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Foreword 

This paper deals with mathematical modelling and related data processing from im- 
munological tests for oncological patients. A model for describing the dynamics of the ob- 
served data is given. A method for investigating mortality dynamics as a function of in- 
specting clinical indices is suggested. This approach is then uaed for an analysis of immu- 
nological data from patients with stomach cancer. 

The results may be useful for estimating the state of the organism during disease and 
for solving a related optimal control problem. The solution may be interpreted as a 
recommendation for therapy. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



Mathematical Modelling and Analysis of 
Data from Immunological Tests for 

Oncological Patients 

A.L. Asachcnkov, B.G. Sobolcv and E.S. Smolianinov 

Introduction 

A state of the organism during disease is estimated by means of measurement in 

clinical tests which can be considered as observed variables of the mathematical model of 

the process. Functional disturbances to the homeostasis of the organism, which are in- 

duced by the disease, reduce to deviations these variables from the values corresponding 

to the healthy state of the organism. Inspection for the state of the organism during ill- 

ness which is based on an objective analysis of available information is a useful concept 

for choosing the method of treatment [S]. 

An actual problem of clinical oncology is the prediction of individual reaction of a 

tumor process on the method of treatment. At the present time it is not possible to 

predict individual sensitivity of the patients to methods of treatment, and to inspect the 

tumor growth process during treatment using usual statistical methods for processing of 

the clinical data. 

One way to solve this problem consists in construction of an integral index for describ- 

ing the dynamics of the illness as a function of laboratory measured variables. In this work 

we investigate the connection between the dynamics of the observed variables and mortality 

dynamics which is a fundamental development characteristic of tumors [I], [2]. 

In Section 1 some aspects of oncological illness which are important for mathemati- 

cal modelling are studied. Here, mortality dynamics, the stochastic character of the 

dynamic observed variables, heterogeneity population of patients, connection between a 

mortality index and individual dynamic of the laboratory data are discussed. 

In Section 2 a model for describing the dynamics of the observed data is given. The 

method for investigating mortality dynamics as a function of inspecting clinical indices is 

suggested. 

In Section 3, methods for estimating parameters of these models are discussed. 



Then, in Section 4 such an approach is used for analysis on immunological data at 

the patients with stomach cancer. Experimental data was submitted by E.S. Smolianinov 

and N.V. Vasiliev from the Tornsk oncological institute. 

1. Oncological Dieease 

Let us discuss some aspects of the oncological disease which are important for 

mathematical modelling. 

a) After surgery the remaining tumor mass can increase and metastatic spreading 

without expressing clinical symptoms during a long period of months and years. The 

remaining process of tumor growth acting on the main physiological systems of the organ- 

ism reduces to its functional disturbances. 

In turn the organism, to the development of the neoplastic process, responds by 

means of physiological and compensating reactions. These reactions provide stability of 

the basic physiological functions of the organism and guarantee neutralization of infre- 

quent and random disturbances of the homeostatic system. Systematic disturbances in 

most systems of the organism for a long period of time reduce to considerable structural 

and functional disturbances [6],  [7]. 

Consequently, the state of the patients at each instant of time can be considered as a 

point in the space of physiological parameters which are characteristic for functional dis- 

turbances of the homeostatic system. And the disease dynamics can be considered as a 

trajectory in this space. 

One of the system ensuring anti-tumor resistence of the organism, as is known, is 

the immune system. Some immunological indices can be measured in the clinic. We will 

study disease dynamics from the point of view of variation of such immunological indices. 

b) The clinical form of dynamics of oncological illness (aggressive, torpid or slack 

and unprogressive) is characterized by the life span of the patients after surgery. The life 

epan depends on the activity of disease. The main difference of tumor disease from infec- 

tious ones is that the patient's death by infectious disease has more random character 

with respect to these diseases than, as in the first caw, encouraging and morbid forecasts 

are determined by the anti-tumor resistence of the organism. 

Activity of the disease as a rate of the pathological processes can be estimated from 

measurements of the immunological indices. 

If we consider the dynamics of the tumor disease for a group of patients as trajec- 

tories in the space of the parameters we can see breaking trajectories. The instants of 



break of the trajectories have some stable distribution for the stage of illness, method of 

treatment, etc. 

For example, mortality dynamics have a good correlation with the clinical and mor- 

phological estimations of the process (see Fig. 1). 
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Fig. 1. Example of the mortality dynamics with respect to clinical and morphological es- 
timations of the process. (1 - solid tumor; 2 - local mestastatics; 3 - distant metastat- 
ics.) 

Consequently, the index for describing the dynamics of illness must be connected 

with the characteristics of mortality dynamics. 

c) It is very difficult to separate a group of tumor patients which have complete 

functional recovery system and organs and complete clinical recovery after operative pro- 

cedures. Nevertheless to study dynamics of disease in the different groups of patients we 

can compare dynamics of the disease in these groups with dynamics of the patients from 

the group with the best clinical form of disease in which the life span after the beginning 

of treatment is maximum. For example 5 years, because after 5 years a character of de- 

creasing in the group of individuals with the same age is equal to the factor of natural 

death. 



Individual life span after the beginning of treatment depends on the rate of tumor 

process or activity of disease which was investigated by the characteristic deviations of 

immunological indices for patients with a different form of disease from that in the group 

with the best clinical form of disease. Then the contribution of these deviations in the 

mortality dynamics are estimated. 

There are many factors which influence the deviations of individual parameters from 

the trajectory of these parameters in the group of patients with the best clinical form of 

disease that allows us to consider these deviations in the group of patients as realizations 

of some stochastic process. 

Connection between the basic characteristics of disease can formally be represented 

in the following form (Fig. 2). 

Fig. 2. Principal characteristics of the oncological disease. 

From this diagram we can see that the tumor dynamics can be described by means 

of mortality dynamics and the disease activity. We can observe the mortality dynamics 

of a group of patients but the activity disease can only be estimated by means of clinically 

or immunologically measured parameters during illness. 
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1.2. Survivor Function 

Analysis of the processes reduces to patient termination. That allows us to use 

mathematical methods traditionally used for the study of mortality dynamics. More de- 

tailed information can be found in [6], [lo]. 
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Denote by T > 0 a random variable having a continuous distribution function 

F(t)  = P{T 5 t), t > 0. 

Let T be a patient termination time after the beginning of treatment. Mortality 

dynamics in group ie described by a survivor function 

where j(t)  is a probability density function. 

Then the observed group termination intensity or hazard function X(t) is denoted as 

X(t)dt = P{t < T 5 t +  dt 1 T >  t ) .  (1.2) 

Therefore 

t 

S(t)  = exp {- jX(u)du) . 
0 

Integral intensity for the interval [O,t] is 

We will interpret A(t) as a load on the organism due to disease at  the instant of time t. 

Individual dynamics of the disease and intensity of mortality differ from the average 

observed values in the group and can be considered as random. Consequently, we must 

study the factors which generate heterogeneity of the population. In the category of such 

factors we can consider the individual patient dynamics of immunological parameters. 

Let Y(t,w)€Rm denote a vector of immunological parameters for the individual with 

index wEfl measured a t  the instant of time t, where fl is a set of indices, each element of 

which characterizes homogeneity with respect to some indicated group of the individuals. 

Evolution in time { Y(t,w)) on a set of all patients has a random nature. Then the individual 

hazard function ~ ( t , w )  must be a random function with respect to Y(t,w) and t ,  



Individual chances of death in this case are characterized by the conditinal probability 

P { T L  t l (Y(u,w), u 5 t)) (1.7) 

or conditional survivor function 

where Y(u ,w), O< u s  t are individual trajectories of the physiological parameters for those 

patients with the index w on the interval of time [O,t]. If the conditional survivor function 

can be represented in the form of 

then the individual hazard function is 

This function indicates the individual intensity of death connected with the tumor 

process and can be used for analysis of the dynamics of the illness. 

Observations in the group mortality dynamics are connected with average intensity 

of the tumor process for a group of patients. Therefore if the stochastic processes 

are denoted, then the observations in group mortality dynamics can be written in the 

form of 

The following proposition can be made: 

Propoeition 1. [I 01 

Let { Y(t)) be some H-coordinated stochastic process, and p( Y(t,w)) some positive- 

definite function such that V t  



Then 

where T(w) is a random variable connected with the process {Y(t,w)) in the following 

form 

Here 

is u algebra induced by the trajectories of the stochastic process Y(u,w) till the instant of 

time t when H = { H ~ Y ) ~ > ~ .  - 

Consistent with observations for a group of patients, a convenient hazard function is 

given by 

2. Observable Data. Basis Trajectories 

The activity of disease is denoted by a balance between the influence of a tumor on 

the organism and an immune response on a tumor. Some activity of disease can be es- 

timated from observed data, for example clinically measured immunological indices. 

Introduce a new concept - the best clinical form of disease - for which the life span 

after the beginning of treatment is maximum. 

Let the dynamics of the clinically measured immunological indices for the group of 

patients with the best clinical form of disease be described by equation 

where 

z(t)€Rrn is a vector of observable variables ; 
is a vector of coefficience . 



The vector function f(z(t),a) denoted by the analysis of clinically measured data, as 

a rule, has the following form 

Denote q t )  = ft = z(t,ao) a solution of the equation (2.1) under a = ao. This solu- 

tion corresponds to  the average dynamics of the observed data for the group of patients 

with the best clinical form of disease. The solution z(t,ao) is basis or non-perturbed solu- 

tion. 

1 Stochastic model for the deviation from the basia aolution 

Trajectory deviations of the observed data from the basis solution for patients are 

due to the influence on the process of uncontrollable clinical factors. The main role is 

played by a remainder process of the tumor growth and metasthasis. The mathematical 

model for describing such deviations will consist of ordinary differential equations with 

random perturbance in the coefficients. b y  pathological process developed on the same 

physiological foundation as a rule are assumed normal, and differ from normal processes 

only by conditions in the frame of which this process develops. Consequently, the dynam- 

ics of the observable data in the normal and pathological conditions can be described by 

means of the equations with the same structure, and the difference in dynamics is ex- 

plained by the difference between coefficients of the model. 

Let the main source of perturbations be small random deviations of the coefficients cr 

from ao, due to  individual singularity of the organism, i.e., 6a = a - ao. Consequently, 

for a group of patients, a is a random vector with the following form 

where 

E > 0 is a small parameter . 

On the other hand, the source of the perturbations can be continuous perturbations 

of the coefficients of the model by stochastic processes which reflect nonregular diffusion 

influence of difference factors on the organism processes. 



Assume that for each trajectory {zt(w) , WER , tc[O,T]) there exists a function 

at(w) = a. + &(w), where ct(w) is a fast non-regular perturbation. 

Once more the source of the perturbations may be a random deviation of the state 

variables at the instants of time t = 0; for example z0 - J(mo,-yo). 

In this case, the trajectories of the observed variables can be considered as realiza- 

tions of some stochastic process which satisfies the equation 

where the random variables 6a and the random process ct are small. 

As a rule the fluctuations of the coefficients of the model are due to the influence on 

the process of numerous factors. According to the central limit theorem [9] it is reason- 

able to  assume that if these factors occur according to distribution functions, if the effect 

from this influence is small and if these factors are independent then 6a and ct have Gaus- 

sian distributions. Consequently, to  construct a model for deviation of the coefficients we 

don't have to know the mechanism of deviations in detail. Therefore, we assume Gaus- 

sian processes for modelling the fluctuations of the model parameters. 

Proposition 2. [8] 

Let ztcRrn satisfy the system equations 

where 

ct is a stochastic process in R', 

s>O is a small parameter. 



Assume that any trajectories of this process are continuous, and that the function 

f(z,a) has k + l  bounded derivatives with respect to z and a. Then, an approximate of 

the equation (2.3) can be written in the form 

where the functions zl0), zfl), ... are solutions of the equations 

An estimate of the remainder term is given by 

If the model has a form [12] 

where 

and et changing the period of time more less than period of changing of the observable 

variables and one satisfy the condition of strong intermixing, that is dependence between 

C t + ,  tr decreases with the growth of r, then the solution of the equation (2.5) we can 

write in the form 

where z/l) satisfies the stochastic differential 

and consequently 

6Xf = Yf = zf - 2/01 FJ d Z Z / l )  , 

may be approximated by the equation 



When E--+O the process wf is weakly convergent to a Gaussian process wt on the interval 

[O,T] with Ewt = 0. Here, wt is an independent - increment process and the covariance 

matrix Gt[8], where 

In this case, the dynamics of the random deviations Yt = zt - zfO) is approximated 

by the linear stochastic differential 

If the intensity of deviations is small then the individual trajectory is not strong and 

can be withdrawn from the average trajectory zj0) on the finite interval of time [0, TI, and 

the difference between these trajectories has random character. If the intensity of devia- 

tions increases, variance of the deviations increases since 

where H(t,s) is a Green matrix for 

and 

where (,) is an inner product. 

If we have a small systematic deviations vector of coefficients a from the basic 

values ao, the equation for deviations can be shown to have the following form for all 6a: 



Z.Z. Parametrization of the individual hazard function 

The influence of a tumor process on the organism is given by the deviation of physie 

logical parameters from the basis trajectory. Analysis of the observed data shows that 

the character of deviations of parameters from values which typify the best clinical form 

of disease, have a good correlation with mortality dynamics or more exactly with life span 

after the beginning of treatment. In Table 1 the square deviations of the immunological 

data in the different groups of patients are reduced. It is important that 

for all immunological data from Table 1. Using this fact we can parameterize an indivi- 

dual hazard function of the form 

14 Yt,Q) = Y?QY~ + Xo(t) , 

where 

Q - is an unknown symmetrical nonnegative definite matrix of appropriate dimension; 

Xo(t) - is a hazard function which is nonconnected with the tumor process. 

Table 1. Average square of deviations in various groups of patients. 

(-) is a number of patients in group 

Experimental data from Tomsk Oncological Institute, USSR 

Index 

Bcells 

T-cells % 
13-cells % 

Ig G 

A!- 
Ig M 

lim % 

Life span after surgery 

a < 12 months 

7.54 
(75) 

6.86 
(75) 

3.70 
(75) 

6.36 
(75) 

1 
(74) 

b < 36 months 

4.60 
(389) 

3.24 
(389) 

2.71 
(356) 

1.50 
(356) 

0.6 
(388) 

c > 36 months 

0.36 
(62) 

0.19 
(60) 

0.12 
(75) 

0.07 
(25) 

0.1 
(54) 



2.3. Connection of mortality dynamics with dynamics of immunological data 

Assume that the model of the immunological dynamic variables for the best clinical 

form of disease is known. The equations for deviation, in this case, are chosen in the fol- 

lowing form 

where 

Y, = Z ,  - z ~ O ) E R ~  , 

ao( t ) ,  a l ( t ) ,  b ( t )  - are known functions appropriate dimensions. 

If the hazard function has a form pt = Y T Q Y ~ ,  we can construct a system of 

differential equations which connect mortality dynamics with the deviations of immuno- 

logical data from basis trajectories. 

Proposition 3. [I 01 

Let a stochastic process 

satisfy the linear stochastic equation 

d Y t  = (ao ( t )  + a l ( t )  Y t )  dt + I' b ( t )  dwt , 

YO - J4m0,ro) 

and conditional survival function has a form 

where 

Q - is a symmetrical nonnegative definite matrix of appropriate dimension. 

Then the mortality dynamics for a group of patients is described by a system of ordi- 

nary differential equations 



where 

The proof of this proposition is given in [lo]. Therefore, the observable intensity of 

mortality connects with the dynamics of clinically measured variables of the form 

3. Estimating the coefficients of the model 

Let us estimate matrices Q, r  by individual deviations of immunological parameters 

and observable function X(t). 

Functions ao(t), al (t), b (t) are known. 

3.1. Statistical estimation by a patient termination time 

We can define a probability density function f(t) using known functions 

x(t) = mtTgmt + S~[Qrtl , 

Here 

and 

then 



Let B = ( Q , r )  be an unknown vector. Then 

f ( t ;B)  = A(t;B) exp { - A ( t , B ) )  

and the likelihood function is 

d B )  = log P ( ~ ; B )  

where 

In our case 

and the functions m t ( Q ) ,  y t ( r , Q ) ,  At (Q)  are defined in (2.16).  An estimate of the unk- 

nown vector B is given by 

B = arg max p(B) . 
P 

(3 .8)  

The difficulty of this estimation procedure consists of the following functions 

mt,  y t ,  At is the function of Q .  

3.2. Estimation b y  means of a  joint equation 

In [4 ,  3 ,  121 methods for the estimation of coefficients of the system of O.D.E. 

are discussed. Here zt€IZn, a € R t ,  f(zt,a) = F ( z t ) a .  

The da ta  have the form 



9.2.1. Deterministic case 

Let a = a. + 6a be an unknown vector of coefficients. If zo is known, then the prob- 

lem of estimating a parameter a leads to that of estimating variations 6a from 

6zt = - z ( t ,ao). 

Let us consider the case when 6a = const [4 , 31 and in the frame of a given accuracy 

Write the perturbation solution of the system (3.9) z(t,ao + 6a) in power of the 

small parameter. Using methods from [3] write 

where 

a 
Let A = zf(z(t,ao),ao) be an n x  n matrix, and y;(t) = (ylk(t), .. .,yik(t)) is a vector 

function on [0, TI which satisfies the system 

if j f k  

where 6(t-tk) is the Dirac delta function. In this case 6a is the solution of the system 

(3.11). In [12] the iterative method 

is discussed. This method is actually the celebrated Newton method such as 



where 

Convergence of the estimation is given by 

3.2.2. Stochastic case 

The real trajectories of state variables of the model presumably have stochastic char- 

acter and can not be described in the framework of a deterministic model. The stochastic 

character of the trajectories depends not only on errors of measurements but also on vari- 

ous internal and external factors which influence the process dynamics. The stochastic 

character of real trajectories can be taken into consideration by introducing a random per- 

turbation into the model parameters. In this case a ( t )  = a. + 6a + &Ct is the function of 

time, where {Ct, t€[O,T]) is a stochastic process with ECt = 0 and E>O is a small parame- 

ter. A vector of deviations 6zt(a) has random character so that 

which has approximated a Gaussian probability density function. If the perturbations are 

independent, the mathematical expectation and dispersion have forms of 

where r is a vector of intensity of perturbation. Estimation of the coefficients of the 

model can be obtained from the likelihood function 



In [12] it is proven, that the iterative process 

(6aU, rU) = arg min 4(au,6a,I') , 
6a, r 

is a quasi-Newton process with first-order convergence. The estimations, computed by 

this method, with probability one, converge to the true values a*, r*  when N-too. 

4. Example. Analysis of immunological data of patients with stomach cancer 

In this section, our approach is used for the analysis of immunological data of pa- 

tients with stomach cancer. Experimental data was given by N.V. Vasiliev and E.S. Smo- 

lianinov from the Tomsk oncological institute. We study the dynamics of the tumor pro- 

cess and oncological patients life span after start of the therapy. 

4.1. Preprocessing of clinical data 

The immunological data have a large variability between neighboring instants of 

measurements. This circumstance leads us to  preprocessing of the available data. In 

Table 2 time measured immunological data are given for two methods of treatment. 

Table 2. Time measured immunological data for two methods of treatment in months. 

model time 
t 

$0 6b months 

Method 

chemotherapy 
+ 

surgery 

immune- 
stimulation 

+ 
surgery 

Beg. 
treat- 
ment 

0 

0 

1 
treat- 
ment 

0.5 

- 

Surgery 

1.5 

0.5 

Before and after n courses of treatment 

n= l  
- 

- 

2.0 

n=2 
- 

2.5 

3.0 

3.5 

n=4 

5.0 

5.5 

6.0 

6.5 

n=3 

3.5 

4.0 

4.5 

5.0 

n=10 

23.0 

23.5 

n=5 

7.5 

8.0 

8.5 

9.0 

n=7 

12.5 

13.0 

14.5 

15.0 

n=6 

10.0 

10.5 

11.0 

11.5 

n=8 

16.0 

16.5 

18.0 

18.5 

n=9 

19.5 

20.0 

21.5 

22.0 



Let z j ( t ) ~ ~ ~ ,  j = 1, . . . ,M, t E 8  be a vector of measured clinical data from the j-th pa- 

tient. If z(t) is measuring continuously then we can consider the integral of z(t) on [O,t] 

The average value of z(t) on [O,t] is 

We have meaeurements of z(t) only at the discrete set of inatants of time 8 = i t l ,  .. .,tN). 

Then instead of I,(t) we estimate by 

Consequently a set of values of immunological data z = {zt, t ~ 8 )  can be approximated as 

1 - a set of values d = {4 = TIz(t), t ~ 8 )  

The variables i ( t )  describe the average dynamics of z(t) in time. 

4.2. Basis dynamics of immunological data 

To study the characteristics of the immune system many tests are performed, but 

not all of these testa are informative for the tumor process. For example, we can use im- 

munological tests of the first level which are measured in the blood of patients such as: 

- concentration of B-cells = zl - T-cells % / B-cells % = z2 - concentration 

of irnmunoglobylius (Ig) of a different class (M,G,A) - IgG = z3 - 
IgAIIgM = z4 - Lymphocytes % = z5 

To construct the basis dynamics of immunological data we use a group of patients 

with life span after operation of not leas than 60 months. Some examples of individual tra- 

jectories for these tests are presented in Fig. 3. 



Fig. 3. Examples of individual trajectories of the immunological data dynarnice from the 
group of patients with the best clinical form of disease. zl is concentration of B-cells; z2 

is 23 is IgG, X4is IgA / IgG, z5 is Lymf. $4, t is time in months. 
B-cells% ' 



B-cells 

The average dynamics of B-cells after surgery in the group of patients with the best 

clinical form of disease is approximated by equation 

In this case zl(t) decreased from the initial value zlo to the stationary level 

z; = alo/all. On Fig. 4 the solution of the equation (4.5) (continuous curve) and experi- 

mental data ( 0 )  are described. Parameters of equation (4.5) and the initial value was es- 

timated by means of the methods which are discussed in Section 3. 

Fig. 4. Average dynamics of B-cells = zl in the group of patients with the best clinical 
form of disease. The continuous curve is the solution of equation (4.5) and the points ( . ) 
are experimental data (alo = 0.39, all = 0.13, zlo = 6.29). 

T-cells % / B-cells % 

In this case we use equation 

Fig. 5 describes the average dynamic behavior of this variable z2(t). 

Immunoglobulin IgG 

The equation for the average dynamics has the form 

See Fig. 6. 



Fig. 5. Average dynamics of T-cells%/B-cells% in the group of patients with the best 
clinical form of disease. (azo = 0.24, azl = 0.000001, az2 = 0.006, 220 = 2.5). 

Fig. 6. Average dynamics of IgG in the group of patients with the best clinical form of 
disease. (a30 = 0.25, a 3 ~  = 0.15, 230 = 4.13). 

Immunoglubuliue IgA /IgM 

The equation has the form 

The average dynamics for this variable z4( t )  is represented in Fig. 7. 



Fig. 7. Average dynamics of IgA/IgM in the group of patients with the best clinical form 
of disease. (aIO = 0.1, all = 0.00001, = 0.02, 240 = 4.13). 

Fig. 8. Average dynamics of Lymphocyte% in the group of patients with the best clinical 
form of disease. (xS0 = 0.38) 

4.9. Character  of deviations f r o m  average dynamics 

Stable deviation of immunological values from average dynamics is an important 

characteristic of the tumor process. Consider the dynamics of deviations from the basis 

solution in the different groups of patients with respect to life span. 

We expect that small deviations will be characterktic for the patients with the best 

clinical form of disease. For the patients with a short life span after surgery, this devia- 

tions will be greater than in the first group. In Table 1 (Section 2.2) the average square of 

deviations for the different groups is represented. Consequently, we have a correlation 

between the values of deviations from the bask trajectories and life span, moreover the 

value of deviations are significant. Therefore we can study the square of deviations or 

data variance. 



4.4. Immunological data and mortality dynamics 

Using methods from Section 3 and assuming that the matrices Q and r are diagonal 

we have an estimation for Q and f. In our case these estimates have values 

In Fig. 9 the estimation of the survivor function is represented and in Fig. 10 the 

solutions for mi( t ) ,  7 ; ( t ) ,  i = 1, .  . .,4 from the system (2.16) with the estimation Q ,  1' are 

represented. 

Fig. 9. The estimation of the survivor function from (2.16) 

Now, for the individual estimation of the disease activity during treatment we can 

use an index 



Fig. 10. RRsults of estimating of the parameters of the model (2.16) by basis equation 
and survivor function. Lymphocyte% is not used. 



This index can consider the intensity of the pahological process for this level of im- 

munological data deviations. 

In Fig. 11 individual estimations M{ for two different, by life span after surgery, 

groups are represented. 

Fig. 11. Individual estimations M for two groups of patients: a) T 2 40 months, b) 
T < 40 months. 

We can see that the dynamics of the estimation Mt differ in the groups of patients 

with different life spans after the beginning of treatment. The using these estimated in- 

dices we can attempt to control the individual dynamics of the disease during the treat- 

men t . 

5. Discussion 

The method of analysis of disease dynamics for oncological patients is represented in 

this work; the basis on the study of mortality dynamics as a function of immunological 

data deviations allows us to estimate the clinically unexpressed remainder of the tumor 

process and to inspect this process during treatment in individual patients by measuring 

in clincial immunological indices. With the help of such estimations we can solve various 

practical problems such as estimating the state of the organism, investigating the process 

dynamics, comparing the effectiveness of different treatments and formulating the optimal 

control problem for process treatment. But these problems are beyond the frame of this 

presentation. 
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