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Foreword 

An adaptive stochastic approximation scheme is suggested for solving a system of 
equations defined by functions whose values are available only through random 
observations on a given lattice. To improve the performance of the basic stochastic 
approximation scheme in the presence of outliers, the author uses isotonic and 
quasiisotonic regression to  fit the observed function values. The convergence of the 
algorithm is proved. 
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1. INTRODUCTION AND MOTIVATION 

In this paper we shall concentrate on suggesting a suitable 

approach for solving the system of equations 

m 
where g( . ,o) :[R ->[Rm, x d m ,  and o is some random variable (or 

random vector) defined on some probability space. 

If we consider a stochastic optimization problem 

min Ef(x1o) 
xex 

where the minimum of Ef(x,w) is reached at an interior point of X 

this problem can often be transformed /e.g.Rockafellar,Wets/ to 

/I/ 

where o are independent random variables (or vectors) and the 
t 

following conditions are fulfilled 

a/ at are independent t=1,2, . . .  

2 2 
C/ E Ile(x,o,)ll < const. (ltllxll ) t=1,2,. . . 

2 
L 

2 
d/ E g(x,w) I const. (ltllxll ) ,  

then the standard stochastic approximation algorithm 



= nx(xt 
a 

x - - g(xtlwt)) t=1,2, . . .  ,(a>O,xl 
t 

arbitrary) /3/ 
ttl 

may be used for solving /I/, where TI denotes projection onto the 
X 

set X.(See e.g. Ermoliev (1976)). 

For our motivation let us consider the case where X=R 
1 

(i.e. 
1 1 

g(.,o):R ->R ) .  Let us denote the observation g(x 
t 4,) by Yt and 

suppose that we have observations up to time n . We can fit these 

observations by a linear function y=cxtb and take as the estimate 
b 

of the root of equation /1/ the least squares estimate of --. (See 
C 

picture l).Let us denote this estimate 9 .If we suppose that the 
n 

parameter c is known then we easily get 

- 1 - 1 
where yn= n Dt, x = - x .For x = @  it follows by 

t n n ntl n 

induction that 

which is in the form of /3/.( See e g  Robbins,Lai for further 

investigations). Many suggestions were given for adaptive estimate 

of c. The investigation of Mukerjee (1981) can be interpreted as 

the attempt to fit the observations at time n by a more suitable 

function then the linear one. He suggested least squares fitting 

by isotonic regression function and took x as the root of this 
n+ 1 

fit.His method will be described in a more general way in Chapter 

2. 

If the observations are really observed and not simulated then 

we could expect some outliers among them. Algorithm /3/ can 

totally fail at this moment. (See picture 2). To avoid problems of 

this kind the robust version of the problem /1/ can be written as 



d c f  

m(x) = argmin S H(Y-p) dFx(y) = 0 .  

9 
1 

Here F is the distribution function of g(x,w) ,H:R'-->R . If H(z)= 
2 

X 

= z , then /5/ is equal to /I/. (See picture 3 for some standard 

choices of H). In Chapter 2 the procedure analogous to Mukerjee's 

will be suggested for solving problem 5 In Chapter 3 some 

multidimensional extensions of Mukerjee's algorithm will be 

investigated. 





- - +.. 
: :F:; 
: T:: 
: $:; 
-.... -:... \ t:: ... 
... ... 



- 
A. Pii-:TI ,iPT 

1 -  , . ,.L .,-.I 

I-~. - , ,,.-.:, 1 ,,.-.. p ,: 
Il--.i t , ..-.. " I ..-. . -1 - i;, - f H 



2. ONE DIMENSIONAL CASE 

In this chapter we suggest algorithm for solving 5 Notice 

that /5/ is a unconstrained one dimensional problem ( x d l  ) . For 

constrained problem see Remark 1, As already mentioned, in the 
2 

special case when H(z)=z , /5/ is equivalent with 1 where 

1 N 
Notation:l/ x <.,.<x are real numbers, 

2/ ni (i=l,...N) denotes the number of observations at the point 
i 

x up to time n, 

3 /  Yij i=l,...,N,j=l,...,n is the value of the j-th observation i 
I 

at the point x , 
1 

4 /  H:[R~-->IR is some measurable function. 

5/ (11 denotes the cardinality of the set I, 

6/ for ieIG{l,. ..,N) let ti) denote the rank of the element i. 

Any element of 

argmin H(yij - ti) 
t < . . . S t  i = l j - 1  

1 N 

will be called the sample isotonic regression . 
For any fixed real number r and positive number d l  the set 

L={r+ld;leZ) will be called the lattice with step size d. We 

denote the set of all integers as 2 .  

We shall use abbreviations i.0. for "infinitely often",a.s for 

"almost sure". For example,P[ x E A i.o.1 means the probability of 
n n 

the event [x E A for an infinite number of n]. We shall also write 
n n 

SLLN instead of "strong law of large number". 

The problem /6/ can be considered as the attempt to fit our 



observations by a function more suitable than the linear one. In 

this case we suggest isotonic fitting . For recursive estimation 

of the root of the equation /5/ we shall use the algorithm 1. In 

comparison with standard stochastic approximation algorithms it 

can be useful if we can make observations only at the points of 

the lattice L. At the end of this chapter we also suggest 

algorithm 2 for solving /6/ in the case when H is a convex 

function. 

ALGORITHM 1 
1 

1/ Select an arbitrary closed interval [a,b]dR and set X =[a,b]n~ 
0 

L. Set n=O and make an observation at each point of X .Go to step 
0 

2 /  Define x =min X 
n ' X n ~  

=max X . Let N denote the cardinality of 
nm n 

(N=(X - 1 ) .  Set 

Solve /6/ and define 

where we set max 0 =-m,min 0 =a. 

Take an arbitrary point 8 ~ ( 8  ,8 ) and set 
n nm nM 

x =[8 1 = max 8 
ntl n 

8€L ,858 
n 

x' =[8 +dl 
ntl n 



Make observations at points x ,xJ ,set nrntl and repeat step 
ntl ntl 

- - -  
REMARK 1: The interval [8 'BnM1 can serve as the interval 

nm 
estimate of the root of equation /5/. If we suppose the root of 

1 
/5/ to be in some set XdR , we can take 8 from the algorithm 1 as 

n 
any point of [enm BnM]f7X. 

J 

- - -  
Now we shall derive some asymptotical properties of the 

sequence (8 1 .  
n 

ASSUMPTIONS: 

A0 Let our observation at time t at the point z be g(zJwt). 
1 1 

where g(,,ot) is a real valued function (g(..ut):rR ->R ) and w 
t 

are independent random variables or vectors defined on some 

probability space (n,A,P). We suppose that for any fixed ZEL 

g(z,ot) are identically distributed for all t with distribution 

function F . Let P be the probability measure on 
Z Z 

rR1 

corresponding to F . Let E be the corresponding expectation. 
Z Z 

AOJ Let H is a real valued continuous function. 

Let a be some real valued function such that 

p(yJ8)=H(y-8)-a(y) satisfies conditions Al, A2, A2', A3, A4, A4', 

A5, A5'. 

We define y = Sp(yJ8)dF (y)=BZp(y,B). 
z z 

1 
A1 There exists a probability measure Q on IR such that 

and 



1 
A2 There exist x eL,adR ,s>O such that 

m 

A2' There exist x EL such that for a and c from A 2  
M 

A3 There exists a continuous function b such that 

1 
32>0 3CdR V8,(81>C, VzeL the inequality 

is satisfied, where # =8 8 . 
1 1' 2 

P(Y,~) 
A4 3K (-a~,K)l(-m,a-~) and E inf ------ 21-x Vz~~fl(-m,x I ,  

Z m 
Qe(-m,K) b(8) 

where x is taken from A 3 .  

P(Y,~) 
A4' 3K' (K',m)~(a+c,m) and E inf ------ 2 1 - x Vz€Lr7[xM,m), 

z 
8 d K '  ,m) b(8) 

where x is taken from A3. 

A 5  For K from A4 there exists a probability distribution Q on IR 1 
1 

such that 

,Q(Y,~) ~(~'81 
PZ[ I inf ------ I2x 1 5 Q1[ I inf ------ ~ l x  I ~ze~n(-m,x ) 

m 
88(-m,K) b(8) @a(-m,K) b(8) 

and 



A5' For K' from A4' there exists a probability distribution Q' on 
1 

IR' such that 

p(y,B) p(y,B) 
PZ[ I inf ------ x I 5 Q I inf ------ I2x I Vz~Lfi(x ,a). 

Be(K',a) b(B) Be(KS,a) b(8) 
M 

and 

These rather complicated assumptions are analogous to those of 

Huber (1967) for the law of large numbers for M-estimates. Here 

the difference is that we have a set of distributions instead 
2 

of one distribution as Huber has. If H is a cor ex function then 

from the assumptions A2,A2' it foll~us that for 

6, 

the conditions 

are fulfilled, Assumptions A0 are similar to those of standard 

stochastic approximation algorithms. Assumptions Al,A5,A5' ensure 

the validity of SLLN. The other assumptions are technical. Now we 

give the asymptotical result for the sequence 8 from algorithm 
n 

1. 



THEOREM 1:Let H be a convex function.Let a from AO' be 

continuous. 

Then under the assumptions AO,AO',AG, for the sequence 18 1 from 
n 

the algorithm 1, the relation 

holds true. 

The proof of this theorem will be given in ~ppendix 1. 

Now we give two corollaries for special choices of function H. 

In these corollaries m(z) is defined by /5'/. The first corollary 

can be considered as the asymptotical result for estimating the 

root of regression function by algorithm 1. The second corollary 

is the asymptotical result for estimating the root of the function 

of medians by the same algorithm. 

COROLLARY l:(Mukerjee 1981) 
2 

Assume the assumption A0 is fulfilled and H(z)=z . Let there be a 

probability measure Q such that P E ly(>x I 5 Q[(Y~>x I for all x 
2 

larger than some constant and Sly1 dQ(y)<m. Let there be 

E>O,X~EL,X EL <X such that 
M lXm M 

Then for 8 from the algorithm 1 the relation 
n 

holds true. 



This corollary is proved in Mukerjee (1981) under slightly more 

general assumptions. 

COROLLARY 2: 

Set H(z)=lz/. Assume the assumption A0 is fulfilled and the 

following relations hold true 

For all xsL let there exist the derivative F' of F at the point 
X X 

m(x) and 

3~5~>0 VxsL F '(m(x))>Lo 
X 

/7c/ 

Then for en from the algorithm 1 the relation 

holds true. 

- - -  

For proof see Appendix 2 .  

Now we shall investigate the problem /6/,i.e. 

The following algorithm can be used for solving /6/. 

ALGORITHM 2 :  
Z Z 

1 /  Set z=l,k =i for i=l,...N,L =N. 
i 

2 /  Solve the problems 



z 
k II 

Z 
argmin y1 $H(yij - t) 1=0, ... L -1. 

t  2 1 . 1  
i = k  + 1  

I 
2 

Any of these solutions are denoted by ty,l=0,. . . ,L -1. 
Z Z Z Z Z Z 

* d  c f 

If t <...St then t = t l  ie[kltl,k , l = O , L  -1 are the 
o z i 1t1 

L - 1  

solutions of /6/ and the algorithm is finished. If any of these 

inequalities is not satisfied then go to step 3. 
Z z 

3/Set z=ztl ,k =O,k the smallest index such that tz-I < tz-I . 
0 1 z 2 

1 1 
Z 

is the next smallest index and so on. Define L as the number 
Z 

of k defined. Set kZ =N and repeat step 2. 
1 2 

L 

See picture 4 as an example. 

- - -  
2 

In the case H(z)=z the algorithm 2 was proposed in [l].The 

solutions of /8/ can be obtained in this case as the weighted 
Z Z 

averages of the averages at the points k +I,..., 
1 kltl 

.The weights 

are proportional to the number of experiments at each of these 

points. 

The idea of the algorithm is based on the following theorem . 
THEOREM 2.Let H be a convex function.For I 1 c l , , N )  let - .5 .5 

t=(t,..,t) be the solution of 
II 

argmin 1 t H(yij-t 1 
t I.. I t  

(i) 
I 11 I iE1 j = 1  

1 1 
a a 

and for I c[l,. . . ,N) such that min I >max I let ta=(t ,. . . ,t ) be 
2 2 1 

the solution of 

argmin 
t  1. . s t  

L L wyij-t ( i ) )  a 

1 I I  I ~ E I  j = l  





0 
i 

.c 

If tr<tandt' r e r g m i n x  1 H(yij-t) thent' is also the 
t 

LEI UI J = 1  
1 2  

0 
L 

P P 
solution of argmin 

t 5.  . st 
1 11 I +  11 1 ieI u I2 

1 2 1 
- - -  

Proof of this theorem will be given in Appendix 3. 

At the end of this chapter we will recall a representation for 

the solution of 6 This representation is very useful for 

proving the Theorem 1. It can be shown 

(Nemirovski,Polyak,Cybakov, 1984) that if H is a convex function 
r 

then any solution t* = (  tl, . . . ,ti ) of /6/ can be expressed in the 
N 

form 

t* = max min t(k,l), 
i 

k<i 12j 
where 

1 0  
i 

t(k,l) E argmin > > - t). 
t i = k j = l  



3. MULTIDIMENSIONAL APPROACH 

In this chapter we suggest a multidimensional version of 

algorithm 1 for solving the problem /I/. We also prove a limit 

theorem for this multidimensional algorithm. We shall use the 

notation <. , .> for inner product in Rm, 

11 .  U for the norm in Rm, 

- d e f  

x = max(0,-XI, 

m X is a discrete subset of R ;its elements are the 
n 

points at that we made observations up to time n, 

y.(x) is the value of the j-th observation at the point 
m 

xdRm (Y.(x)& ) ,  
3 

n(x) is the number of observations at the point x 

y (x) is the average of observations at the point x,i.e. 
n 

We can follow the logic of the one dimensional approach for the 

multidimensional case of problem /1/ (i. e. g:Rm->LRrn) : 

1/ Take the least squares isotonic estimate of the function 

- 
m E argmin 

2 
Jly .(x)-m(x) 11 , 

DEW xex j :  1 
n 

where 



The set M is the set of multidimensional isotone functions. 
.c C 

2/Take the root of m ,(i.e. the solution of m(e)=O) and provide 

observations near this root.Repeat step 1. 

The solution of /lo/ together with step 2/ is complicated. But 

the problem /lo/ can be simplified if we enlarge the set M to the 

set 

PI'= { h : ~ ~ - > R ~ : 3 e & ~  such that <h(x) ,x-e>>O 1 .  

m 
The sample quasi-isotonic regression field m'(x),xG dR ,will be 

n n 
defined as an arbitrary solution of 

its domain being then restricted to X . Any sample regression 
n 

field has the form 

4. 

where 8 is a solution of 

for X+~,XEX , 
n 

REMARK: For the one-dimensional case, a simple algorithm for 

solving /11/ was suggested by Dupac (1987) and a stochastic 

approximation scheme analogous to that from Chapter 1 was proven 

to converge there. A multidimensional version of stochastic 



approximation algorithm was suggested but without proving a 

convergence theorem. In the sequel, we shall try to prove the 

convergence properties for the multidimensional case. 

NOTATI0N:Let e.dRm be the i-th unit vector.For i=l,. . .m let r be 
1 i 

an arbitrarily chosen positive number and denote Z =Zn[-r ,ri].For 
i i 

D 

6 
6>0 , zdRm the set M = + 6eili;liZi,i=1,.m) will be called 

Z C 
the lattice with the step size 6. For  EM' define the .-dimensional - Z + 
cube with center y as ~'=co(~-6e ; i.1,. . .m) . (coA means convex hull 

Y hi 6 
of the set A ) .  Finally, let R = ( 8 d R m ; ~ ~  such that ~ E C  

6 
and 

6 
Z 2 + Y 

y-26eidZ, i=l,...,m). 

- - -  
ALGORITHM 3 

6 
l/Choose the initial point 8 arbitrarily from the set R . Take a 

6 O 6 
z + 

y such that 8 EC and y-26e.eM . If there exist more than one such 
0 Y 1 Z 

y, choose y randomly among them with equal probabilities, 

independently on the past. Make observations at the points 

xb=y + 26ei i=l,. . .m, 

2 1 
i 

Set n=l, XI= U (x0) 
1 

2/Solve the problem 
- <y (x) ,x-8) 

n 
ammi. L~ [ 

BER 
6 ilx - 811 
2 n 

<y(x) ,x-8)- 
taking 0 instead of if Ilx-811 =O. 

Il x - 8 11 

3/Let 8 be an arbitrary solution of /12/ and again choose y such 
6 + 6 

that 8 EC and y-26eidZ. If there are more than one such y, 
n Y 

choose y randomly as in l/. Make observations at the points 



2 I 
i 

and set n=n+l, X =X U ( U {xn l)).Return to step 2. 
n n-1 - 

* 
REMARK: In the algorithm 3 we use as an estimate of 8 the 

solution of /12/ which may be easier to solve than /ll/. 

Nevertheless the following theorem remains valid if we replace in 

this algorithm the problem /12/ by /11/ as Dupac suggested. This 

fact will become clear from the proof of this theorem. 

THEOREM 3: 
m m 

Let m(x) be a continuous vector field ( m : R  ->R ) such that there 
6 

exist exactly one ~ * E R  for which m(8* )=0 and <m(x) ,x-8* > > 0 for 
* Z 

m 
every xd? ,x#B . Assume that observations y.(x) can be expressed 

1 

in the form y.(x)=m(x)+f.(x) for i=l,...,where f.(x) are random 
1 1 1 

vectors obeying the SLLN and Ef.(x)=O, 
1 

Then for every t>O 3 6 >O such that for all 6<h0 and for all 
6 

0 
yEMZ satisfying 

6 
the equation P [ B E C  i.o,l=O holds, whert 8 are defined by 

n Y n 
algorithm 3. 

PR0OF:Choose E arbitrarily.Because of the continuity of m there 

exists 6(6) such that if Hx-yll<6(t) then llm(x)-m(y)H <c.Set 

60=6(c/9qm)/3. 

t Let N denote the random variable such that for all n>~' the 
X X 

1 
inequality 1 1 -  lfi(x)ll < t is valid. Due to the SLLN N' < m a.s. 

n x 
1 



for all x and c>0. There exist constants D>O and C>O such that for 

d o_f 
all xsM6,x+8* ,for all n(x)>K - max N~ the following 

z I X 

inequalities hold: 

If n(x)< K then n(x)<Gn(x) ,x-€3')-/llx-€3' 11 5 K 11; (x)ll- < K1. 
n 

From the two previous inequalities it follows that 

* J n(x) < K2 Vn, 
II - e 11 

where K is a random variable finite a.s, 
2 

b 
Suppose now that there exists  EM such that 8 EC i.0. and 

6 Z n Y 
Ilm(x)ll>~ for each x from C . We shall derive in this case that 

Y 

From here because of implication (8 EC o + n z  - a ) the 
n Y 

convergence 
0 

n(z) - >a is valid for all 0eC . This 
Il w -011 a - > a  Y 
n 

contradicts /13/. Now we shall prove /14/. First we show that for 

6 
all XEC there exists ZE y-26e ,i=l,...,m such that for all ~ E C  { +  i 

6 
Y Y 

the inequality <m(x),z-0> I -6~/-/m holds true. 
6 

For the arbitrary vector xsC set 1' argmax ( (m. (x) 1 ) and take 
Y 1 i 



z=y-26 sign(m (x)) e . Now 0 can be represented as 
1 * 1' 

0=! [ii ( ~ t 6 e ~ )  t A (y-hei) ,where A are satisfying 
i tr  I i i 

1 

for i=1, . . . ,  2m. It implies 

<m(x),y-26 sign(m (x)) e -0>= 
1 * 1 * 

6 
From the definition of 6 it follows that for all xeC and all z 

Y 

E {,! 26ei,i=l,. . . , m  the inequality m(x)-m(z)ll 5 r/19h) holds 1 
true.From SLLN we get 11; (z)-m(z)ll 5 6/(9fm) for all ">No. where 

n 
N is some random variable finite a.s. Because of n(z)- 
0 

>a we 
n - > O D  

get 

- t -  - - I - -  
3Jm 3Jm Jm 3 Jm 

6 
for all 0eC and for all sufficiently large n. 

Y 



APPENDIX 1 

Before proving the Theorem 1 we shall prove two lemmas using 

the following notation: 

F =u( x1,x2, ..., xt),u fields on (O,A,P) generated by the indicated 
t 
random variables, 
B 1 

T. the time of i-th entrance of the sequence x into the set ~a , 
1 t 

C E  argmin ;!p(Y B,e), 
n 

8 1 T 
i 

U some open neighborhoodof 8. 
8 

LEMMA 1: Let assumptions A0,AO' be fulfilled.Then 
B 

a/there exists C <a+& such that for any BE[x , w )  satisfying T.<m 
1 M 1 

Vi ) ,  the inequality C  2C for all n>N is valid, where N is a.s. 
n 1 

finite random variable. 
B 

b/there exists C >a-6 such that for any BS(-m I satisfying ( ~ ~ < r n  
2 , xm 

Vi ) the inequality C -  is valid for all n>N, where N is a.s. 
n"2 

finite random variable. 

PROOF: We shall use notation T instead of T~ for simplicity. 
# i i 

Using results of Nevelson,Khasminskij (1972) we can derive that 

p(YT ,el 

[ 
i p(y1e) 1 

E inf 1 FT.] = Ez inf I 
e<cl b(e) 1 e<cl b(e) I z=x 

T 
i 

P(Y,~) I 
Here be the notation E inf 1 we denote the value of the 

Z e<cl b(8) I z=x 
T. ., i 

p(~,e) 
function p(z)dlf E inf at the point z=x . 

z T e<cl b(e) i 

From A3 follows that there exist x>O1 C<a+& such that the 



inequality b(B) > holds true for all B<C. Due to 
1-2x 

A4', for this x there exists some constant K' such that 

P(Y,@) 
E inf t 1-r VzeLft[xM,m). 

z /L1/ 
BIK' b(B) 

We set C =min(C,K'). Applying the SLLN for martingale differences 
1 

(see e.g. Loeve) with the assumption A5' we get 

for all ntN1. 
N1 

is a.s. finite random variable.From /L1/ 

and /L2/ for any B<C and for all z ~ [ x  ,a) 
1 M 

Using A1 we can apply SLLN again, getting 

From this the assertion a/ of Lemma 1 follows. The assertion b/ 

can be derived similarly. 

- - -  



LEMMA 2: Assume AO,AO',AG are valid,Let for any K>O 

sup 1 inf p(y,8) - p(y,8') 1 ------- > 0, /L3/ 
Iy(<K ~ E U  

9 ' u8,->cetr 
Then 

B 
a/ C ~[a+&/2,m) for any BS[x ,m) and nlN,if T.<m a.s. for all i. N 

n M 1 

is a.s. finite random variable. 
B 

b/ C E(-m,a-6/21 for any BS(m,xm] and n>_N,if T.<m a.s. for all i. 
n 1 

N is a.s. finite random variable. 

PROOF : 

From Lemma 1 it follows that there exists a constant C <a+€ such 1 
that for all sufficiently large n C >C >-a. Now from A6 and /L3/ n 1 
we can derive that 

inf p(y,B)-p(y,b' ) > 0 uniformly in z .  /L4/ 

8 ' 

Using A2' we get for any UE(C ,at~/2) the inequality 
1 

inf y (8') ) ~ ~ ( 8 , )  + 6'. 
z e's[c1 .ui 

For any B'E[C~,U] there exists U such that 
8 ' 

This follows from /L4/,/L5/.From {U,;BE[C,U], U satisfies /L6/) a 8 8 
finite number S of intervals U can be chosen such that b ~ r  3 

s 1 s 

[C1'UI 

Using SLLN for martingale differences we get for nlN (N is a.s. 
s S 

finite random variable) 



n 
inf 1 p(yT ,B') L 1 inf p(YT ,B') t 

B'EU 
n n 

i B'EU i 

I I 
t 1 E inf ,o(y,~)\ 

6 ' 
t -  

n z 
B'EU 

4 n 
1 

2 ' 

I ' z=x T z=x 
i 

T 
i 

We used assumption A1 and the equality 

I 
inf p(YT ,B) 1 FT 

i i I Z'X 
T 
i 

On the other hand 

for n>N having used SLLN again. Thus for nL 
0 

max N. we get the 
1 

i=O,. . ,s 
assertion a/ of Lemma 2. The assertion b/ can be obtained in a 

similar way. 

Remark: Lemma 1 and Lemma 2 are formulated and proved in a more 

general pattern in Charamza 1988. 

Proof of Theorem 1: The proof follows the lines of that in 

Mukerjee (1981). However we use the assertion of Lemma 2 (the SLLN 

for M-estimators) instead of Mukerjee's Lemma 1,which is in fact 

the SLLN for martingale differences. We also use general formula 

/9/ for representation of sample isotonic regression instead of 
2 

Mukerjee's special case of this representation for H(z)=z . 



APPENDIX 2 

Proof of corollary 2:We set a(y)=ly/ and check the assumptions of 

the Theorem 1. 

The condition A0 is also the assumption of corollary 2. 

The condition A1 is fulfilled because 

P [(ly-Ql-lyJJL x 1 = 0 for all x greater then (81. 
Z 

Set 81=a-c0/2,8;=a+c0/2. Now for any B<a+c / 4  and any zs[xM,m) 
0 

The inequalities follow from conditions /7b,c/.Setting s=s /2 we 
0 

get condition A2'. Condition A2 can be obtained similarly. 

Setting b(8) = 181+1 we get from unboundedness of 8 (that follows 
Z 

from /7a/) easily that assupmtion A3 is fulfilled. 

From the assumption /7/ it follows that there exists K >O such 
3t 

1 
that P [ IyILKl 15 -. We find that for any K'<O 

Z 3 

inf - - I[Y>~] + I[ye[K',O>l + 
\81+1 -K'+1 

T[y<K'I. 
8<K' lYI+l 

Hence inf 
IQl+l 

> -1 and for sufficiently small K'we obtain 
8<K' 

E inf 
181+1 

L E inf 
z z I @ \  +l I ~ ~ Y I < K ~ I - E ~ I [ ~ Y ~ ~ K ~ I  L 
8<K' 8<K' 



Thus the assumption A4' is fulfilled. The assumption A4 follows in 

a similar way. 

ly-01-lyl 
From the unboundedness of the function inf 

I ~ l + l  
the 

8<K' 
assumption 5A' follows. Assumption 5A is also valid due to the 

same reason. 

Assumption A6 is fulfilled due to the condition /7a/. 



APPENDIX 3: 

Here we prove Theorem 3. At first we shall prove two lemmas. 

LEMMA 3:Let H be a convex function,Ic{l,. ..,N), and 

Then for all te[min(tl.t2),max(t ,t ) I  the inequality 
1 2  

holds true. 

PROOF:. Choose t~(min(t t ),max(t t ) )  arbitrarily. There exists 
1' 2 1' 2 

he(0,l) such that 

t=htlt(l-h)t From convexity and assumption /L7/ the following 
2 ' 

inequalities can be obtained. 

* * * 
LEMMA 4:Let t =(t ,..., t ) be a solution of / 6 /  For t=(tl, ... tN) 

* * 
let t < t < . . .  < t (reap. tl < ... < t N <  t ) .  Then for any 

1 N 



* * 
tle[t ,tl] (resp. t'e[tN,t I )  the inequality 

holds true. 
* 

PROOF: Let us consider the case t St < ..5tN.The other case can be 
1- ' 

proved in a similar manner. We shall prove that 

wherefrom the assertion of Lemma 4 follows using Lemma 3. 

Let us denote i <...<i all such indexes i that the inequalities 
1 k 

1 H(yij 1 * - t.) 5 
1 H(yij - t )  

hold true. If there is no such index then /L8/ follows using 

Lemma 3. Set i =l,i =N+1. As the consequence of Lemma 3 we get 
0 k+l 

for any l ~ { l ,  . . .  ,k) the inequalities 

for all i~[i ,i -11. It implies the relations 
1 1t1 



- t.) 1 2 1 1 H(yij - t i 1 /L9/ 

i=i j=1 i=i j=1 1 
1 1 

for all l=l, ... k. 

Using mathematical induction we prove 

for all zLk. For z=k the inequality holds true as equality. 

Using the induction assumption we get 



The last inequality follows again from Lemma 3 using the 

* 
The relation b/ can be easily derived from the fact that t is 

a solution of / 6 / .  

Hence L/10/ is proved also for z=0. This fact and /L9/ 

give / L 8 / .  

PROOF OF THE THEOREM 2: Let t=(t ..,t 1 be an arbitrary vector 
1" N 

such that t < .StN. Let us define SP-sup t 
I - *  

IN=inf t . Now 
ie1 

(i)' 
ie1 

(i) 
1 2 

define constant b in the following manner: 
* - 

(i) if t I SP 5 IN I t then b = IN, 
* - 

(ii) if SP I t I IN < t then b = IN, 
* - * 

(iii) if S P <  I N <  t I t then b = t , 
* - 

(iv) if t I t < SP I IN then b = SP, 
* 'C - 

(v) if t < S P I  t I IN then b = t, 
* - * 

(vi) if SP < t I t < IN then b t . 
Using Lemma 4 it can be shown that 

The theorem just follows. 
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