that for the two group case, 

regression of the independent variables on a binarg dependent variable (coded for group membership) 

provides results equivalent to  Fisher's LDF (specifically, the parameter estimates for the independent 

variables are proportional t o  Fisher's LDF). Additionally, it can be shou~n that the use of any other 

right-hand-side values in (11). say constants El and 2,, produces an equivalent formulation provided 

2, < 2,. 

3. Properties of the formulation 

Before we consider the properties of the formulation in (Ila) with c = 1, let us  reparameterize the 

model as shown in (111) so that  Pl is a (nl  x(k+l)) matrix and includes the 1 vector as its first column. 

Define p2 similarly. Thus, x will now be a ((k+l)x 1) vector and includes the intercept term, xo. 

(111) h1IN z = l1dl + I'd, 

S.T. pix- Idl 5 0 

- 
P2x + Idz 2 1 

dl,  d2 2 0 

x unrestricted. 

Clearly this formulation cannot be unbounded since by (21), z 2 0, and when perfect discrimination 

(or separation) is possible z = 0. If this occurs we are guaranteed an acceptable solution, for by (20) 

we cannot have d, = 0 and x = 0 simultaneously. In fact, unacceptable solutions (x= 0) cannot occur 

using (111) unless 'jT1 = 3i2 and nl = n2 (in which case no discrimination is possible using linear 



methods). This is proven in the following theorem. 

Theorem 1: If an unacceptable solution (x = 0 )  occurs using formulation (111) then the group centroids 

are equal and the sample sizes are equal (ie. Sil = 3i2 and nl = n2). 

Proof: Consider the dual of (111) given in (IIIa) below: 

(IIIa) MAX zd = d w l  + 11w2 

S.T. - p k w l  + pLw2 = 0 

Iw1 5 1 

Iw2 5 1 

W1,  W2 > 0 

By contradiction, suppose that  (111) has an unacceptable solution (x = 0). Then by (20) and ( l8 ) ,  

d2 = 1. Thus, z = n2 in (18) and by duality theory zd = n2 in (23). Now since wz is of dimension 

(n2 x 1), i t  follows by (26) that w2 = 1. So from (24) we have: 

The  right-hand-side of this equation is a ((k+l)x 1) vector composed of the k + l  sums of the columns of 

- 
P2.  Let pb ., denote the element of the i th  row and j th column of pk and w,, denote the j th element. 

'I I 

in w,. Considering the first row of (28) we have: 

Now if nl# n2 we may define our groups such that  n2 > nl. In this case, (29) cannot be satisfied 



since b r  (25), wl 5 1. Thus, when n2 > nl, x = 0 is not a minimizing solution to  (111). (In this case 

xO = 1, X .  = 0, j = 1, ..., k, is bet't'er than the trivial solution). When nl = n2, (29) can only be 
J 

satisfied by setting wl = 1 which by (28) implies P1 = E2.  

The proof of this theorem highlights two seemingly troublesome characteristics of the formulation in 

(111). First, if P1 = X2 we might really like to  obtain the unacceptable solution of x = 0 to  highlight 

the fact that no discrimination is possible using this linear method. However, if nl = n2 and alternate 

optima exist we could potentially get a non-trivial solution and, indeed, get a non-trivial solution 

if nl# n2. These characteristics, however, are not indicative of a flawed formulation, but an 

erroneous application. Preliminary exploratory data analysis should include a comparison of group 

centroids to  reveal if any difference really exists in the groups prior t o  the use of any discriminant 

procedure. If this analysis indicates P12: X2 or the centroids are not significantly different, linear 

methods should be abandoned and an  analysis of the applicability of non-linear methods should ensue. 

Secondly, although we have shown that by defining our groups so that n2 > nl when the sample 

sizes are unequal we technically do  prevent the trivial solution, this may seem to  be of little real 

comfort if we instead obtain the near trivial solution xo= 1, x = 0, ..., k. It is important to 
J 

remember, however, that the real issue is not just avoiding a trivial solution but having a formulation 

that avoids the trivial solution when a non-trivial solution provides as good, or better, discrimination. 

If a solution to  (111) exists which provides perfect discrimination then z = 0 in (18). The trivial or near 

trivial solutions discussed above produce objective function values in (18) of z > 0. Thus, if perfect 

linear separation is possible, the corresponding solution will be selected over the trivial one by the 

solution procedure. In the same way, it is possible for formulation (111) to generate an improper 

solution of say, pix = c1, p 2 x  = c1. However, for any value of c it is easy to show that r > 0 in (18). 

So again, if perfect linear separation is also possible, the corresponding non-tri vial solution will be 

selected. 
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Another disturbing property of the traditional hlSD and hlhlD formulations is that differing results 

may be obtained depending on where the data is located with respect to  the origin. Suppose that we 

transform the values of the sample dat,a on the independent variables in each group by equal amounts 

via pi = ap ,  + Ib, ; = 1, 2. Here a is a non-zero scalar and b is a (1  x k) vector in which the j th  

element is a constant indicating the amount by which we are shifting the values of the observations on 

the j t h  independent variable. Intuitively it seems that  this should not impact our ability to  discrimi- 

nate between the groups since we are transforming the values of the same variables in each group by 

equal amounts. Markowski and Markowski (1985) however, show that while such transformations 

(with a = 1) have no impact on the discrimination ability of Fisher's LDF they can have a significant 

impact on the discriminatory power of the traditional hlSD and hlh4D formulations. 

Transforming the data  in this way, however, is not a problem with the formulation in (IIa). To  see 

this, suppose we have an  optimal solution to  (IIa) given by (xg, x*) with an objective function value of 

z*. Now suppose we replace Pi  in (IIa) with a@, + lb. (a  # 0) and substitut,e yo and y for xo and x, 

respectively. After some simple algebra we have the following problem: 

(IIb) MIX z = l1dl + 11d2 

( y o + b y ) l +  aP1y - Id l  5 0 

(YO + by)l + aP2y + 1 d2 > €1 

dl, d2 > 0 

yo, y unrestricted. 

If we let yo = yo+ by and 7 = ay it is easy to  see that the formulation in (IIb) is equivalent to  the 

original formulation in (Ila). Thus, the optimal solution to  the transformed problem in (IIb) is a linear 

function of the solution t o  problem (IIa) and is given by (yo, y) = ( s- bx*, x*) with an objective 

function value of z= z*. Since our formulation in (111) is equivalent to  that  in (IIa) (wit.h €=I) ,  it is 
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also insensitive to  linear transformations of the data. To  distinguish our model in (111) from the 

traditional MSD formulation we shall henceforth refer to it as the unified MSD or UMSD. 

It is also interesting to study the properties of this formulation with an h lMD objective. This 

unified hlh lD (UhlhlD) formulation is given as follows: 

(IV) hI1N z = d  

S.T. a l x -  dl o 
- 
P2x + dl 1  1  

d 1 0  

x  unrestricted 

Most other h lh lD formulations have taken d  in (38) to be unrestricted. However, if perfect separation 

is possible then there exists a solution x  such that for any positive scalar o 2 1 we have: 

So if left unrestricted, d  can be made arbitrarily small as a increases resulting in an unbounded 

solution. This is prevented in (38) by restricting d  t o  be non-negative. 

To  see that an unacceptable soluiton cannot occur using UhlhlD consider the dual of (IV) given by 

(IVa) below: 

(IVa) MAX zd = d w l  + 11w2 (42) 
- - 1  S.T. / 3 : w l - P 2 w 2 = O  (43) 

l f w l  + 11w2 < 1  (44) 

w l ,  W 2  2 0  (45) 
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Now suppose there is an  unacceptable solution t o  (IV) (ie. x = 0). Then by (35) and (37), z = d = 1 in 

(I\:). Therefore, zd = 11w2 = 1 in (IVa). Hence, by (44) wl = 0. However, there is no  solution t o  

(43) with wl = 0 and 11w2 = 1 since the  first row of p i i s  a (1 x n2) vector of ones. Thus ,  a n  

unacceptable solution t o  (IV) cannot occur. Also, if perfect separation is possible in (IV) then z = 0. 

This  solut,ion would obviously be selected over the  trivial solution with z= 1. 

Similarly, i t  is easy t o  see tha t  if an  improper solution t o  (IV) occurs, so t h a t  pix = €1 and 

- 
P 2 x  = €1,  then z =  d>O. So if separation is also possible, the  associated non-trivial solution with z = 0  

would be selected. Thus ,  our UMhlD problem formulation does not suffer from the  problems of 

unboundedness, improper or unaccept,able solutions which were encountered in previous formulations 

(hlarkowski and  Markowski 1965; Koehler 1969). T h e  UhlhlD formulation can also be shown t o  be 

insensitive t o  linear transformations of the  data  in the same way as discussed above for the  UhlSD 

formulation. 

4. T h e  Classification G a p  and  Alternative Classification Methods 

Previous methods for the  discriminant problem have generally devised rules for classifying a new 

observation p as follows: If px* <c*  classify the  new observation as coming from population (group) 1? 

otherwise classify the new observation as coming from population (group) 2, where x* and c* are 

det'ermined by the  optimizat.ion procedure. Using the  formulation in (111), classification is not as 

straightforward due t o  the  gap  created by setting €=I.  This  gap  leaves us with a n  infinite number of 

possible cut-off values in the interval (0, 11 t o  use for classification purposes. 

Since some of the  justification for using the value € = I  is derived from the related stat,istical 

techniques, we might also look t o  these techniques for assistance in developing our classification rule. 

Graphically, t he  classification gap and the problem formulation in (111) can be represented as in 

Figure 1 for t h e  case of one independent variable p. 
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Figure 1 
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When estimating the optimal solution x* to (III), dl and d2 represent the external deviations of the 

observations pl and p2,  respectively. The UhlSD objective is to minimize the sum of such external 

deviations for all observations. Note that any observation i in group 2 with Pix* 1 B or any 

observation i in group 1 with Pix* I A have zero external deviation and do not fall in the 

classification gap. Any observation i with 0 < Pix* < 1 falls in the region of the classification gap. 

The question, therefore, is how to choose a cut-off value, c, such that an observation Pi is classified 

into group 1 if and only if Pix* 5 c. Following the statistical techniques, it is reasonable to use a cut- 

off value of c = 0.5, assuming equal costs of misclassification and equal prior probabilities. If the prior 

probabilities are proportional to the sample size of each group, a search procedure is recommended to 

find the cut-off value, c, which minimizes the number of misclassifications in the data set (Neter, 

N'asserman and Kutner 1989, p. 609). 

Summarizing, we recommend the following methodology for establishing the classification rule: 

STEP 1: Solve the UMSD model (111) (or the UhlhlD model (I\')) with nlg n2 to find the 

optimal estimate x* of x. 

STEP 2: Use the appropriate criterion to determine a the cut-off value c (using eit,her c=0.5 or 

the optimal cut-off value which minimizes the number of misclassified cases). 

U7e then classify a new observation Pi as from populat,ion 1 if Pix* c, and otherwise as from 

population 2. In a sense one can view the classification gap as the "fuzzy area" in which there is 

greater uncertainity involved in classifying observations as coming from one population versus t.he 

other. 

An interesting extension of the UMSD and UMMD models described above is to consider a general 
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Ip-metric objective (with 1 s p 5  m )  in the optimization in STEP 1. The rationale for such an objective 

is that the hlSD and the hlhlD criteria are special cases of such a general metric, with p=l  and p=m, 

respectively (see Stam and Joachimsthaler 1989). The general Ip-metric objective for UMSD is defined 

as follou*s: 

Let us define model (IIIb) as our UMSD formulation in (111) with a new objective function given by 

(46). The advantage of (IIlb) is that it is flexible, allowing a variety of data conditions to be modeled 

effectively by successively solving (IIIb) using different values of p. The discriminant function 

associated with the value of p which gives the best classification (in terms of the smallest objective 

function value or lowest total number of misclassifications) can then be selected. It is well-known that 

the MSD formulation is robust with respect to outliers, whereas the hlhlD formulation is very sensitive 

to outliers (Bajgier and Hill 1982; Glorfled and Olson 1982; Stam and Joachimsthaler 1989). Any 

metric with 1 s p s  m will place a relative emphasis in between these two extremes on outlying 

observations. Stam and Ragsdale (1989) have done some preliminary work which suggests the UhlSD 

formulation with an Ip-metric objective may be very promising. 

5. Conclusions and directions for future research 

We have introduced a unified h lP  formulation for solving the classification problem in discriminant 

analysis that does not seem to be plagued by problems associated with other formualtions. Our 

formulation is quite simple and does not involve normalization vectors or complicating non-linear 

constraints. Therefore, it provides a valuable contribution to the methodology of the hlP-based 

approaches to discriminant analysis. 
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Future research should explore the extension of the current UhlSD and PMhlD formulations to a 

more general class of $,-metric models and to models which include both internal and external 

deviations explicitly in the objective function. It appears that the latter can be achieved with a 

formulation similar to  the hybrid model proposed by Glover, Keene and Duea (1988). The issue of the 

classification gap is well-known in the statistics literature and provides another interesting research 

direction to  explore. This would provide a better understanding of the nature and interpretation of the 

gap associated with our UMSD and UhlMD formulations. 
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