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Preface 

This paper gives a brief but systematic overview of topics in "mathematical immu- 
nology" and may be considered as an introduction to a new IIASA activity on these to- 
pics. Theoretical and experimental research in this area is aimed at  an understanding of 
the precise manner by which the immune system controls (or attempts to control) infec- 
tious diseases and diseases such as AIDS and cancer. 

Available mathematical methods, the difficulties arising in the respective problems, 
and some possibilities to overcome them are discussed. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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A Systems Overview of Immunology, Disease 
and Related Data Processing 

A.L. Asachenkov and R.R. Mohler 

1. Introduction 

1.1 Objective 

This paper is intended to provide a systematic overview of immunology and disease 

control. The emphasis is on mathematical synthesis within the individual rather than a 

society of individuals as characterized in epidemiology. 

It is intended that system theory should directly affect the planning of experiments 

so that such programs may proceed in a coherent fashion towards a better understanding 

of immune functions and disease control. Similarly, experimentation must impact sys- 

tems analysis to formulate a multidisciplinary integrated research program to achieve this 

goal. In the long run, hopefully, systems theory will directly affect disease diagnosis and 

treatment. 

The research is intended to focus theoretical research and experimental research in 

systems mathematics and immunology to experimental planning and prediction for the 

purpose of relevant disease applications. IIASA already has sponsored two workshops in 

this area: (1) The Working Conference on "Theoretical Immunology", Mogilany, Poland, 

1985, and (2) the Workshop on "Selected Topics in Biomathematics" , Laxenburg, Aus- 

tria, 1987. The proceedings of the first are published by Springer Verlag in the series on 

Biomathematics, [I]  and the second volume is in preparation [2]. 

Here, a summary of past immunological systems analysis is presented along with a 

brief mathematical synthesis of the major components of the immune process. This is fol- 

lowed by a study of recently developed methodologies for clinical data analysis with 

respect to cancer patients and for immune model identification. 

1.2 Past Research 

A mathematical approach was exploited for the analyses of immunological experi- 

ments even before the birth of modern system theory. This included the hemolysis by 

compliment and the antigen-antibody precipitation reaction and is discussed in a nice his- 



torical review by Bell and Perelson [3], [4]. More recently, mathematics was applied to the 

analysis of the formation of hemol; tic plaques in the Jerne essay and the determination of 

the antibody affinity distribution for an antiserum. For the first point, a mathematical 

theory of plaque growth, initiated in 1974 [5], [6] was successively developed to a large ex- 

tent in [7], [8]. This theory allows the determination of the secretion rate as well as of the 

affinity of antibodies generated by a cell. With regard to  the second point the antibody 

affinity distribution has been analyzed from experimental binding data both considering a 

discretevalue distribution [9] and a continuous one [lo]. 

As for the impact of the systems approach to  the dynamics of the immune response, 

an early preliminary model was presented in [ll]. The concept of activation and suppres- 

sive signals was introduced to describe the triggering and the paralysis of the immune 

process [12]. In the meantime, Jilek, Ursioya, and Sterzl [13], [14], developing the hy- 

pothesis of Sicarz and Coons [15] on the lymphocyte differentiation, proposed a probabili- 

ty model of different cell types undergoing repeated contact with specific antigens. 

A more complete description of the immune process was presented in the past decade 

by Bell (161 who gives a mathematical formulation of the clonal selection theory introduc- 

ing heterogeneity of antibodies with respect to the affinity for the antigen. 

This concept was successively developed by Bruni et al. [17] in which, remaining in 

the context of the clonal selection theory, a continuous affinity description was proposed 

to derive a distributed dynamical model. This model was studied in the context of 

variablestructure systems. 

A simple mathematical model of infectious disease was investigated by Marchuk 

[18], Belykh and Asachenkov [19]. 

Similarly, singlevalued antibody-affinity models were studied in [20]-[22], introduc- 

ing a switch over in the class of the produced antibodies (from IgM to IgG) and analyzing 

some mathematical properties. Furthermore, Mohler and his associates studied the spa- 

tial inhomogeneity of the immune system introducing a compartmentation in the model 

[21] and T-B cellular cooperation [22]. This work also shows the role of bilinear systems 

in immunology. 

Contributions to  T-B cellular cooperation also was given by Marchuk [18], Comin- 

cioli et al. [23]. 

Starting from 1974, other contributions to the mathematical description of the im- 

mune process were also given by Richter [24], Hoffmann [25], Adam and Weiler [26], and 

Hiernaux [27], on the basis of the immune network theory proposed by Jerne [28] which 

arises from the antigenic properties of each antibody molecule. Richter gives a general 



modeling approach to  activation and suppression of antibody production of different 

idiotypic classes, with each class suppressing t'-.e class from which it was activated and 

stimulating production of the following class. While this model lacks precise experimental 

verification, it does simulate the essence of low zone and high zone tolerance, along with 

primary and secondary responses. Hoffmann suggests a symmetric model which includes 

antigen-binding "positive" and antiidiotypic "negative" B and T cells and T-cell factors. 

Parallel to  these efforts on the mathematical modeling of the overall immune pro- 

cess, other results are also available on the modeling of specific aspects of the same pro- 

cess. In particular, the mechanism of binding a multivalent antigen to lymphocyte recep 

tors has been deeply analyzed due to  its fundamental role in the triggering of the immune 

response. From 1974, this phenomenon has been studied either under the hypothesis of ir- 

reversible binding with particular emphasis on the time description of lattice formation 

[29] or under the hypothesis of reversible binding, to  analyze the equilibrium and stability 

properties of the related model [30]. 

A second phenomenon, related to the one of cell cooperation, which more recently 

has been considered by Bell with the aim of deducing a mathematical description, was 

that of the formation of molecular bridges between cells [31]. 

A systems overview of immune processes is given by Mohler, Bruni and Gandolfi [32] 

but the most comprehensive mathematical analysis of disease control is presented by Mar- 

chuk [33]. Mathematical models of disease and related data processing was investigated 

by Zuev, Belykh, Asachenkov, Pogochev, Nisevich, Zubikova, Sobolev, Smolianinov [34]- 

[36], Romanycha, Bocharov, Janenko [65]- [66], [61]. 

Conferences devoted primarily to these topics include: 1978 Working Conference on 

System Theory and Immunology in Rome, 1978 Working Conference on Modeling of 

Complex Systems (with immune emphasis) in Novosibirsk, 1982 IFIP Conference on 

Mathematics in Immunology and Disease in Moscow, 1985 IIASA Working Conference on 

Mathematical Models in Immunology in Mogilany, Poland, 1987 IIASA Workshop on 

Biomathematics (with immune emphasis) in Laxenburg, and 1987 DOE Workshop on 

Theoretical Immunology in Santa Fe. These are indicative of the increasing role of 

mathematics in immunology. 



2. Mathemat ica l  Synthesis 

2.1 Components of Cells and Molecules 

Obviously, the immune process is extremely complex, and it would be impossible to 

develop an encompassing mathematical model to address all questions. However, immu- 

nological theory and experimentation has developed to the point that mathematical 

models and system studies can be useful for specific applications and as a basis for a gen- 

eral mathematical structure for future research. This joint analytical-experimental a p  

proach may lead eventually to a systematic understanding of body immune defense and 

its stimulation for effective health care. 

Experimentation shows that decay rate of bacteria is proportional to the product of 

its concentration with that of antibody and that of complement (prior to saturation), i.e., 

parametric control. If the effect of antibody and complement were linearly additive, as for 

conventional linear systems, the bacterial decay would not be so rapid since superposition 

would apply. Such multiplicative effects (rather than superposition) seem very prevalent 

throughout immunology. 

Roughly, the immune system is a communication command and control system to 

defend the body from alien intrusion and infection. Various immune subsystems, includ- 

ing complement, humoral system, and cell-mediated systems, are activated and deactivat- 

ed according to antigen level and chemical structure in concert with other substances, 

such as antibody, suppressors, helpers, lymphokines, etc. 

Cellular and molecular kinetics are the basis of the entire immune process. These 

processes are quite well defined from conservation equations and chemical mass-action 

principles. In general, the cellular population (or concentration), zi, of i th class may be 

described by [40]- [42] 

dz, 
- = source rate - death rate + division rate + 
dt 

+ rate differentiation to - rate differentiation from , 

where vi(t) is the source term (from bone marrow via blood); 7, is death time constant; 

pi(-), pi;(.), and pik(-) are appropriate growth coefficients (including probabilities of 



stimulation and differentiation from one class to  the other). These coefficients or probabil- 

ities represent parametric feedback control in the immune system of a ve-y complex na- 

ture. Indeed, it is these terms upon which much of immunological research is currently 

focused, i.e., what manner is cell production activated and controlled by mainly molecular 

substances. Consequently, pi(-), pi;(.), and Pik(-) are functions of primarily molecular 

concentrations. They may be deterministic functions or random processes depending on 

the approximation used. 

Here i refers to  different cell types; e.g., this might refer to  B,T ,  and macrophage 

cell lineages, such as resting cells, excited cells, cytotoxic cells, suppressors, helpers, 

memory cells, and plasma cells (which generate antibody). Also, other killer cells and 

mast cells could be included. 

An mth class of molecular concentrations, y,, may be described by 

dym - - - molecular source rate + generation rate + dissociation rate of appropriate 
dt 

complexes - association rate of appropriate complexes - death rate. 

This is usually approximated by 

or more accurately described by 

Here, wm(t) is an external source rate; r, is a lifetime; pi, is an ith-cell source rate for 

generating y,; and cmn, clm are appropriate coefficients of dissociation and association, 

respectively. In eq. (2.3), these coefficients would be functions of the appropriate yL(t). 

y n  refers to immune complexes of bound molecules which may dissociate. They may be 

assumed to  be deterministic or stochastic, depending again on the approximation desired 

or the information available. m refers to  the mth class of molecules, such as antibody, 

antigen, appropiate cell receptor, appropriate lymphokine, IFN (interferon), or other 

molecular substance. Here, the alien substance (such as a virus) is represented by the 

molecular chemical structure called antigen, Ag. 

If zf, yk refer to  a particular compartment, a, or organ with migration between com- 

partments, then eqs. (2.1) - (2.3) must include a net migration term such that 



dzf zf 

d t - = vf(t) - - + pf(.)Zf + C2pj(.)pji(.)zj - 2pf(')pfk(')zf + 
T f l#i k#i  

Here, superscript 8 shows possible dependence on the compartment or organ. (For exam- 

ple, an inflamed spleen should cause more stimulation of appropriate cells.) In general, 

the migration coefficients, SilnlU(.) and 6ilr,,(-), could be deterministic or stochastic func- 

tions of appropriate y,(t) since certain lymphokines (e.g., macrophage migration inhibi- 

tion factor, MIF) manipulate migration coefficients. A similar molecular version of eq. 

(2.3) may be developed. 

A simple building block synthesis of the immune system is presented here. It is 

shown that, mathematically, this complex system consists of numerous cascades of bil- 

inear processes [42], [43] which are themselves coupled together by nonlinear gain ele- 

ments. These coupling elements include stimulation and inhibition terms which are a 

focus of much immunological research. The mathematical structure is further divided for 

convenience into cellular and molecular components with mainly molecular terms 

affecting nonlinear coupling. If the appropriate measurements are made, the system can 

be shown to take the, sometimes analytically convenient, form of a conditionally-linear 

system [44]. 

2.2 The Hurnoral Process 

For the humoral immune system which leads to the generation of antibodies, cellular 

state variables may consist of immunocompetent cell concentration (ICC) zl(t) and 

plasma-cell concentration z2(t) (with memory cells neglected or combined with ICC). 

The molecular states, z3(t), zq(t), z5(t), include concentrations of free antibody, bound 

antibody-antigen complexes and free antigen respectively. Here, pl(.) and p12(-) terms in- 

clude z3 and z5 state feedback control if the molecular lymphokines and interferon of the 

cell-mediated immune (CMI) response are neglected. Subsequently, the humoral control of 

antigen may be modeled approximately from (1) and (2) by 

The molecular (mass-action binding) behavior is nearly described by the following for 



concentrations of free antibody z3(t), bound antibody-antigen complexes z4(t) and free 

antigen z5(t): 

The immune parameters are defined as follows: a is the birth-rate constant; a' is 

plasma-cell antibody production rate; r1 is the mean lifetime of irnmuno-competent cells; 

and 72, r3, r4, r5 are the appropriate lifetimes. c and N are appropriate dissociation and 

weighting constants. 

The additive control vl is independent of the multiplicative feedback control vari- 

ables (ul, u2, u3) and is significant in irnmunotherapy. ul and u2 both are functions of 23 

and z5, and u3 = kz5 is the classical binding term. 

The other additive control, rate of inoculation of antigen v2, is independent of the 

other control variables and has significance in disease prevention (or more correctly, 

disease control) by vaccination as well as in simulation of experiments whereby certain 

animal strains may be inoculated with antigens of particular characteristics. The rnulti- 

plicative controls may be manipulated by the synthesis of interferon, interleukins, etc. -- 
naturally by T and macrophage mediation or artificially when the first fails. 

2.3 Disease Models and A IDS 

Consider the deterioration of organ tissue from a virus of concentration V by 

where m is a relative damage characteristic of the tissue; u is a virus damage coefficient, 

and Hm is a tissue recovery coefficient. In this model, which follows [18], V is described 

similar to  z5 in (2.6) but with an added virus (antigen) destruction term by cytotoxic T 

cells. Model state variables include equivalent concentrations of virus (antigen), anti- 

body, ICC, plasma cells, and m (above). The Marchuk model assumes the generation of 

antibody concentration 23 in response to vl, v2 according to  (2.6) where a'(m) is now an 

appropriate monotone decreasing function. An analysis of the time response for this 



model is presented in [33]. Similar equations were developed for various T cells and ma- 

crophages which in turn affect feedback controls. 

Further investigations show the relation of stationary solutions to  healthy organ 

state and chronic disease. The latter may also result in periodic solutions. It is shown by 

simulation, that sufficiently increasing the initial virus dose results in more effective con- 

trol of the chronic disease by the immune system. 

Acquired Immune Deficiency Syndrome, AIDS, has been targetted as the most life- 

threatening disease of the future. During the 1980's, the number of cases seems to  be in- 

creasing almost as an uncontrolled exponential function. The intent of this paper is to  

describe the progressive nature of the disease and the resulting loss of immunocom- 

petence. Hopefully, such a model may be useful to  control AIDS. 

Again, AIDS is linked with a virus which is called HIV, Human Immunodeficiency 

virus. HIV has a particular affinity for a certain class of T cell lymphocytes, T4 ( T  

helper lineage). It is reasonable to expect that the eventual death of the T4 lymphocytes 

from the viral infection may be a principal inducement of immunocompetence. While the 

HIV does infect macrophages, experimental evidence indicates that their death rate from 

this virus is not drastic enough to  cause a detrimental loss of immunocompetence. 

AIDS dynamics may be approximated by (2.1) and (2.2) with a few equations pro- 

vided here. First, the antibody generation might be approximated by the humoral model 

(2.5)-(2.7) with a more complex ul(.) = U ~ ( Z ~ , Z ~ , Z ~ ) ,  u2 = u2(z5,zT,z,$), where Z T , Z ~  

refer to concentrations of free helper-T cells, Th, and free macrophages, M4. z5, antigen 

concentration here refers to  HIV. Although appropriate molecular interactions are 

responsible for the HIV control it is assumed proportional to the primary molecular 

source zT for simplicity. Any HIV control effects from z4, 23 are neglected, despite their 

increases, which is consistent with present experimental data. Such data suggests that 

Th-generated CD4 molecules do have some detrimental effect on HIV. 

If the humoral antibody and macrophage components are neglected, and HIV is 

represented through its infected T-cell component (with the infected macrophages 

neglected), then the dynamical structure may be approximated as follows: 

where again v3 is the source rate of HIV infection from the environment; the second is a 

net birth rate term; PnzT is the generation rate from infected Th cells of concentration 

2;; the last two terms are the rate of HIV infections binding with free Th cells and Th-cell 

control term respectively. The latter may be approximated by u = CRZT, where CTS is 



an effective positive association constant (via CD4 molecules). 

Consequently, Th cell dynamics may be approximated by 

where us is a stimulation coefficient function of antigen concentration and possibly other 

molecular controls. v4 is the source rate of free helper cells which in reality would involve 

several stages of precursors. Similarly, the infected- TH dynamics become 

, . 
where u6, v5, r5, C T ~  are appropriately defined similar to the corresponding term in (2.9) 

above. 

A study of a simpler two-dimensional AIDS model, but which assumes zT(t) to  be a 

random process, is studied by Merril [45]. A simple deterministic AIDS model also is stu- 

died by Cooper [46]. The two models were compared with the deterministic model pro- 

jecting the most rapid deterioration of immune response. 

As noted above, it is commonly believed that the pathogenesis of AIDS involves an 

attack on TH cells by the AIDS virus HIV. In a recent paper [47] it is suggested that the 

HIV mimics a genetically recognizable antigen, and causes the disease by inducing au- 

toimmunity to self for this class together with an anti-idiotypic response against CD4 

bearing cells. On this basis a network model is developed by Hoffmann in [48] which in- 

volves network interactions and leads to additional testable predictions. The model in- 

cludes immune responses to HIV and to anti-host receptors on foreign cells. 

Two complementary immune responses are considered in this model. The first is the 

response to HIV which binds to the CD4 molecule on helper T cells. It is shown that cer- 

tain antibodies can potentially destabilize the network. The second response is an anti- 

anti-self response, which occurs when lymphocytes are transferred from one person to 

another [48]. Anti-anti-self response is against the receptors of the foreign lymphocytes 

that recognize the host. Homosexuals can receive allogeneic lymphocytes together with 

sperm in ejaculates, and this could result in anti-anti-self responses. Other high risk 

groups (intravenous drug users, recipients of blood transfusions) also typically receive 

cells when infected. 

Since the immune system and AIDS models in particular have a conditionally-linear 

structure if appropriate measurements (of "nonlinearly appearingn states) are made, the o p  

timal filter and theory developed in [44] forms a good base for observer design and parameter 

identification. Also, Walsh functions have been applied successfully to a simple humoral im- 



mune model for estimation of parameters from simulation data [32], [48], [49]. 

2.4 The Role of Models in Ezperimental Analysis 

A few of the primary purposes of mathematical models are to systematically plan ex- 

periments, to mimick experimental results, to reduce the number of experiments (and 

thereby laboratory animals and time), t o  better understand immunology and to assist in 

the methodical treatment of disease. In order to  accomplish these objectives, it is neces- 

sary that analysis, experimentation and computer simulation proceed hand in hand. The 

methods of analysis include parameter estimation and optimization, from which evolve 

appropriate software developments. Fig. 1 depicts this procedure. 

The development of the model may involve various levels of detail which depend on 

the questions addressed for a particular immune reaction along with its respective experi- 

mental approach. 

Indeed, the success of the systems approach to  immunology depends on the ability to  

bridge the gap between mathematics, experimental programs and clinical practice. Some 

details of such interactions are studied in 1321, [53]-[54]. 

While such issues relative to  questions addressed, include state controllability, state 

observability, stability and model sensitivity are very significant and addressed to  some 

extent in past research, parameter estimation and optimization methodologies are the 

main concern of this paper. In this manner a quantitative characterization might be 

made of patient health and the effectiveness of various therapeutic policies such as drug 

effect on certain immunological parameters in the model, the experimental animal and the 

patient. More details of these questions are studied in [33], [54]. 

In the selection of a cost function, for optimal parameter estimation relative to  the 

data received and the model utilized, consideration should be given to  immunologically 

relevant standards as well as mathematical convenience. Such questions are addressed 

below with more details given in [54]-[57]. The subsequently developed software should 

be available t o  theoreticians, experimentalists and clinicians. 

A new methodology, which has been applied successfully to clinical practice in Mos- 

cow, is presented next. 
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Fig. 1. A methodology of application to immunological experiments and clinical practice. 



3. Data Processing and Disease Treatment 

There are many medical and mathematical publications dealing with methods of 

processing medical data for the diagnosis of diseases. We take for granted here that the 

diagnosis has been made correctly and that the problem consists in evaluating the degree 

of seriousness of the disease or of evaluating the state of the organism. 

Let X = ( z l J . .  .,zn) be a vector of clinical data which characterizes the state of the 

organism. Functional destruction of homeostasis of the organism by the given illness may 

be reduced to deviations of these variables from levels which correspond to the healthy 

state of the organism. State control of the organism which is based on an objective 

analysis of available information, is a useful concept for choosing the method of treat- 

ment. 

Special functions for analysis of the clinical data for infectious diseases such as viral 

hepatitis and pneumonia, which are called disease gravity indices were proposed by G. 

Marchuk in 1975. Experience using these functions in the clinic showed that, with the 

help of such indices, one can successfully solve various practical problems such as estimat- 

ing the degree of seriousness of the disease, estimating the state of the organism, investi- 

gating the process dynamics and comparing the effectiveness of different treatments. A 

more or less general framework of mathematical analysis of medical information is formu- 

lated by G.I. Marchuk, S.M. Zuev [33], [34], [38]. The numerical index of the gravity of 

an illness and the appropriate treatment are developed there. Clinical experience with 

such analyses are discussed by I.B. Pogochev, N.I. Nisevich, G.I. Marchuk, 1.1. Zubikova 

[341, 1531, [541. 

Consider briefly available mathematical methods for processing clinical data, the 

difficulties arising and some possibilities to overcome them. 

3.1 Clinical  D a t a  

As a consequence of clinical observations or experiments with animals we have a set 

of the instants of time 

at  which the state variables of the model are measured to define the set 

Let here z  E R n  be a vector of the state variables of the mathematical model. It is an 

ideal case from the mathematical point of view. 



If the experiment is carried out with a group of M animals, there is a group of trajec- 

tories 

for which the trajectory 

corresponds t o  the observation of the j-th animal. The experiments are carried out, of 

course, with animals of a single strain, and therefore assume the set of trajectories as the 

result of repeated experiments with one organism. 

The actual experiment, however, results is not a set of trajectories but a set of 

presumably independent values of variables for t E 8 so that we define 

This case occurs while performing the experiment in the following way. At the time 

t = 0 a group of M = mt animals receive the same quantity of antigen. At the in- 
t E 8  

stant t = to  > 0 the model state variables are measured to define a set of values 

As far as the existing measurements, the variables, which are of interest to  medical 

specialists, are those, as a rule, for which the animals are killed, a consequence of the 

measurement of a group of M - mo survivors. Then the measurements are repeated at  

the instants of time t l  , t 2  , . . . ,tN on another group of animals. Consequently we have the 

sets 

and for k # t these sets are assumed independent. 

One of the problems connected with clinical data is the following. The measurement 

variables are not the state variables of the model. These data can be considered only as ob- 

servations connected with state variables of the model z E R n  by means of some functions 



where 

Z = ( z l  , . . ., z,) is a vector 0,' the laboratory measured variables; 

/3 E RQ is a vector of coefficients or parameters, and 

\k(z , /3) is a known function relating observable and state variables. 

Consider the following problem as an example of the simplest model of a disease 

which is proposed by G. Marchuk. Given the system of nonlinear ordinary differential 

equations [34] 

with the initial data for t  = to 

z1 ( t ) z3 ( t )  = +( t )  for t  < to ; 

where 

z l ( t )  is a concentration of multiplying pathogenic antigens, 

z q ( t )  is a concentration of plasma cells, 

z3( t )  is a concentration of antibodies, 

z4 ( t )  is a relative characteristic of a damaged organ 

c(z4) ,  + ( t )  are known functions 

a. = const, j = 1,..,10. J 

There are four state variables in this model ( z l  , z2 , ~3 , z4) .  We can easily 

measure common levels of antibodies z3 and plasma cells z2 but specific antibodies and 

plasma cells are only an unknown part from these levels. The measurement of antigen is 

more difficult, and we do not know how to measure a relative characteristic of a damaged 

organ z4, or degree of seriousness of the disease. 



How can we use the information from clinical measured variables? By using these 

data,  specialists can attempt the diagnosis of di~sases,  evaluate the state of the organism, 

choose the method of treatment and investigate the process of rehabilitation of the 

afflicted organs. 

One of the ways to  solve this problem is t o  construct a gravity index of a disease. 

3.2 The Gravity Indez of Infectious Disease 

Let z E R m  be a measurement vector of clinical variables. We shall consider z as an 

m-dimensional random variable. 

Introduce the expert estimation of the gravity of the disease by the r = 0 , 1 ,..., R. 
Based on clinical practice, the following scale is suggested: 

r = 0 for healthy individuals; 

r = 1 for patients with a mild form of affliction; 

r = 2 with the average form; 

r = 3 with the serious form and 

r = 4 with the serious form and unpredictable outcome. 

Denote 

as the regression zj with respectg to  r .  

Here 

E is a mathematical expectation operator, 

gj(r), j = 1 , ..., m are known functions. 

Construct the scalar function p (z )  of the vector of observed variables by minimization of 

The function p(z)  is called the gravity index of a particular disease. If 

the function p(z)  can be chosen in the form of a linear combination 



where a, , j = 1 ,. . ., m are unknown, non-negative constants. 

If g,(r) , j = 1 , . . ., m are nonlinear functions, we can try to transform them by 

means of some functions f,(z,) so that 

In this case, a polynomial transformation is used. 

To simplify the data analysis it is convenient to transform the state vector charac- 

terization to  a scalar one. Now, we can study the dynamics of the process by calculating 

values of the index in time 

Introduce a normalized index of gravity 

where p(z  , to) is the initial index value corresponding to  the arrival of a patient at the 

clinic. 

Referring to the example from Section 3.1, we can consider the function y(t) as the 

observed variable for a relative characteristic of a damaged organ. 

Since, if zl = 0 for t = f >  to then 

Using statistical analysis of the simple case clinical data, we have a linear 

differential equation describing y(t): 

where X is a rate of restoration functions of damaged organ. 

Equation (3.15) is the basis for constructing mathematical models of functional reha- 

bilitation processes, for methods of estimating parameters of such models and methods for 

comparison of effectiveness of the different variants of treatment [34], [53], [54], [38]. 



3.3 Analysis of Data for Ontological Patients 

In Section 3.2, we introduced the expert estimation for degree of seriousness of 

disease. This is hardly practical when we deal with oncological patients. There is only 

one objective estimation for degree of seriousness of disease in this case, that is patient- 

termination time data. 

Since the tumor process, as a rule, eventually leads to  patient termination, we can 

use mathematical methods traditionally applied to  mortality dynamics for the analysis of 

observed variables of oncological patients [35]-[37], 1621, [63]. 

Let T > 0 denote the instant of patient death such that T is a random variable with 

continuous distribution function F(t)  = P{ T 5 t). Mortality dynamics of a group is 

described by the survivor function 

where f( t )  is a probability density function. 

The hazard or risk function A(t) plays a highly important role in the statistical 

analysis of failure time data so that 

Therefore 

Unfortunately, available experimental data, as a rule, are data from a heterogeneous 

group of patients. Heterogeneity is manifested in individual dynamic of measured vari- 

ables. 

Let Z(t ,w) - Zt(w)€Rm be a vector of physiological parameters of a patient with in- 

dex w€n at  the instant of time t ,  where n is a set of indices. w is an index which charac- 

terizes a homogeneous group of patients. For example, we can consider a homogeneous 

group of individuals with respect to  lifetime after the beginning of treatment. The indivi- 

dual evolution in time {Zt(w)) can be considered as a realization of some stochastic pro- 

cess {Zt(w), t€[O,T],  WE^). In this case we can study the conditional survivor function 



where Zt(w) are individual trajectories of the physiological parameters of the patients 

with index w. 

If the conditional survivor functions have the convenient reasonable form (see 3.19) 

then the individual hazard function can be defined as 

Consequently, group mortality dynamics in terms of observations could be written in the 

form of 

where p(Zt(w)) is an unknown function. 

In this case [62], [63], [37] the observable hazard function for a group of patients has 

the form 

T o  study mortality dynamics as a function of clinically measured variables we must 

parameterize the hazard function. 

In practice, various forms of parameterization are used, for example, 

where Zt€Rm, Q(t)  is an unknown symmetric positive definite matrix of appropriate di- 

mension, and Ao(t) is a hazard function which is not connected with the disease but which 

may be considered as a function of age, sex, etc. 

Elements of the matrix Q and Ao(t) can be estimated from observed data  Zt€Rm 

and S( t )  = E[S(t,w)]. 

t 
Consequently we can use (3.25) or I[z:Q(u)z, + Ao(u)]du for studying individual 

0 

dynamics and for choosing the individual method of treatment [37]. 



4. Estimation of Immune Model Parameters 

Assume that the model consists of a system of ordinary differential equations 

where 

zt E Rn is a vector of state variables, 

a E R' is a vector of coefficients. 

Furthermore, assume a linear parameter structure such that 

where F ( z )  is an appropriately smooth n x .t function. 

Let zt(a) denote the solution of equation ( 3 . 1 )  for t E [0 , TI. It was assumed previously 

that the experimental data have the following form: 

However the real t ra jec tor ies  of the state variables presumably have a stochastic character 

and can  no t  be described within the framework of a determinist ic model.  

The stochastic character of the trajectories depends not only on errors of measurements 

but also various internal and external factors which influence process dynamics. 

4 .1 .  M a z i m u m  Likelihood Est imat ion 

The stochastic character of trajectories can be described by the introduction of a 

small random perturbation for the model parameters. For each trajectory zi E Xm assume 

that there exists a piecewise continuous function a! such that % ( a { )  = fi , t E 8. A set 

of these functions can be considered as  a set of realizations of some stochastic process 

Moreover 

E a t  = I a t ( w ) d P ( w )  = 6 ,  V t E [ 0 ,  T] . 
n 



In this case a set X ,  can be considered as a contraction on 8 of the set of realizations of 

the stochastic process 

which satisfies the stochastic equation 

Then the solution to  the problem of model coefficient estimation reduces to  maximizing 

the likelihood function 

max @(2,, a )  . 
a 

(4.4) 

This problem is discussed in detail in [38], [64]. 

4.2. Adjoint Estimation of Model Parameters 

In the previous section the problem of stochastic estimation of model parameters is 

discussed. It is a difficult problem, because the likelihood function depends on parameters 

of the model in the implicit form. 

Fortunately an effective numerical algorithm can be constructed which uses the ad- 

joint equations. As an example, consider the simple deterministic task [50]-[52]. 

Let the model be represented by (4.1). For the sake of simplicity, we assume that 

the initial values z(0 , a) = q E R 3  , R 3  = {z E Rn I z 2 0) are known. Denote 

z0 G z(t  , ao) the solution of equation (4.1) satisfying the initial condition z(0 , ao) = q.  

This solution is said to  be a non-perturbed or a reference one. 

Assume that 

(a) statistical errors in the measurements are eliminated by appropriate preprocessing of 

the data, 

(b) within the given accuracy f(0) w z(0 , a0 + e 6 a )  , 0 E 8 where z(t  , a. + c 6 a )  is 

the true or perturbed solution of equation (4.1) satisfying the initial condition 

z(0 , a. + c 6 a ) ,  a. is a known vector, e > 0 is a small parameter. 

The problem of evaluating the coefficients of the model using the available data 

reduces to  that of determining the variation of the coefficients of the model 

6 a ., j = 1,. . .,t, which have been chosen, for example, from the condition I 

112 (0) - z (0 ,  a. + c 6 a )  ( I 2  - min 



Alternatively, a sequence 

has to  be defined such that 

1 )  2 (8) - ~ ( 8  , a" + 6 aU ) I 2  -+ min . 

L as u -+ oo where a. E R is a given vector. 

Let us write the perturbed solutions of equation (4.1) z ( t  , a. + r 6 a )  as a series in 

powers of a small parameter r such that 0 < r < ro (ro > 0 is a fixed number) 

Substitute (4.5) into (4.1); expand the right-hand side of the above equality in powers of 

the small parameter r > 0 up to  terms of the order of O(rN) ,  and equate the terms with 

the same powers of r > 0 to  obtain a recursive system 

Neglecting terms of the order of r2 or higher, for 6zt x zt(ao + 6 a )  - zt (ao ) ,  we have 

d - 62, = A (t)6zt + B(t)6 a , 
dt (4.7) 

6 z O = O ,  t E [ 0 ,  TI , 

where 

For system (4.7) write the adjoint system 

d 
- Y t  = -AT( t )y t  + ~ ( t )  , dt 

Y ( T )  = 0 ,  t E [ O ,  T I ,  

where p(t)  is an appropriate function which will be defined below. 



Taking the scalar product of (4.7) by yt and (4.8) by 6zt, integrating from 0 to  T, 

adding together and using the relation 

< A ( t )  62 , yt > - < A T(t) yt , 6zt > = 0 , 

we obtain 

= / < B(t )  6 a ,  yt > dt + / < p(t ) ,6zt  > d t ,  
0 0 

If we choose the function p( t )  as follows: 

where 6(t - 8) is the Dirac delta function, 1 5 k 5 n , then (4.10) can be rewritten in the form 

where 

and k(t) satisfies equation (4.8) for k = 1 , . . . , n. 

Let 6 a. be the solution of system (4.12) for t E 8. a* = a + 6a is an unknown vec- 

tor. As a result of our computation we have 6 ao. Therefore al = a. + 6 a. is a first a p  

proximation for the unknown vector a*. Now we can write an iterative process for es- 

timating a*. 



Actually this is the Newton process with the convergence rate [38] 

I a" - a* I 5 c-l(c I a. - a* ( )2s , c = const . 

4.3. Simple Ezample 

Let us consider the following zero system [52] 

dz 
dt - = f ( ~ ,  , t E [ O ,  tk] , 

~ ( 0 ,  a) = z O ,  

where 

This system of equations in a simplified form describes the change in the number z2 

of T-lymphocytes (z2) which occur during the immune response to  non-reproductive an- 

tigens, e.g. sheep red blood cells in CBA mice. The data on the number of T-cells 

(helpers) were obtained by R.N. Stepanenko. 

Here, 22 (Of) is an average number of T-cells at the instant of time t = Of , t = 1 ,... 5 

The non-perturbed solutions of equation (4.15) has the form 

0 5 2  -is1 t 
z2(t , 5) = z2 exp {T (1 - e ) -63 t} 



Let us write the equation for the linear part of the variation, 

and the corresponding adjoint equation 

where 

yi(tk) = 0 , i = 1,2, t E [0 , tk] , 8 E (0 , tk) . 

The solution of problem (4.18) has the form 

~ l ( t )  = 

The estimate of the variation 6a of the coefficients of the model can be found from 

the condition 

1 1  J - ~ 6 ~ ~ 1 1 ~  - m i n ,  (4.20) 

y2(t) = 

where 

&2 0 - z2 exp 
El 

exp 

0 ,  f o r t L 8 ,  (4.19) 

6 2  - - - 
- 1  - e 01 '1 - z3 81 (1 - e-Ol (B-t)) 
61 

-4  [ -%t -El B - e - e 
a 1 

, for t < 4 

0 ,  f o r t 2 8  



and D is a 5 x 3 matrix whose entries are 

4.4 Stochastic Case 

In this case a ( t )  = a. + ec(t),  {ti, ~E[O,T]) is a stochastic process with Ect  = 0 and 

6 > 0 is a small parameter. A vector of deviations 6zi(a) has random character so that  

T 
6zjk ( a )  = - <6a, $i(a)  > + $ <BY;, dw,> (4.21) 

0 

which has approximatly a Gaussian probability density function. If the perturbations are 

independent, the mathematical expectation and dispersion have forms of 

where r is a vector of intensity of perturbation. Estimation of the coefficients of this 

model can be obtained from the likelihood function 

In [38] it is proven that  the iterative process 

(6au, r Y )  = arg min 4 ( a ,  60, I?) 
a ,r 

is a quasi-Newton process with first-order convergence rate. The estimators, computed by 

this method, converge t o  the true values a *, r *, with probability one. 
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